
CVMFS

Service Evolution and Infrastructure Improvements

Enrico Bocchi CERN, IT-Storage

HEPiX Online, October 2020

- Ubiquitous CVMFS client at CERN
 - Batch jobs, Hadoop clusters
 - Experiments' online farms
 - SWAN Jupyter Notebooks
 - Scientists' laptops
- Worldwide LHC Computing Grid
 - > 170+ computing centers, 40 countries

Wall-Clock Time (in hours)

	total 🕶	percentage 🕶
- CH-CERN	243.5 Mil	10%
US-FNAL-CMS	174.7 Mil	7%
US-T1-BNL	153.8 Mil	6%
US-MWT2	133.9 Mil	5%
 T2_US_Wisconsin 	110.5 Mil	4%
 T2_US_Nebraska 	98.9 Mil	4%
CA-TRIUMF	93.0 Mil	4%
T2_US_MIT	87.2 Mil	3%
RU-JINR-T1	75.9 Mil	3%
T2_US_Caltech	68.5 Mil	3%
T2_US_Florida	63.7 Mil	3%
US-NET2	62.3 Mil	2%

- 1. CVMFS for Container Layers Ingestion and Distribution
- 2. Infrastructure Improvements
 - S3 as Stratum 0s Storage
 - Dedicated Caches for Content Delivery

3. Conclusions

New CVMFS Capabilities

Container Layers Ingestion and Distribution

1. Production Software

- Most mature use case
- e.g., /cvmfs/atlas.cern.ch

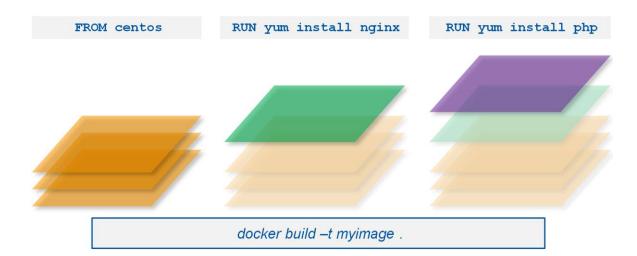
2. Auxiliary Datasets

- Benefits from internal versioning
- > e.g., /cvmfs/alice-condb.cern.ch

3. Integration Builds

- High churn, requires regular garbage collection
- e.g., /cvmfs/lhcbdev.cern.ch

Container Layers

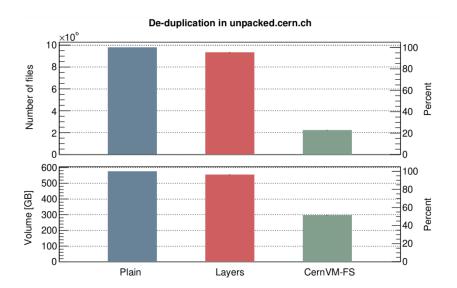

- Ingestion and Distribution of Container Images
- Benefit from de-duplication and on-demand caching
- e.g., /cvmfs/unpacked.cern.ch

J. Blomer – CVMFS for Containers Thu 15 Oct, 15:00 <u>https://indico.egi.eu/event/5251/</u>

1.1 CVMFS for Containers

- Container images are the product of several layers
 - Layers are TAR files
 - Need to be downloaded and extracted

1.1 CVMFS for Containers



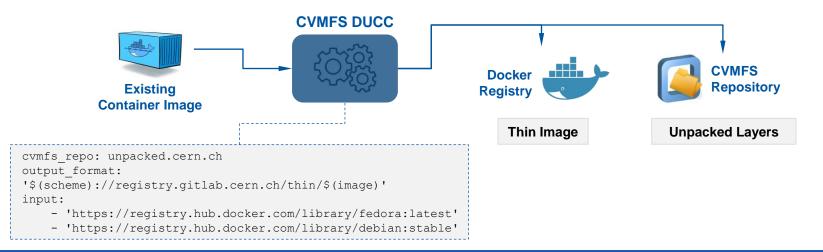
1.1 CVMFS for Containers – Efficiency

De-duplication on ingestion

- Deduplication with file-level granularity is more efficient than per-layer
- Duplication occurs more often for smaller files

