
V.6 Observables at Hadron Colliders
r In hadron colliders, we characterize processes by kinematic variables:

transverse momentum pT, azimuth angle f and pseudorapidity h

r For masses much smaller than pT, pseudorapidity and rapidity are equal

where rapidity is defined as

r The separation between two objects i and j in the h-f plane is 

r Using these variables we define the transverse mass

r Thus,

r The maximum value of y at fixed E occurs at pT=0, cosh ymax=g, yielding
ymax=7.7 for the Tevatron (2 TeV) and ymax=9.6 for LHC  (14 TeV) 
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V.6.1 Observables at Hadron Colliders: Rapidity
r Gluon-gluon scattering is one of the dominant subprocesses in 

proton-proton collisions 

r The rapidity distribution at 14 TeV shows
a flat plateau of width Dy= 3

r This indicates that the 
produced particles follow
single particle phase space
at wide angles

r The ATLAS coverage is
Dy= 2.7 muon system, 
Dy= 4.9 em calorimeter
Dy= 2.5 tracking

r At the Tevatron at 1.96 TeV
the plateau is only Dy= 2



V.6.2 Jet Characteristics
r The jet production cross section depends on h, showing a steeper

ET dependence for large h

r We assume that the p is
an incoherent sum of u & d
valence quarks, radiated g
plus a sea of qq pairs

r The reason is that 2 
fundamental scales
contribute here: the
binding energy scale or size
of proton and the hard or
fundamental collision scale

r We operate at hard scale,
pT»LQCD, since p will
dissociate into partons
with life time 1/LQCD long
wrt 1/pT

è incoherent scattering



V.6.2 Jet Characteristics
r Inclusive jet double 

differential cross section 
from ATLAS at 13 TeV

r Comparison of inclusive jet double
differential cross sections from
different experiments at different
energies

r At large h, the differential cross section falls off faster at high pT;
At low pT slopes are similar for different h

r Data are well described by prediction 



V.6.2 Jet Characteristics
r In hadron-hadron collisions typically two 

partons interact and remaining
partons produce the Underlying Event

r They evolve into soft pions (pT~0.4 GeV)
with a charge density of 6 per unit 
rapidity in a ratio of p :p0=2:1

r Every interaction will contain a 
similar distribution of soft or low
transverse momentum particles, called
minimum bias events 

r A clear plateau in h is visible rising
slowly with Ös; its width increases with Ös

r The pT distribution is tightly localized to 
values < 0.5 GeV and Ös dependence for
pT < 1 GeV is small

r We can fit the pT
behavior with 
A~450 mb/GeV2, p0~1.3 GeV, n~8.2

d 3σ
πdydpT

2 ∼
A

(pT ++ p0)
n

(5.54)



V.6.2 Jet Characteristics

r The coefficient A is of !(100 mb) 
è since this is of the order of total 
inelastic cross section; the low pT

particles make the bulk of particles 
produced in inelastic p-p interactions

r For pT »p0 cross section drops as pT
n, 

large n 

r The fragments of hadrons A and B at 
low pT merge smoothly with

fragmentation products of minijets for 
pT > 10 GeV

r Production of g jets has cross section of ~1 mb at pT ~10 GeV 

r Boundary between soft and hard physics is not very definite

r Simulation shows expected cross section for g-g scattering
at the LHC at 14 TeV



V.6.3 Distribution Functions
r Thus, quarks and gluons inside proton can

be represented by classical distribution 
functions fAi(x), where x is momentum 
fraction

r If we had only 3 valence quarks their 
distribution functions would
be expected to peak at x=1/3

r Since u &d quark masses are 5 MeV 
compared to mp=940 MeV,
quark motion is relativistic
è radiated gluons which have

small x distribution

r The gluons themselves can split
or decay to q!q, thus apart from
u!u, d!d, also s!s and c!c pairs may
be created at very small x
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Parton functions  



V.6.3 Distribution Functions
r We note that valence and sea quarks 

carry half the momentum

r The other half is carried by gluons

r This is confirmed experimentally
in lepton scattering experiments

r Suppression at high x is ensured by  

r The pointlike cross section for 
pointlike scattering of partons is

where a1 and a2 are the couplings at the 2 
vertices and the amplitudes for the various 
processes are shown in the table below

dx x q(x) ++ q(x)(( ))
0

1

∫∫
q
∑∑ ! 0.5 (5.56)

dx x ⋅g(x)
0
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∫ ! 0.5 (5.57)

(5.58)xg(x) = 7
2 1− x( )6
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V.6.4 Pointlike Scattering of Partons

r For ℒ~1034/(cm2 s) & 
s~100 mb at the LHC, 

total inelastic rate is
s×L~1GHz

è for 25 ns beam Xing
expect 25 minimum
bias events/Xing

r g-g scattering has 
by far the largest 
cross section 

(>5 times)   

r While final-state 
particles like e, µ, g
appear directly in the
detector, quarks and
gluons appear as jets

r The process from parton to jets is called fragmentation è it is a 
complex process simulated in various computer programs 
(PYTHIA, HERWEG, ISAJET)

(there should be a ˆ on s, t, u) 



V.6.5 Jet Fragmentation 

r Assume fragmentation properties factorize 
è parent quark or gluon fragment is
independent of the mechanism parent is
created è we need only a single unified 
description of fragmentation process

r # particles in jet depends logarithmically 
on parent particle momentum 

r Assume: all fragments are pions (simplicity)

r Assume: pT acquired in the fragmentation 
process is limited to the fragment 
momentum transverse to parent jet axis, 
kT~LQCD

r The fragmentation function D(z) describes 
the distribution in z=k/P of those products in
which z is the momentum fraction of the 
parent with momentum P, carried off by
the fragment with momentum k

r The fraction z is bounded by
Mπ / P < z <1



V.6.5 Jet Fragmentation 

r It has a radiative form similar to that already assumed for the
parton distribution functions

r We get  

from which we determine the
multiplicity

r The fragmentation process
implies that we observe a 
jet of particles that moves
approximately along the direction of the parent quark or gluon

r We expect a core within the jet that carries most of the jet 
momentum and that is localized at a small cone radius, R, in

