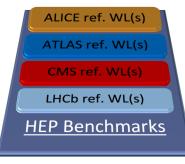
Benchmarking Working Group Status Report

D. Giordano (CERN/IT)

on behalf of HEPiX CPU Benchmarking WG hepix-cpu-benchmark@hepix.org

HEPiX Autumn 2020 Online workshop 13 October 2020


Intro

- □ This report focuses on the <u>HEP Benchmarks project</u>
 - Main activity of the WG in the last year
 - With several new / young contributors
- In short

WLCG has to change the benchmark HS06 sooner or later

- Motivations extensively presented at the last <u>HEPiX Workshop '19</u>
- Briefly: HS06 end of technical support (2017), targets only CPUs, we don't know if will continue to scale well w.r.t. new HEP sw
- □ Field-specific (HEP) workloads guarantee by construction
 - A score with high correlation to the throughput of HEP workloads
 - A usage pattern that is similar to that of HEP workloads

https://gitla	b.cern.ch/hep-benchmarks	(
	Scenarios	HS06	HEPscore
	x86 CPUs (y. 2010-2020)	\checkmark	\checkmark
	New CPUs models and/or arch	?	√
r later	New Exp Sw	?	√ (w/ new reference WLs)
19	CPU + GPU/FPGA/	×	✓ (same speed definition: event/s)

Standalone HEP Container WL₁ HEP Benchmarks project Orchestrator Three main components being developed since ~2 years HEP Workload Extract Scores JSON (i) Run III Released under GPLv3 licence III Results loca cymfs HEP Workloads Individual reference HEP workloads **HEP-score** Standalone HEP Container WLn Common build infrastructure alone HEP Container WL Standalone HEP Container WI Run HEP Workloads Orchestrato Collect &Validate results - HEP Score 🛃 Ban 🛛 🛷 **HEP-Benchmark-Suite** Plugins Run Logic Data processing Orchestrate the run of a series of HEP workloads **Compute HEPscore** HW Metadata Configure Benchmark Validate Results > Build Report ActiveMQ Parameters Report HEPscore 했 Compute the **HEPscore** value Elastic Search Run Collect Publish Other Benchmark Results & Logs Report whole set of WL results ± 🖲 🧉 HFP Benchmark Suite Meta-orchestrator of multiple benchmark suites Benchmarks HS06 SPEC CPU2017 HEP-Score (CPUS & GPUS) Other HEPscore, HS06, SPEC CPU2017... ± 🗿 👉 ± 🛞 🥌 ± 🖲 🖆 ± 🕲 👉

_

HEP Workloads

HEP Workloads

- Standalone containers encapsulating <u>all and only</u> the dependencies needed to run each workload as a benchmark
 - Reduce library size using cvmfs tracing/shrinking technology
 - Report results in a structured json format (see next slides)
- Standalone containers available in <u>gitlab registry</u> and automatically **distributed via CVMFS** (!!/NEW!!) /cvmfs/unpacked.cern.ch/gitlab-registry.cern.ch/hep-benchmarks/hep-workloads
 - Run a given workload via a single command line:

>singularity run <IMAGE_PATH> <args>
>docker run <IMAGE_PATH> <args>

With the G	tLab Container Registry, every project can have its c
lmage Rep	ositories
hep-benc	hmarks/hep-workloads/hep-workload-builder 🛱
hep-benc	hmarks/hep-workloads/atlas-sim-bmk 🛱
hep-benc	hmarks/hep-workloads/hep-workload-builder/cacl
hep-benc	hmarks/hep-workloads/atlas-kv-bmk 🛱
hep-benc	hmarks/hep-workloads/alice-gen-sim-bmk $\widehat{\mathbb{L}}$
	gitlab registry

 \otimes 12 Image repositories \bigcirc Expiration policy will run in about 6 h

Container Registry

Extensive validation process of WL

- □ Validating reproducibility, robustness, run duration, disk space
- Continuously running in a number of virtual & physical machines
- Evaluated a different number of events per WL to shorten the runtime

WL	# threads or proces. (default)	# Evts/thread (default)	Duration of a single WL run on ref machine [hh:mm]	Wdir size (per running copy)
Atlas gen	1 (SP)	200	~12	50MB
Atlas sim	4 (MP)	10	~1:32	100 MB
CMS gen-sim	4 (MT)	20	~0:15	70 MB
CMS digi	4 (MT)	50	~0:09	400 MB
CMS reco	4 (MT)	50	~0:15	100 MB
LHCb gen-sim	1 (SP)	5	~0:40	15 MB
Total			~3:30	