On-demand caching on clients

- > No need to pull and extract images locally
- Files are fetched from CVMFS when required
- Smaller cache on client nodes
- > CVMFS self-manages local cache


Traditional container images must be manually evicted

1.1 CVMFS for Containers – Server Ingestion

DUCC: Daemon that Unpacks Container images into CVMFS

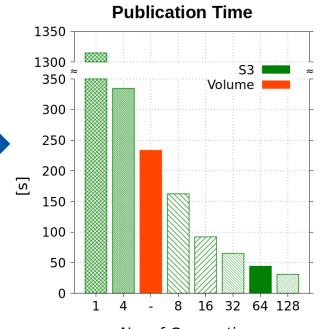
- > Downloads and unpacks existing container images
- > Publishes the obtained flat root file system into a CVMFS repository
- Generates the Thin Image and pushes it to a Docker registry

1.1 CVMFS for Containers – Runtimes Integration

- CVMFS supports several container runtimes
 - > Flat runtime: Starts container from unpacked root file system
 - Layer runtime: Constructs root file system from several directories

Runtime	Туре	CVMFS Support
Singularity	Flat (+ Layers)	Native
runc	Flat (+ Layers)	Native
Docker	Layers	Graph Driver Plugin
containerd / k8s	Layers	Prototype
podman	Layers (+ Flat)	Prototype

🙈 podman


Infrastructure Improvements

- 1. S3 as Stratum 0 Storage
- 2. Dedicated Caches for Content Delivery

2.1 S3 as Stratum 0 Storage

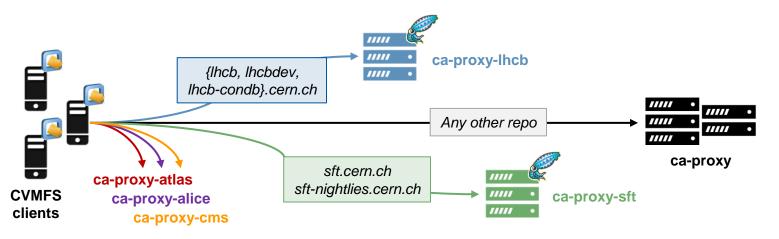
- s3.cern.ch: Single-region RADOS Gateway cluster
 - Load-balanced across 16 VMs with Traefik/RGWs
 - Dedicated RGWs for CVMFS (and other use cases)
- Performance advantages
 - S3 with parallel uploads outperforms volume storage
 - Publication on S3 is 5x faster
 - Publication time benchmarking
 - Sample workload: 250k files, 4 kB each
 - Files are organized in 250 folders
 - Time is full publication chain through cvmfs_server
- Operational advantages
 - Online quota management and extension
 - Easier failover of Stratum 0 to another server
 - Redundant and scalable HTTP access

No. of Connections

2.1 S3 as Stratum 0 Storage

- S3 is the default storage for Stratum 0s since Q4 2018
 - > 15 repositories created since then
- Ongoing migration campaign of existing repositories to S3
 - > Many Stratum 0s running SLC6 (EOL 11/2020) migrated to CC7 + S3
 - > 35 (out of 42) migrated during Q2 and Q3 2020
 - > 1 B objects (80% of total), 46.32 TB (66% of total)
 - > Critical repositories from major LHC experiments (atlas, lhcb, alice, ...)
- Plan is to finalize migrations by the end of 2020
 - > 7 repositories remaining, 5 planned for migration
 - Remove support for volumes to ease operations