(h,f) space 

(5.60)zD(z) = a(1− z)α

(5.61)n = D(z)dz ~ a dz / z ~ a ln(P /Mπ )
Mπ /P

1

∫∫

R = Δη2 + Δφ2 (5.62)

logarithmic dependence



V.6.5 Jet Fragmentation 

r The core is surrounded at larger R by 
many low-energy particles

r From the CDF data it is evident that 
a sharply peaked distribution
of particles around the jet axis exists,  
as the multiplicity increases less than
linear

r In the CDF plot shown on RH side
we see 40% of the energy of the
jet contained in a cone with R=0.1,
while 80% is contained in a cone
with R=0.4

r In simulations of the data using
zD(z)=(1-z)5 and <kT>~0.72 GeV
the highest jet energy is about
1/4 of the jet momentum 

r Fragmentation is soft introducing
non-perturbative effects



V.6.2 Event Shape Observables
r In pp collisions we have to deal with the Underlying Event since typically

2 partons interact and the remaining partons form the UE (jets)

r Event shape variables are used to separate signal from backgrounds

r Lets look at common event shape variable in Z0®µ+µ-

Ø number of charged tracks è multiplicity increases with dimuon pT

Ø Scalar sum of pT :
è increases with dimuon pT, long tail 

Ø Beam thrust:
è increases with dimuon pT, long tail 
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(5.64)



V.6.2 Event Shape Observables
Ø Thrust:

è increases with dimuon pT

Ø Spherocity: 
è becomes more symmetric with larger dimuon pT

Ø F parameter is defined as ratio of smaller to larger eigenvalues of the 
transverse momentum tensor

r For high dimuon pT different prediction yield reasonable description
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VI. Weak Boson 
Production and 

Decay



VI.1 W-Decays
r The discovery of weak bosons at the CERN SPS p!p collider by UA1/UA2

gave spectacular support to the SM as it was predicted by EW gauge
theory

r The weak bosons are detected by their decays

r In the SM W and Z bosons decay through their fundamental gauge
couplings to basic quarks and leptons

r W bosons were first detected in their leptonic mode W®e!ne

r The amplitude for W-®e-!ne is

M = −i g
2
εµ
λ(p)u(pe)γ

µ 1
2
1− γ 5( )v(k)

(6.1)
where g is the charged-current weak coupling

r Averaging çMç2 over the W polarizations and 
summing over fermions, we get in the massless 
e & n approximations: 

1
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M
2
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Tr peγ µ k γ ν

1
2 (1− γ 5)( ) = 13 g2MW
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VI.1 W-Decays

r Hence, the differential decay rate in W rest frame is  

dΓ (W → eν ) = 1
2MW

1
3
g2MW

2⎛
⎝⎜

⎞
⎠⎟

1
(2π )2

d2(LIPS) (6.3)

r We can choose the gauge boson polarization vectors as  

ε0
µ = P

MW

,0,0, E
MW

⎛

⎝⎜
⎞

⎠⎟ (6.4)longitudinal  (h=0)

ε±
µ = 1

2
0,1,±i,0( ) (6.5)transverse  (h= 1)

r We then obtain the decay distribution of e in W rest frame, which are

where !q is the angle of the e with respect to the longitudinal axis

r The phase space integral is 

dΓ ±(W → eν ) ~ 1 ± cosθ̂( )2
(6.6)

dΓ 0(W → eν ) ~ sin2 θ̂

(6.7)

d2(LIPS) =
1
2
π dΩ

4π∫∫ = 1
2
π (6.8)



VI.1 W-Decays
yielding a partial decay width of

Γ (W − → e−ν ) = 1
48π

g2MW =
GF

2
MW

3

6π
≡ ΓW

0
(6.9)

r Since g2=8M2
WGF/Ö2 & MW=80.1 GeV we obtain

ΓW
0 = 0.225 GeV (6.10)

r Decays to µn & tn yield same width if lepton masses are neglected

r We also approximate the total hadronic decay rate by that to q!q
assuming that the latter fragment into hadrons with probability 1

r Thus, neglecting also quark masses we get

Γ (W − → e−ν ) = Γ (W − → µ−ν ) = Γ (W − → τ −ν ) ≡ ΓW
0 (6.11)

Γ (W − → qq ') = 3Vqq'
2
ΓW

0 (6.12)

where Vqq is the CKM ME and factor of 3 results from color

r Summing over all quark families NF yields
Vqq '

2

q,q'
∑ = 1 = NF = 2

q'
∑ (6.13)



VI.1 W-Decays
r So, the total hadronic width in the massless fermion approximation is

Γ (W → hadrons) ! 3NFΓ (W → leptons) ! 6ΓW
0 = 1.35 GeV (6.14)

and the total width is approximately
Γ (W → all) ! 9ΓW

0 = 2.1 GeV (6.15)
Γ tot
exp = (2.124 ± 0.041) GeV (6.16)

r This translates into a mean lifetime of t=2´10-25 s
r The branching fraction for W-® e-!ne

B (W − → e−ν ) ! Γ (W
− → e−ν )

Γ (W − → all)
!
1
9

(6.17)

r We expect dominant contributions from W-®u!d and W-®c!s, since
Vud ≈ Vcs ≈1 (6.18)

r First-order QCD corrections modify hadronic widths by 
1+as(MW)/p with as(MW)=0.12, yielding Gtot=2.08 GeV



VI.1 W-Decays

decay partial width ℬth[%] ℬexp [%]

W®e"ne 0.225 GeV 10.8 10.68 0.12

W®µ"nµ 0.225 GeV 10.8 10.72 0.16

W®t"nt 0.225 GeV 10.8 10.57 0.22

W®u"d 0.666 GeV 32.1

W®c"s 0.664 GeV 32.0

W®u"s 0.035 GeV 1.7 67.96 0.35

W®c"d 0.035 GeV 1.7

W®c"b 0.001 GeV 0.5

W®u"b 0.00001GeV 0.005

r For leptons we observe universality as expected by the SM

r The partial widths are



VI.2 Z0-Decays
r The Z0 was first detected through Z0®e+e- (CERN)

r The amplitude for this mode is 

M = −igZεµ
λ(p)u(p

e−
)γ m(gV + gAγ 5)v(pe+ ) (6.19)

r Following the same procedure we used for the W® e-!ne decay, we get
the partial width 