CPU Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz (32 cores, SMT ON)

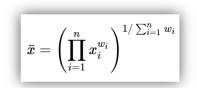
Workload	ATLAS gen	ATLAS sim	ATLAS digi-reco	CMS gen-sim	CMS digi	CMS reco	LHCb gen-sim
Robustness	0	0	0	0	0	0	0
Reproducibility	0.8%	2%	0.6%	1.5%	1%	1%	1%
Memory	0	0	0	0	0	0	0
Image size (unpacked)	1.65 GB	6.0 GB	6GB	5.4 GB	11 GB	8.4 GB	2.6 GB
Readiness	0	0	0	0	0	0	0

Growing list of workloads

□ Alice gen-sim

- The current one is based on Geant3, not fully stable
- New workload in preparation: ALICE O2 multi-core simulation
- Atlas digi-reco
 - waiting for multi-processing version with pile-up overlay

Packaging of standalone containers can be easily applied to other workloads and Experiments


HEP Score

HEP-Score vs HS06

D Similarities

- Implement the geometric mean of the WL speed factors
- 3 runs per WL and get the median value
- Differences
 - HEP-Score adopts a set of WLs suggested by the experiments
 - Event throughput [event/s] as key metric
 - The parameters can be tuned to represent the production job mix
 - N.B.: The final list must be defined following WLCG needs
 - HEP-Score: the geometric mean has been extend to the weighted geometric mean
 - Workloads can be differently weighted to represent different job mix
 - N.B.: To be defined as WLCG policy

https://en.wikipedia.org/wiki/Weighted_geometric_mean

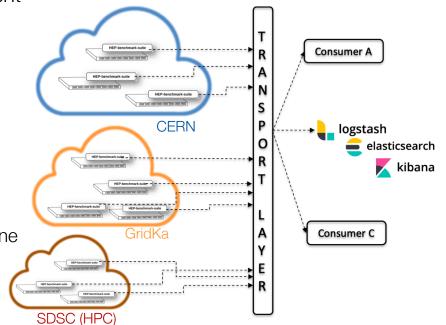
Status of HEP-Score

- □ Version v1.0 will be released in the coming weeks
 - C. Hollowell (BNL), C. Van Der Laan (CERN Intern)
- Several new features in v1.0
 - Singularity and docker engines are both supported
 - Access of cvmfs unpacked images
 - Better handling of disk space, configurable cleanup of the working directory
 - Optimised the report structure
 - Improved CI tests
- □ To install: pip install --user git+https://gitlab.cern.ch/hep-benchmarks/hep-score.git@<tag>
- □ To run: Singularity: hep-score /SCRATCHDIR Docker: hep-score -d /SCRATCHDIR

HEP Benchmark Suite

HEP Benchmark Suite

- Meta-orchestrator for the execution of several benchmarks
 - HS06, HEP-Score, ...


- ❑ Version v2.0 will be released in the coming weeks
 - Fully rewritten in python, distributed via pip install
 - M. Fontes Medeiros & D. Southwick (CERN/IT)
 - Very few dependencies needed, install as unprivileged user
 - New metadata section with detailed HW information

	HEP-Bench	mark-Suite	
Plugins	Run Logic	Data proc	essing
HW Metadata	Configure		
ActiveMQ	Benchmark Parameters	Validate Results	Build Repo
		\uparrow	
Elastic Search	Run	Collect	
Other	Benchmark	Results & Logs	Publish
	4		± 😮
			-
Î	Î Î	Î	Î
¥ 1 1	Benchr	v ; marks	¥
		core (CPUS & GPUS)	Other
HS06 SP			

Centralise the benchmark data storage

- The Hep Benchmark Suite is the first component of a data pipeline to collect results
 - Enable sharing, tracking, studies
 - Ideal for monitoring and offline analysis
- Adoption
 - @ CERN integration into Openstack Ironic
 - About to replace the current benchmarking done with an in-house built image
 - Tested by other sites (GridKa, RAL,
 INFN-Padova, ...) and HPC centre (SDSC)