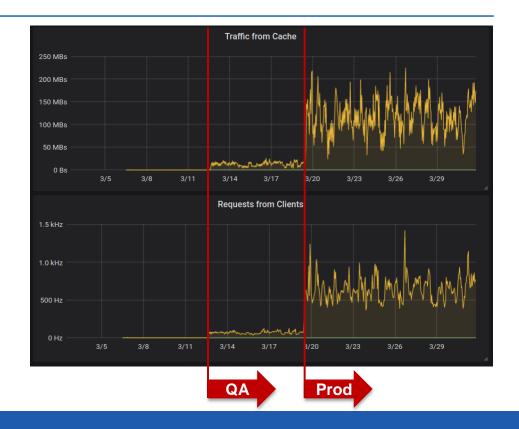
2.2 Dedicated Caches


- Starting point: One pool (ca-proxy.cern.ch) of 10 caches serving all repos
 - > VMs with 160GB cache (on SSD), 10Gbps network
 - Squid caching software as forward proxy

- Problem 1: Caches get inefficient (requests/traffic hit rates decrease)
 - > Cache do not coordinate / peer. They all tend to cache the same items
 - > Size of the repositories constantly increases, size of the caches does not
- Problem 2: Cross-repositories interference
 - > One repository "abusing" caches degrades the access to all the other repositories (similar to DDoS)
 - Difficult to apply effective countermeasures when detected (traffic shaping?)
 - > Several incidents in the past caused by atypical reconstruction jobs fetching dormant files

2.2 Dedicated Caches

- Goal: Reduce interference across repositories and improve cache efficiency
- Result: Dedicated caches for groups of repositories
 - > 5 sub-pools of caches for 4 main LHC experiments (ca-proxy-alice, ca-proxy-atlas, ...) + 1 for SFT
 - > Several CNAMEs (e.g., ca-proxy-compass, ca-proxy-ams, ...) to steer traffic in case they cause overloads
 - > 1 pool of general caches remains for all other repos (ca-proxy.cern.ch)



2.2 Dedicated Caches

Example for LHCb repositories
 ca-proxy-lhcb.cern.ch

Closing Remarks

20

CVMFS is a core service for software distribution at scale

- At CERN and for the WLCG
- > Major experiments heavily relying on it
- Ubiquitous client empowering diverse use cases
- Evolving with new capabilities and components
 - Ingestion and distribution of container layers
- Improvements in the infrastructure
 - Migration to S3 makes publications faster
 - > Dedicated caches for more reliable distribution to clients

Thank you! Questions?

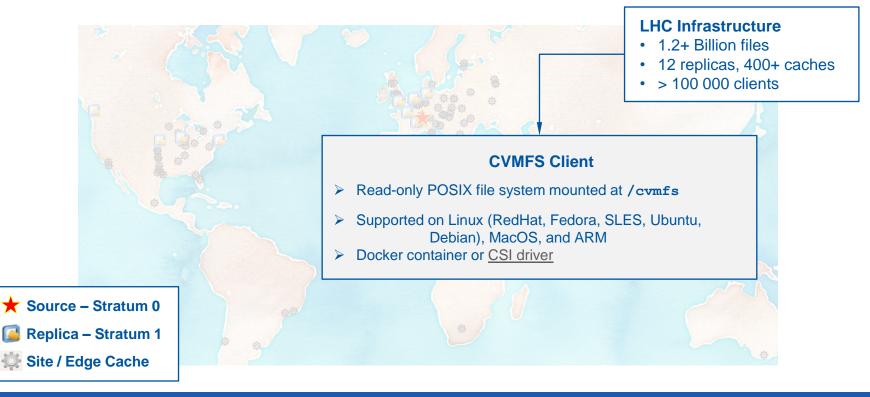
Enrico Bocchi

enrico.bocchi@cern.ch

Backup

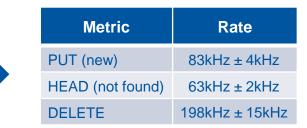
CVMFS Server and Distribution Network

- Stratum 0 servers create and maintain CVMFS repositories
- Stratum 1 servers replicate content from Stratum 0s
- Data transport through standard HTTP protocol (off-the-shelf web servers, caches, commercial cloud providers)