Γ (Z0 → e+e− ) = 1
48π

2 2gZ( )2 gV
2 + gA

2

2
⎛

⎝⎜
⎞

⎠⎟
MZ (6.20)

r Substituting g2
Z=8GFM2

Z/Ö2 yields 

Γ (Z0 → e+e− ) =
8GF

2MZ
3

12π 2
gV
2 + gA

2( ) = 8 gV2 + gA2( )Γ Z
0 (6.21)

r In the massless fermion approximation similar expressions hold l"l
and q!q partial widths

Γ (Z0 → e+e− ) = 8 (gV
ℓ )2 + (gA

ℓ )2( )Γ Z
0

Γ (Z 0 → qq) = 24 (gV
q )2 + (gA

q )2( )Γ Z
0

(6.22)

(6.23)
with l=e, ne, µ, nµ, t, nt and q=u, d, s, c, b



VI.2 Z0-Decays
r Note the color factor between l!l and q"q modes
r Appropriate gV and gA must be used in each case
r Recall the SM couplings  

gV
f = 1

2
T3
f −Q fxW (6.24)

and hence

gV
f( )2 + gA

f( )2 = 12 T3
f( )2 −T3fQ fxW + Qf( )2 xW2 = 1

8
1− 4Qf xW + 8(Qf )2xW

2( ) (6.25)

r For xW=0.23 and MZ=91.19 GeV we obtain the lowest-order 
partial widths Γ (Z0 → νeνe) = Γ Z

0 = 0.17 GeV (6.26)
(6.27)

& gA
f = − 1

2
T3
f

Γ (Z 0 → e+e− ) = Γ Z
0 1− 4xW + 8xW

2( ) = 0.08 GeV

Γ (Z0 → uu) = 3Γ Z
0 1− 8

3
xW + 32

9
xW
2⎛

⎝⎜
⎞
⎠⎟
= 0.29 GeV

Γ (Z0 → dd ) = 3Γ Z
0 1− 4

3
xW + 8

9
xW
2⎛

⎝⎜
⎞
⎠⎟
= 0.37 GeV

(6.28)

(6.29)
r Summing over 3 families except for the top quark we get the Z0

total width in the massless fermion approximation
Γ Z = Γ Z

0 21− 40xW +160xW
2( ) = 2.4 GeV (6.30)



VI.2 Z0-Decays

r Thus the corresponding Z0 branching fractions are 

B (Z0 → νeνe) ! 0.07 (6.31)

(6.32)B (Z0 → e+e− ) ! 0.03

B (Z 0 → uu) ! 0.12

B (Z0 → dd ) ! 0.15

(6.33)

(6.34)
r Similar branching fractions are obtained for the corresponding 

channels of the other families 

r First-order QCD corrections to hadronic Z0 decays are 1+as(MZ)/p
if quark masses are neglected with as(MZ)=0.12

r The predicted total width with QCD corrections is G(Z0)=2.49 GeV
while measurements yield Gtot(Z0)=2.4952 0.0021 GeV



VI.2 Z0-Decays
r For the individual decay channels partial decay widths and

branching fractions are

decay partial width ℬth[%] ℬexp [%] ℬexp [%]
Z®ne"ne 0.166 GeV 6.7
Z®nµ"nµ 0.166 GeV 6.7 20.00 0.06
Z®nt"nt 0.166 GeV 6.7
Z®e+e- 0.083 GeV 3.4 3.363 0.004
Z®µ+µ- 0.083 GeV 3.4 3.366 0.007
Z®t+t- 0.083 GeV 3.4 3.370 0.008
Z®d"d 0.383 GeV 15.4
Z®s"s 0.383 GeV 15.4 3´15.6 0.4
Z®b"b 0.378 GeV 15.2 15.13 0.05
Z®u"u 0.297 GeV 12.0 2´11.6 0.6
Z®c"c 0.296 GeV 11.9 11.81 0.33



VI.3 Number of Light Neutrinos

r The branching fraction into the invisible modes is

B (Z0 → νeνe +νµνµ +ν τν τ ) ! 20% (6.36)

r The total width is measured from the resonant line shape of the 
total e+e- cross section near s=M2

Z

r The visible and invisible parts of GZ can be separated using visible
cross sections around the Z0 peak

r Any new particle with non-trivial SU(2)´U(1) QNs will couple to the
Z0, if they are light enough appearing in Z0 decays thus modifying

either GZ
vis or GZ

inv

r One example is new ns

r Any n belonging to an SU(2) doublet contributes 0.17 GeV to GZ
inv

r The measurements yields 499 1.5 MeV

r The partial widths come in ratios of 

Γ Z(Z
0 → νeνe) :Γ Z(Z

0 → e+e− ) :Γ Z(Z
0 → uu) :Γ Z(Z

0 → dd ) = 2.0 :1.0 :3.6 : 4.6 (6.35)



VI.3 Number of Light Neutrinos
r Using lepton universality and

we obtain for NnGnn/Gee=5.942 0.016, which is in good agreement
with 3 families of quarks and leptons 

r A fit to the Z0 line shape yields

r Note that a heavy n is not ruled out
by this measurement
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ee
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SM

(6.37)

N
ν
= 2.9841± 0.083 (6.38)



VI.4 Gauge Boson Widths 

(6.40)Γ Z ΓW = 1.176 ± 0.028 ± 0.06 th

r From precise measurements of 
GZ/GW, GZ & Nn we can infer GW

r The most precise measurement
of GW comes from the Tevatron

r Hadron collider experiments  
measure the ratio GZ/GW through

r The ratios G(Z0®e+e-)/G(W-®e-n) 
& sW/sZ can be calculated
rather accurately, since many theoretical uncertainties cancel

r The results are sW/sZ =3.3 0.2 & G(Z0®e+e-)/ G(W-®e-n)=0.37 0.01

r With measurements of R=10.49 0.25 we get

Tevatron :ΓW = 2.046 ± 0.049 (6.41)

r Direct LEP II & Tevatron
measurements yield ΓW = 2.085 ± 0.042 GeV (6.42)