Access to HPC resources

Support from HPC sites has been crucial for testing and enhancement of HEP-benchmarks on HPC centers

- Access to large pool of nodes and various hardware configurations
- Ability to scale across clusters and partitions, integrating with job scheduling tools (SLURM)
- +Functional tests on Subatech & Cineca

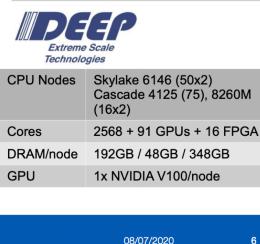
HEPiX Autumn 2020 Online workshop

https://ccipl.univ-nantes.fr/le-centre-de-calcul-intensif-des-pays-de-la-loire-438632.kisp https://fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/DEEP-EST/_node.html https://www.sdsc.edu/support/user_guides/popeye-simons.html

D. Southwick

D. Giordano (CERN)

WLCG Grid Deployment Board | HPC Demonstrators

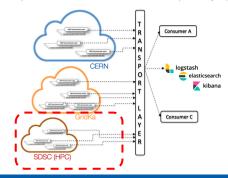

SAN DIEGO SUPERCOMPUTER CENTER

CPU Nodes	Skylake 8168 (144x2), 6148 (72x2) Cascade 8268 (216x2)
Cores	~28K + 128 GPUs
DRAM/node	768 GB
GPU	4x NVIDIA V100/node

AMD EPYC 7742 Compute Nodes	Configuration					
Node count	728					
Clock speed	2.25 GHz					
Cores/node	2x64					
DRAM/node	256 GB					
NVMe/node 1 TB						
 Early Access before general availability 13 racks of 56 CPU nodes + 4x4 GPU nodes network attach 12PB Lustre + 7PB Ceph 						

14

6


13/10/2020

Benchmarking nodes in a remote site

~]\$ sbatch run_suite.sbatch

Submitted batch job 190918

- □ Nodes in HPC centre (SDSC)
 - More constraints than WLCG sites
- Run with SLURM on full nodes
- Script defines
 - SW requirements
 - Benchmark configuration file (with secrets for the publication to the remote transport layer)

D. Southwick (CERN/IT)

/bin/bash

~]\$ cat run_suite.sbatch

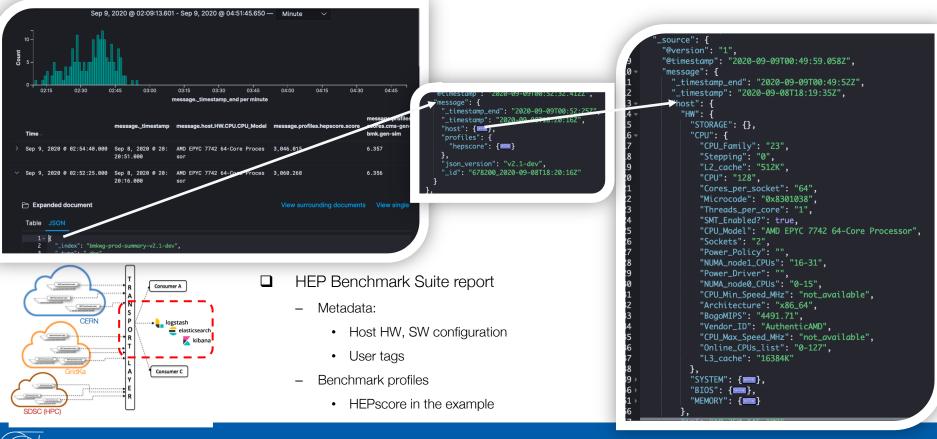
#SBATCH --exclusive --hint=multithread #SBATCH --job-name=HEP-Benchmark-suite #SBATCH --output=res%A-%j.out #SBATCH --mail-user= #SBATCH --mail-user= #SBATCH --array=1-200

module purge module load gcc singularity/3.5.3 python3/3.7.3

export SUITE_BRANCH=qa-v2.0 export RUNDIR=/tmp/HEP-benchmark-suite export CONFPATH=\$HOME/hpctest_full.yaml

echo "Running HEP Benchmark Suite on \$SLURM_CPUS_ON_NODE Cores"

mkdir −p \$RUNDIR


python3 -m pip install --user --upgrade git+https://gitlab.cern.ch/hep-benchmarks/hep-benchmark-suite.git@\$SU1

run

\$HOME/.local/bin/bmkrun --config \$CONFPATH --uid \$SLURM_JOB_ID --rundir \$RUNDIR -v