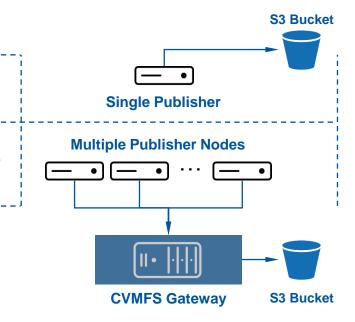
LHC Infrastructure

- 1.2+ Billion files
- 12 replicas, 400+ caches
- > 100 000 clients

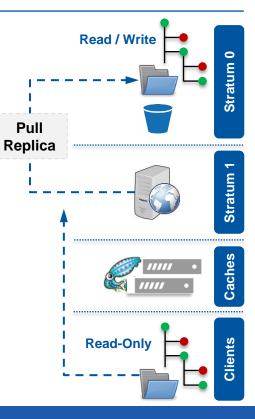


S3 at CERN

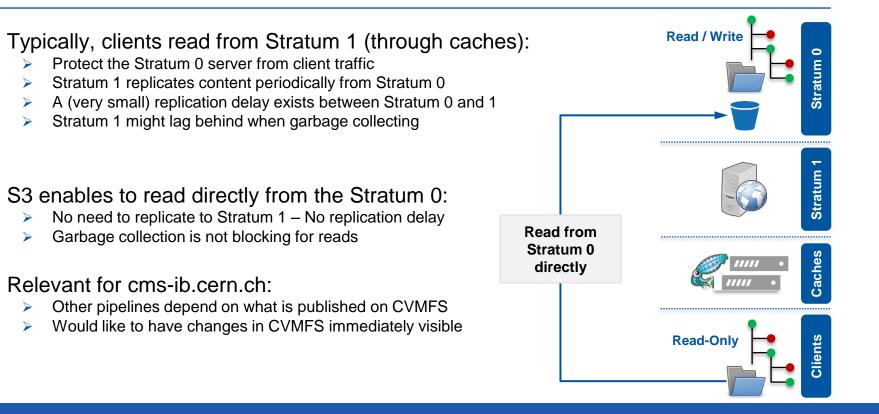
- Single region RADOS Gateway cluster
 - > 5000+ users, 2.1 PB raw capacity
 - > 4+2 erasure coding for data, 3x replication for bucket indexes
 - > s3.cern.ch load-balanced across 16 VMs with Traefik / RGWs
 - ✓ 5x general-purpose RGWs
 - ✓ 11x dedicated RGWs for specific use cases (e.g., 2x CVMFS, 3x GitLab, ...)
 - Traefik as ingress to s3.cern.ch, routes traffic to dedicated RGWs
- Cluster upgraded BlueStore + bucket indexes on SSD (Q1 2019)
 - BlueStore's RocksDB on SSDs outperforms old FileStore's LevelDB on HDDs
 - > Massive metadata performance increase
 - Metrics before were ~2kHz each!



CVMFS Gateway


- Stateful component allowing for concurrent publications
 - > Issues time-limited leases for specific sub-paths
 - Has exclusive access to repository storage
- Typical CVMFS setup
 - One publisher has global lock when writing to the repository
- CVMFS setup with Gateway
 - One Gateway regulates access to storage and provides leases
 - Multiple publishers publish concurrently into the repository
- Relevant for Integration Builds repositories
 - > Reduced time to publish all nightly builds
 - Benefits publication pipelines that can be easily parallelized

Pass-Through Repositories


- Typically, clients read from Stratum 1 (through caches):
 - Protect the Stratum 0 server from client traffic
 - Stratum 1 replicates content periodically from Stratum 0
 - A (very small) replication delay exists between Stratum 0 and 1
 - Stratum 1 might lag behind when garbage collecting

Pass-Through Repositories