R = σ (pp→W − → e−ν )
σ (pp→ Z0 → e+e− )

  = σ (pp→W − )
σ (pp→ Z0)

Γ (W − → e−νe)
Γ (Z0 → e+e− )

Γ Z

ΓW

(6.39)



VI.5 Hadronic W -Production

r This  yields a subprocess cross section of 

σ̂ (qq '→W + ) = 1
2

⎛
⎝⎜

⎞
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2
1
2ŝ

Vqq'
2 8GF
2
MW

4⎛
⎝⎜

⎞
⎠⎟
2π d(LIPS)∫ (6.44)

where

r The  phase space evaluation yields  

r Hadronic W production A+B®W +X is based on the quark subprocess
q!q ®W+ and the conjugated process for W-

r The ME is the same as that in W decay

M = −iVqq'
g
2
εµ
λ∗(k)v (p ')γ µ 1

2
1− γ 5( )u(p) (6.43)

ŝ == (p ++ p ')2

d 3p
2Ep∫∫ δδ (k −− p −− p ') == δδ (

�
s −−MW

2 ) (6.45)
and hence

σ̂ (qq '→→W ++ ) == 2π Vqq'
2 GF
2
MW

2 δ (ŝ −−MW
2 ) (6.46)

r The total W cross section is obtained by convolving "s with the quark
density distributions q(xa,M2

W) & !q (xb,M2
W) including a color factor of

3´1/3´1/3, where xa & xb denote the momentum  fractions of q & !q’



VI.5 Hadronic W -Production

r We have assumed that

r The K-factor includes 1st-order QCD 
corrections   

r σσ (AB→→W ++X ) == K
3

dxa xb q(xa,MW
2 )q '(xb,MW

2 )σ̂σ (qq '→→W ±± )
q,q'
∑∑

0

1

∫∫
0

1

∫∫ (6.47)

q2 == ŝ == M
W
2

K ! 1++ 8ππ
9

αα s(MW
2 ) (6.48)

r We transform the integration to !s & y
variables 

dx
a
dx

b
== dŝdy

s (6.49)
where  

y == 1
2
ln
E ++ pL
E −− pL

⎛⎛
⎝⎝⎜⎜

⎞⎞
⎠⎠⎟⎟ (6.50)

is the rapidity of the W-boson in the AB CM frame

r Note that s1/2 is the invariant mass of the AB system while !s is that of
the ab system



VI.5 Hadronic W -Production

where xa & xb are now evaluated at 

r The integral over ds takes out the d function, yielding
dσ
dy

W +( ) = K 2π3
GF
2

Vqq'
2
xaxbq(xa,MW

2 )q '(xb,MW
2 )

q,q'
∑ (6.51)

xa =
MW

s
ey,    xb =

MW

s
e−y

(6.52)

r For pp scattering, the differential cross section in the Cabibbo-mixing 
approximation and evaluating all quark distributions at q2 =M2

W is 

(6.53)

r For the SU(3) symmetric sea approximation we have !u(x)=!d(x)=!s(x)

r Here the differential cross section simplifies to

r For p!p collisions the W differential cross section is

(6.54)dσ
dy

pp→W +( ) = K 2π
3
GF

2
xaxb u(xa)d (xb)+ d (xa)u(xb){ }

(6.55)
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VI.5 Hadronic W -Production
r In the valence dominance approximation for low CM energies this

becomes dσ
dy

pp→W +X( ) ! K 2π3
GF
2
xaxb u(xa)d(xb){ } (6.56)

r The total cross sections are obtained by integration over y

r ATLAS measured 
(13 TeV)

r CDF measured (1.96 TeV)

r UA1 measured (0.63 TeV)

r All measurements are in 
good agreement with the NNLO prediction

(6.57)

(6.58)

(6.59)

σ (pp →W −X → e −ν
e
X ) =

2740 ± 10
stat

53
sys

± 165 pb

σ (pp →W −X → e −ν
e
X ) =

630 ± 40
stat

100
sys

 pb

σ (pp→W +X → e+νX ) = 20639.3 ± 24.4stat ± 555.6sys ± 433.4lum  pb



VI.6 Hadronic Z0-Production
r The calculation of the cross section for AB®Z0X is similar to that

of W production

r The ME squared for the fusion subprocess q!q®Z0 is

r The subprocess cross section & resulting color-averaged hadronic
cross sections are 

M
2
= 2 2gZ( )2MZ

2
gV
q( )2 + gA

q( )2⎡
⎣⎢

⎤
⎦⎥

2
= 32

GF
2
MZ

4 gV
q( )2 + gA

q( )2⎡
⎣⎢

⎤
⎦⎥

(6.60)

σ̂ (qq→ Z0) = 8π
GF

2
MZ

2 gV
q( )2 + gA

q( )2⎡
⎣⎢

⎤
⎦⎥
δ (ŝ −MZ

2) (6.61)

dσ
dy
(AB→ Z0X ) = K 8π

3
GF
2
MZ

2 gV
q( )2 + gA

q( )2⎡
⎣⎢

⎤
⎦⎥q

∑ xaxbq(xa)q(xb) (6.62)

r For Z0 production in p!p & pp collisions, ds/dy is
dσ
dy
(pp→ Z0X ) = K π

3
GF
2
xaxb 1− 8

3
xW + 32

9
xW
2⎡

⎣
⎢

⎤

⎦
⎥ u(xa)u(xb)+ u(xa)u(xb)⎡⎣ ⎤⎦

⎧
⎨
⎩

                   + 1− 4
3
xW + 8

9
xW
2⎡

⎣
⎢

⎤

⎦
⎥ d(xa)d(xb)+ d (xa)d (xb)+ s(xa)s(xb)+ s(xa)s(xb)⎡⎣ ⎤⎦}

(6.63)