Benchmark results on the central DB @CERN

Benchmark results on the central DB @CERN

□ HEP-Score report

- Metadata: settings, environment, app_info
- Exit status
- Report of each individual benchmark
- Median Score of each WL benchmark
- Final Score

"profiles": {		
S "hepscore": {		
"status": "success",		
"app_info": {		
"registry": "gitlab-registry.cern.ch/hep-benchmarks/h	nep-workloads",	
"name": "HEPscore19",		
"reference_machine": "CPU Intel(R) Xeon(R) CPU E5-263	30 v3 @ 2.40GHz",	
"hepscore_ver": "1.0.0.0rc4.dev54",		
"hash": "0e13b73a5bb21e4ce12b85b54a39c965fecce1099f0	f4c54545adacd603ca5ff"	
},		
"environment": {		
"date": "Tue Sep 8 14:20:17 2020",		
"singularity_version": "error",	JLT	"cms-digi-bmk": {📟},
	_04 #1 SMP W 186 ►	"cms-gen-sim-bmk": {📼 },
},	280 🕨	"cms-reco-bmk": {📟},
"benchmarks": {>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	374 ⊧	"atlas-gen-bmk": {📼},
"settings": {	447 ▶	"lhcb-gen-sim-bmk": {},
"replay": false,	565 -	"atlas-sim-bmk": {
"repetitions": 3,	566 -	"run1": {
"container_exec": "singularity",	567	"start_at": "Tue Sep 8 15:01:11 2020",
"scaling": 355,	568 -	"report": {
"method": "geometric_mean"	569 -	"wl-scores": {
}, "wl-scores": {	570	"sim": 0.62
	571	},
"cms-digi-bmk": [==] , "cms-gen-sim-bmk": [==] ,	572	"log": "ok",
cms-gen-sim-bmk : { 📾 }, "cms-reco-bmk": { 📾 }.	573 -	"wl-stats": { 📾 }
"atlas-gen-bmk": {},	580	},
"lhcb-gen-sim-bmk": {},	581	"duration": 2455,
"atlas-sim-bmk": {	582	"end_at": "Tue Sep 8 15:42:06 2020"
"sim": 0.6191,	583	},
"sim_ref": 0.0641	584 -	"args": {
}	585	"-e": 10,
},	586	"-t": 4
"score": 3060.2678,	587	},
"score_per_core": 23.908	588	"app": { == },
	595	"run_info": {],
	600	"runo": { 📾 },
	618 × 636	"run2": {}, "version": "v1.1"

"settings": {

Prototypes

Standalone container for GPU benchmarking

- <u>CMS HLT reconstruction (Patatrack)</u>
 - Based on CMS (Pixel, Calo) reconstruction with GPUs
- <u>cern.ch/SixTrack</u>
 - Computes trajectories of charge particles in synchrotrons
- Other production applications running on GPU are welcome
- □ HEP Analysis WL use case for LHC
 - Integrate ROOT rootbench in a standalone container reporting scores in a format compliant with HEP-Score
 - Openlab (remote) Summer Student project 2020 (see presentation)
 - In collaboration with the ROOT team

Plans for 2021

- Policy side: contribute to the new WLCG Task Force recommended by WLCG MB
 - In charge of defining the **policies** for the adoption of HEPscore as benchmark (pledges, accounting, procurement)
- □ Software side:
 - Provide more distribution options for HEP Benchmark Suite and HEP Score
 - distribute via python wheel and tarball (in addition to pip install)
 - Include WL containers for non-x86 CPU arch.
 - Include podman as alternative to docker
 - GPU workloads and Analysis workloads
 - From proof-of-concept container to containers fully compliant with the HEP Benchmarks design
 - Define HEP Score configuration for GPU vs CPU comparison
 - Using the same application software

Conclusions

- ❑ We are building a domain specific HEP benchmark directly from HEP workloads, using the throughput [event/s] as key metric
 - The technology aspects have been addresses and solved to a large extent
 - The software is released under GPLv3 licence
- Opportunity for HEP community to review the concepts of pledging, accounting, procurement

Useful links

Recent publication (CHEP 2019)