VI.6 Hadronic Z0-Production

r ATLAS measured 
(13 TeV)

r CDF measured (1.96 TeV)

dσ
dy
(pp→ Z0X ) = K π

3
GF
2
xaxb 1− 8

3
xW + 32

9
xW
2⎡

⎣
⎢

⎤

⎦
⎥ u(xa)u(xb)+ u(xa)u(xb)⎡⎣ ⎤⎦

⎧
⎨
⎩

                   + 1− 4
3
xW + 8

9
xW
2⎡

⎣
⎢

⎤

⎦
⎥ d(xa)d (xb)+ d (xa)d(xb)+ s(xa)s(xb)+ s(xa)s(xb)⎡⎣ ⎤⎦}

(6.64)

r UA1 measured

r All measurements agree well
with the NNLO prediction

r Due to smaller production cross section and smaller ℬℓ we find

(6.66)

(6.67)

σ (pp → Z 0X → e +e −X ) /σ (pp →WX → e −ν
e
X ) ! 1 /10 (6.68)

(6.65)
σ (pp→ Z0X → e+e−X ) = 1981.2 ± 7.0stat ± 38.1sys ± 41.6lum  pb

σ (pp→ Z0X → e+e−X ) =
253.9 ± 3.3stat ± 4.6sys ±15.2lum  pb

σ (pp→ Z0X → e+e−X ) =
71± 7stat ±11sys  pb



VI.7 Hadronic W®en Production
r Lets examine the distribution of W®en in more detail
r We must calculate the complete production & decay subprocess

r The spin-averaged differential cross section is

ud →W + → e+ν
e

(6.69)

where we have neglected quark & lepton masses

r Integration over cos!q yields

dσ̂
d cosθ̂

(ud → e+ν ) =
Vud

2

8π
GFMW

2

2

⎛

⎝⎜
⎞

⎠⎟

2
ŝ(1+ cosθ̂ )2

(ŝ −MW
2 )2 + (ΓWMW )

2

σ̂ (ud → e+ν ) =
Vud

2

3π
GFMW

2

2

⎛

⎝⎜
⎞

⎠⎟

2
ŝ

(ŝ −MW
2 )2 + (ΓWMW )

2

r d"s/dcos !q vanishes at cos !q =-1, being a 
consequence of helicity conservation (me=0) 
in collinear scattering 

r Hence, the e+ is preferentially emitted along the #d direction 

(6.70)



VI.7 Hadronic W®en Production
r In p!p collisions below s1/2=1 TeV, !p is the main source of !d quark,

while p is that of u quark

r Thus, the e+ is preferentially produced in the hemisphere of !p
beam direction

r The inclusive hadronic cross section for AB®enX has the form

(6.71)dσ (AB→ e+νX ) = 1
3 dxa dxbq(xa)q '(xb)dσ̂ (qq '

0

1

∫ → e+νe)
0

1

∫
q,q'
∑

r The parton distributions are evolved up to s=M2
W

r Note that eqn (6.71) is sufficient for choosing xa, xb and cos "q
r The e-rapidity in the u!d CM frame is defined by

(6.72)ŷ = 1
2
ln
Êe + p̂e

L

Êe − p̂e
L

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= lncot 1

2
θ̂

⎛
⎝⎜

⎞
⎠⎟

r Thus   

(6.73)dσ̂
dŷ

= sin2 θ̂ dσ̂
d cosθ̂

!
1+ tanh ŷ
cos ŷ

⎛
⎝⎜

⎞
⎠⎟

2

Color



VI.7 Hadronic W®en Production
r The e laboratory momentum and rapidity are related xa, xb & !q

by
(6.74)Ee =

1
4
s xa(1+ cosθ̂ )+ xb(1− cosθ̂ )⎡⎣ ⎤⎦

r Hence the e-lab rapidity distribution has the form   

(6.76)y = 1
2
ln
xa(1+ cosθ̂ )
xb(1− cosθ̂ )

⎡

⎣
⎢

⎤

⎦
⎥ =

1
2
ln
xa
xb

⎛

⎝⎜
⎞

⎠⎟
+ ŷ

r The [ ]  is evaluated at "y =y-1/2ln(xa/xb) with cos !q =tanh "y
r The transverse momentum distribution of the e & n are important

in the identification of W®en events

r In the u#d®en subprocess CM frame, the transverse momentum "pT

of the e & n are back-to-back and have the same magnitude 

(6.77)dσ
dy

AB→ eX( ) = 13 dxa dxbq(xa)q '(xb)
dσ̂

d cosθ̂
qq '→ eν( )sin2 θ̂⎡

⎣
⎢

⎤

⎦
⎥

0

1

∫
0

1

∫
q,q'
∑

(6.75)pe
L = 1

4
s xa(1+ cosθ̂ )− xb(1− cosθ̂ )⎡⎣ ⎤⎦

p̂T
2 = 1

4 ŝsin
2 θ̂ = t̂û / ŝ (6.78)



VI.7 Hadronic W®en Production
r Changing variable from cos !q to d"p2

T using cos !q =[1-4 "pT 
2/"s]1/2

we encounter the Jacobian 

r Since angles !q and p-!q contribute to the same "pT, terms linear in
cos !q in the differential cross section cancel yielding 

r The divergence at !q =1/2p (upper 
endpoint "pT=(1/2) "s1/2=(1/2)MW of 
the "pT distribution stems from 
Jacobian factor and is known
as Jacobian peak (characteristic
of all 2-body modes)

(6.79)d cosθ̂
dp̂T

2 = − 2
3
1−
4p̂T

2

ŝ
⎛

⎝⎜
⎞

⎠⎟

−1
2

= − 2
ŝcosθ̂

(6.80)dσ̂
dp̂T

2 = σ̂
3
2

1+ cos2 θ̂( )
ŝ cosθ̂

= σ̂
ŝ
3
1− 2 p̂T

2 ŝ

1− 4 p̂T
2 ŝ( )

1
2



VI.7 Hadronic W®en Production
r Consider simply lowest-order subprocess q!q ®W®en è incident

quarks are longitudinal è W boson is produced longitudinally
& laboratory transverse momentum of e is subprocess transverse
momentum "pT=pT

r Here, the pTdistribution is obtained by 
convolving d#s/d"pT

2 with the quark 
distributions averaged only over the 
Breit-Wigner "s dependence of #s(q!q®en)

r Integration over s removes the
singularity and leaves the Jacobian
peak of finite height near pT=MW/2

r Higher-order subprocesses, such as 
u!d®W+g, give the W a transverse 
momentum distribution that smears 
out the Jacobian peak in the peT
distribution



VI.7 Hadronic W®en Production
r This smearing makes it difficult to obtain an accurate 

determination of MW from the peT distribution alone 

r It is possible, however, to exploit information about the n
momentum

r Since all hadrons and charged leptons with sizable pT are detected
the overall pT imbalance for detected particles gives approximate
measure of the undetected n transverse momentum pnT

r One cannot make a similar determination of the longitudinal 
momentum component pnL, since particles can escape down the 
beam pipe

r Another quantity that has a sharp Jacobian peak is the transverse mass



VI.8 Transverse Mass
r The en transverse mass mT(e, n) is defined by

r Comparing this to the invariant mass yields

r Thus, mT(e,n) always lies in the range 0£ mT(e,n)£m(e,n) and for
W®en decay, where m(e,n)=MW, we have  

(6.81)

(6.82)0 ≤m2(e,ν )−mT
2(e,ν ) = 2 (pe

T)2 + (pe
L)2( ) (pν

T)2 + (pν
L)2( ) − peT pν

T − pe
L pν

L⎡
⎣⎢

⎤
⎦⎥

0 ≤mT(e,ν ) ≤MW
(6.83)

r The mT distribution for a given !s is

dσ̂
dmT

2 =
Vqq'

2

4π
GFMW

2

2

⎛

⎝⎜
⎞

⎠⎟

2
1

ŝ −MW
2( )2 + ΓWMW( )2

2−mT
2 ŝ

1−mT
2 ŝ

(6.84)

r The mT distribution is unaffected by longitudinal boost of the en
system, since it depends only on the transverse momenta 

m
T
2 (e,ν) =

!
p

e
T +

!
p
ν
T( )2 − !pe

T +
!
p
ν
T( )2 = 2

!
p

e
T E

miss
T 1 − cosφ

e−ν( )



VI.8 Transverse Mass
r Boosting the e and n momenta in a 

transverse direction, corresponding 
to a transverse velocity b of the 
decaying W boson, mT(e,n) is 
unchanged to order b and contains 
corrections only of order b2

r Including the finite W width, convolving 
incident quark distributions and averaging 
color, the mT distribution (at lowest 
order of the subprocess) becomes

dσ
dmT

2 AB→ eνX( ) = K3 dxa dxbq(xa,ŝ)q '(xb,ŝ)
dσ̂
dmT

2 qq '→ eν( )
0

1

∫
0

1

∫
q,q'
∑

(6.85)
with initial quark distribution evolved to Q2= !s & 
the correction factor  

K ! 1+ 8π
9

αs(MW
2 ) (6.86)



VI.8 Transverse Mass
r The shape of the mT distribution close to the endpoint is sensitive to both
MW & GW

r The accuracy with which pT
n can be determined is a crucial limiting factor

in determining the shape in this region

r For each event the uncertainty in mT(e, n) is DmT»DpT
n

r UA1 determined MW=83 4 GeV  
from the mT distribution 

r The curve is the theoretical 
calculation including acceptance
and efficiency corrections

r A background to W®en signal
comes from the cascade decay 
W®tn with t®en!n

r Since the ns are undetected, this 
process is topologically

indistinguishable from the signal



VI.8 Transverse Mass

r New W-mass measurement from ATLAS

r Combining en and µn channels yields

r This is the most precise 
single mass measurement (6.87)

r The mT distribution from W®t®e mode is peaked
towards low values wrt mt distribution fromW®ne

m
W

= 80370 ± 7
stat

± 11
sys

± 14
Model

 GeVMeV



VI.8 Transverse Mass
r Comparison of W-mass measurements

r Present world average is m
W

= 80385 ± 15 GeV (6.88)MeV



VI.8 Transverse Mass
r SM consistency check, mW vs mt and mH



VI.9 Transverse Motion of the W
r The lowest-order fusion process q!q ®W, evaluated with 

QCD-evolved quark distributions and multiplied by a K-factor for
non-leading QCD corrections, gives the total W hadroproduction
cross section correctly through order as

r The QCD-evolved quark distributions are given by the Alterelli-
Parisi equations, that are differential equations for the quark &
gluon evolutions 

dqi (x,Q
2)

d(lnQ2)
=
αs(Q

2)
2π

dw
w

qi (w,Q
2)Pqq

x
w

⎛
⎝⎜

⎞
⎠⎟
+ g((w,Q2)Pqg

x
w

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

x

1

∫ (6.89)

r Here, w is the parton momentum fraction, x is the Bjorken
variable x=Q2/(2P•q) with Q2 being the CMS energy squared, q is
the momentum transfer and P is the momentum of the hadron 
containing the quark

r q(w, Q2) is the quark distribution, g(w, Q2) is the gluon distribution
Pqq(z), Pqg(z), Pgq(z) & Pgg(z) are respectively the quark®quark, 
quark®gluon, gluon®quark, gluon®gluon splitting functions

dg(x,Q2)
d(lnQ2)

=
αs(Q

2)
2π

dw
w

qi
qi

∑ (w,Q2)Pgq
x
w

⎛
⎝⎜

⎞
⎠⎟
+ g((w,Q2)Pgg

x
w

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥x

1

∫ (6.90)



VI.9 Transverse Motion of the W
r Introducing the prescription 1/(1-z)t as  

dz h(z)
(1− z)t

≡
0

1

∫ dz h(z)− h(1)
(1− z)0

1

∫ (6.91)

which removes a singularity from 1/(1-z) expressing it as e-1d(1-z)
we can express the splitting functions by

Pqq(z) =
4
3
1+ z2

(1− z)t
+ 2δ (1− z) (6.92)

Pqg(z) =
1
2
z2(1− z)2⎡⎣ ⎤⎦ (6.93)

Pgq(z) =
4
3
1+ (1− z)2⎡⎣ ⎤⎦

z
(6.94)

Pgg(z) = 6
z

(1− z)t
+ 1− z
z

+ z(1− z)+ 11
12

− f
18

⎛
⎝⎜

⎞
⎠⎟
δ (1− z)

⎡

⎣
⎢

⎤

⎦
⎥ (6.95)

where f is the # of quark flavors
r We also have the identities obtained by charge conjugation