Project repository: https://gitlab.cern.ch/hep-benchmarks

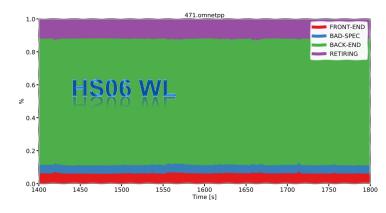
Current WLCG benchmark: HEP-SPEC06 (HS06)

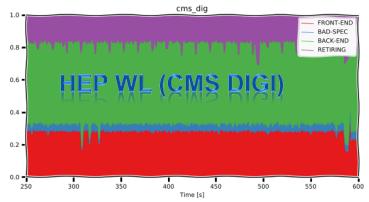
□ Based on SPEC CPU2006

- <u>S</u>tandard <u>P</u>erformance <u>E</u>valuation <u>C</u>orporation was founded in 1988
- SPEC CPU2006: Industry-standard, CPU-intensive, benchmark suite
- Current SPEC CPU subcommittee members include AMD, ARM, Dell, Fujitsu, HPE, IBM, Inspur,
 Intel, Nvidia and Oracle ^[*]
 - [*] https://www.spec.org/cpu2017/press/release.html
- HS06 is a subset of SPEC CPU[®] 2006 benchmark, tuned for HEP
 - 7 C++ benchmarks recompiled with gcc
 optimizer switches of LHC experiments' software
 - In 2009, proven high correlation with HEP workloads

Bmk	Int vs Float	Description
444.namd	CF	92224 atom simulation of apolipoprotein A-I
447.deallI	CF	Numerical Solution of Partial Differential Equations using the Adaptive Finite Element Method
450.soplex	CF	Solves a linear program using the Simplex algorithm
453.povray	CF	A ray-tracer. Ray-tracing is a rendering technique that calculates an image of a scene by simulating the way rays of light travel in the real world
471.omnetpp	CINT	Discrete event simulation of a large Ethernet network.
473.astar	CINT	Derived from a portable 2D path-finding library that is used in game's AI
483.xalancbmk	CINT	XSLT processor for transforming XML documents into HTML, text, or other XML document types

The 7 C++ HS06 benchmarks

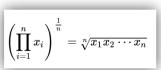

Quantitative comparison with WLCG workloads


- Unveil the dissimilarities between HEP workloads and the SPEC CPU benchmarks
 - Using the <u>Trident</u> toolkit
 - analysis of the hardware performance counters

Characterization of the resources utilised by a given workload

Percentage of time spent in

- **Front-End** fetch and decode program code
- Back-End monitor and execution of uOP
- Retiring Completion of the uOP
- Bad speculation uOPs that are cancelled before retirement due to branch misprediction



Benchmark comparing "speed factors"

- □ In order to compare servers HS06 and HEP-Score implement the geometric mean approach. Needs:
 - a set of reference workloads (WLs)
 - a measure of performance per WL (m), that typically goes as [1/s] (eg. can be the event throughput)
 - a reference machine
- The score **S** of a server (**srv**) is defined as the **geometric mean** of the **speed factors** $x_i(srv, ref) = m_i(srv)/m_i(ref)$ respect to the reference machine (**ref**)
 - i.e. "speed" is normalised respect to the reference machine "speed"
- The relative score between srv_A and srv_B is the ratio of the scores S(srv, ref), this is still a geometric mean of speed factors.

	WL_1		WL ₂		WL_n	\$\$	Score	S(A,B)
Ref. Srv	m ₁ (ref)	1 (by def)	m ₂ (ref)	1 (by def)	m _n (ref)	1 (by def)	$\left(\prod_{i=1}^n x_i\right)^{\overline{n}}$	
	m1(A)	x_1 (A,ref)	m ₂ (A)	x_2 (A,ref)	m _n (A)	x_n (A,ref)	S(A,ref)	S(A, ref)
Srv B	m ₁ (B)	x_1 (B,ref)	m ₂ (B)	$x_2(B,ref)$	m _n (B)	$x_{n}(B,ref)$	S(B,ref)	$\overline{S(B, ref)}$
"File:201912 Rack-optimised servers.svg" by DataBase Center for Life Science (DBCLS) is licensed under CC BY 4	10							

ttps://en.wikipedia.org/wiki/Geometric