Pqg(z) = Pqg(z),     Pgq(z) = Pgq(z) (6.96)



VI.9 Transverse Motion of the W
r Momentum conservation at the splitting vertex yields

Pqg(z) = Pqg(1− z),  Pgg(z) = Pgg(1− z),  Pqq(z) = Pqq(1− z),  (6.97)

r The integral of Pqq(z) over all z vanishes

Pqq(z)dz = 0
0

1

∫ (6.98)

while total momentum conservation implies

dz z Pqq(z)+Pgq(z)⎡⎣ ⎤⎦ = 0
0

1

∫ (6.99)

dz z 2fPqg(z)+Pgg(z)⎡⎣ ⎤⎦ = 0
0

1

∫ (6.100)

r Solving these equations by iteration will generate contributions to
q of order (aslnQ2)n from n-fold collinear gluon emission 
corresponding to graphs like



VI.9 Transverse Motion of the W
r A corresponding ladder of graphs arises from the solution of dg(x,Q2)

r Since the Alterelli-Parisi equations are based on a longitudinal 
approximation, the QCD-evolved distributions do not include the
transverse momentum that should accompany the radiation of gluons
and quarks

r To include the pT from radiated quarks & gluons, one can explicitly
evaluate multiple emissions using techniques that sum radiated
momenta and yield a net recoil W momentum

r An alternative is the use of MC simulations

r Consider a simplified approach based on the following subprocesses
to order as



where

r Using crossing symmetry we can get the Compton subprocess qg®Wq

VI.9 Transverse Motion of the W
r The incident partons are evolved up to scale Q2=M2

W in the 
convolution to obtain the hadronic cross sections

r At large pT, these O(as) subprocesses are expected to dominate

r The argument of as is proportional to p2
T and higher-order

processes are suppressed by powers of as

r The spin-averaged and color-averaged cross section for the 

annihilation subprocess q!q ®Wg is

dσ̂ ann

dt̂
= 4
9
αs

GFMW
2

2

Vqq'
2

ŝ2
t̂ 2 + û2 + 2ŝMW

2

t̂û

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ (6.101)

ŝ = (q + q ')2, t̂ = (q − pW )
2, û = (q − pW )

2

dσ̂ compton

dt̂
= 1
6
αs

GFMW
2

2

Vqq'
2

ŝ2
ŝ2 + t̂ 2 + 2ûMW

2

−ŝt̂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ (6.102)



VI.9 Transverse Motion of the W
r In pp collisions at s1/2< 1 TeV sann~10´scompton è neglect scompton

r To get the distributions of W®en decay products, we need ME
for the complete production and decay sequence q!q ®Wg®eng
containing W-polarization effects 

r The differential cross section in a rather simple form is

dσ (ud→ eνg) =
GF
2

⎛
⎝⎜

⎞
⎠⎟

2
32
9π 4 αs

MW
4

ŝt̂û
Vud

2 (pe ⋅pu )
2 + (pν ⋅pd)

2

pW
2 −MW

2( )2 + ΓW
2MW

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
δ 4(pu + pd − pe − pν − pg)

d 3pi
2Eie,ν,g

∏

(6.103)
r The corresponding Compton formulas are again obtained by crossing

r These cross sections have mass and infrared singularities
è divergence at p2

T=0

r Infrared singularities cancel if loop diagrams are taken into account



VI.9 Transverse Motion of the W
r Mass singularities are factored out into the parton distributions

r This divergence is unphysical and would be explicitly removed in an
ideal treatment

r Here, we simply regularize with a pT cut-off factor (representing our 
ignorance of the precise details at small pT) and multiply by the K-factor
for non-leading enhancements

r The O(as) calculation already provides a useful approximation to the 
complete AB®WX hadronic production process if the cut-off factor is 
adjusted such that the integrated O(as) cross section equals to the total
AB®WX cross section to order as

(6.104)dab dpT
2f (pT

2)dσ1 dpT
2 = dabKσ 0∫∫∫

where 
dab = dxadxb q(xa,MW

2 )q '(xb,MW
2 )

q,q'
∑

ds1/dpT
2 is the O(as) q!q ®Wg differential cross section, f(pT

2) is
the cut-off factor and s0 is the q!q ®W fusion cross section

(6.105)



VI.9 Transverse Motion of the W
r We have implicitly neglected the QCD enhancement of the first

order cross section ds1/dpT
2 that is known to be a resonance 

approximation

r Here the lowest-order cross section s0

enters only via the normalization
condition 

r This truncated QCD shower approximation
is called Poor Man s Shower Model and 
gives both the total cross section and the
pT dependence at large pT

r Note that it is not correct at small and
intermediate pT, but the integral is 
constrained to be correct



VI.10 Weak Boson Decay Angular Distribution 

r The V-A interaction causes e- (e+) from a W- (W+) decay to be

emitted along the incoming quark (antiquark) with an angular 

distribution 

dσ̂ / d cosθ̂ ∼ 1+ cosθ̂( )2 (6.106)

where !q is the emission angle of the e- (e+) wrt

quark (antiquark) direction in the W rest frame

r The spin of the W-boson can be 

determined from the data using 

cosθ̂ = λ µ J(J +1) (6.107)

where <l> and <µ> are the global helicities of the

system (ud) and decay system (en), respectively

r For V-A interactions <l>=<µ>=-1 and J=1, yielding 

cosθ̂ = 0.5 (6.108)



VI.10 Weak Boson Decay Angular Distribution 
while   

r The experimental value of
agrees with the J=1 assignment for the 
W-boson and a prediction of maximal 
helicity at production and decay vertices

r Similar considerations apply to Z
production and decay to e+e-

r The angular distributions here involve 
V-A and V+A couplings, which can be used
to extract a value for xW

r For q!q®Z0®e+e- the angular distribution in the
Z0 rest frame is 

cosθ̂ = 0.0 for J=0 (6.109)
cosθ̂ ≤1/ 6 for J=2 (6.110)

cosθ̂ = 0.43 ± 0.07 (6.111)

dσ̂
d cosθ̂

∼ gV
q( )2 + gA

q( )2⎡
⎣⎢

⎤
⎦⎥
gV
e( )2 + gA

e( )2⎡
⎣⎢

⎤
⎦⎥
1+ cos2 θ̂( )+ 8gAqgVqgAegVe cosθ̂

(6.112)



VI.11 W & Z Pair Production 
r Production of e+e_®W+W- will yield a precise determination of the

W-boson properties, such as mass, width and coupling to different
flavors 

r Furthermore, it provides the best opportunity to measure the WWg
and WWZ couplings and test the gauge theory predictions for Yang-
Mills self interactions

r There are cancellations among the 3
contributing diagrams è small deviations
from the gauge theory couplings would
lead to observable effects 

r In pp or p!p collisions the W+W-, W Z0 and Z0Z0

final states can be realized 

r The W+W- contribution is an important background to the signal
for a heavy Higgs boson, new heavy quarks & new heavy leptons



Tµν(W
+W − ) = e2

Qf

ŝ
+DZ

gV
f − gA

f γ 5
xW

⎛

⎝⎜
⎞

⎠⎟
gµν pV1 − pV2( )+ γ µ 2pV2 + pV1( )

ν
− γ ν 2pV1 + pV2( )

µ

⎡
⎣⎢

⎤
⎦⎥

            − e2
(1+ γ 5)
4xW

θ(−Qf )
γ µ pℓ1γ ν

t̂
+θ(Q

f
)
γ µ pℓ2γ ν

û

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

VI.11 W & Z Pair Production 
r The amplitude for f ̅f ®V1V2 has the general form

M(ff '→V1V2) = iv (pf' )T
µνu(pf )εµ

∗(pV1)εν
∗(pV2 ) (6.113)

where the e terms denote the polarization vectors of the vector
mesons and the tensor Tµn is process dependent

r For the momenta we have used the notation
pℓ1 = pf − pV1,   pℓ2 = pf − pV2 (6.114)
ŝ = (pf + pf' )

2,   t̂ = pℓ1
2 ,   û = pℓ2

2

(6.115)
and

DV = ŝ −MV
2 + iMVΓ V( )−1 (6.116)

The tensors for W+W-, Z0Z0 and W Z0 production are given by

(6.117)

g Z0

s -channel

t -channel u -channel



VI.11 W & Z Pair Production 

r For W+Z0 production we need to interchange gf and -gf as well as
interchange !u and "t in the W-Z0 expression above

r To express the differential cross section we introduce the notation

Tµν(Z
0Z0) = −e2

gV
f( )2 + gA

f( )2 − 2gVf gAf γ 5
xW(1− xW )

γ µ pℓ1γ ν

t̂
+
γ µ pℓ2γ ν

û

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(6.118)

Tµν(W
−Z0) = e2

Vff '(1+ γ 5)
2 2xW cosθW

DW(1− xW ) gµν pZ − pW( )+ γ ν(2pW + pZ)µ − γ µ(2pZ + pW )ν⎡⎣ ⎤⎦{
            − gL

f'
γ µ pℓ1γ ν

t̂
−gL

f
γ µ pℓ2γ ν

û

⎫
⎬
⎪

⎭⎪
(6.119)

UT = ût̂ −MV1

2MV2

2

(6.120)

βV = 1− MV1

2 +MV2

2( ) ŝ( )2 − 4MV1

2MV2

2 ŝ2⎡
⎣⎢

⎤
⎦⎥ (6.121)threshold factor

r We also need a color factor C (C=1/3for q#q & C=1 for e+e-) and
3rd component of the weak isospin Tf

3

t u

t u

s



VI.11 W & Z Pair Production 
r The cross section for W+W- is

dσ̂ (W +W − )
dt̂

= πα 2C
4xW

2 ŝ2
Ut

ŝ2
3 − 1
1− xW

gL
f

T3
f ŝ − 6MW

2( )⎡

⎣
⎢
⎢

ℜeDZ
⎧
⎨
⎪

⎩⎪
+
gL
f( )2 + gR

f( )2
1− xW( )2

βW +
12MW

4

ŝ2
⎛

⎝⎜
⎞

⎠⎟
ŝ2 DZ

2 ⎤
⎦⎥

                               −
4gL

f

T3
f MZ

2ℜeDZ               + 4
gL
f( )2 + gR

f( )2
1− xW

MZ
2ŝβW

2 DZ
2

             +θ(−Qf ) 2 1+
gL
f

T3
f MZ

2ℜeDZ
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

×
UT

ŝt̂
−
2MW

2

t̂

⎛

⎝⎜
⎞

⎠⎟
+
UT

t̂ 2
⎤

⎦
⎥

             +θ(Qf ) 2 1+
gL
f

T3
f MZ

2ℜeDZ
⎛

⎝⎜
⎞

⎠⎟
×
UT

ŝû
−
2MW

2

û

⎛

⎝⎜
⎞

⎠⎟
+
UT

û2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫
⎬
⎪

⎭⎪

(6.122)

g g-Z0 Z0

s-channel

(mass term)

t-channel

u-channel

s-u interference

s-t interference



VI.11 W & Z Pair Production 

dσ̂ (Z0Z0)
dt̂

= πα 2C
xW
2 ŝ2

gL
f( )4 + gR

f( )4
(1− xW )

2

t̂
û
+ û
t̂
+
4MZ

2ŝ
t̂û

−MZ
4 1
t̂ 2

+ 1
û2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dσ̂ (W −Z0)
dt̂

=
πα 2CVff '

2

2xW
2 ŝ2

1
4

9 − 8xW( )UT − 6 − 8xW( ) MW
2 +MZ

2( )ŝ⎡
⎣

⎤
⎦

⎡

⎣
⎢

⎧
⎨
⎩

DW
2

            + 2 UT − MW
2 +MZ

2( )ŝ⎡
⎣

⎤
⎦ ×

gL
f'( )2
t̂

−
gL
f( )2
û

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
ℜeDW

            +
UT

1− xW

gL
f'( )2
t̂

+
gL
f( )2
û

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ 2

MW
2 +MZ

2( )ŝ
1− xW

gL
f'

t̂
gL
f

û

⎫
⎬
⎪

⎭⎪

(6.123)

(6.124)

r Since both Z0 are indistinguishable, t and u channels are symmetric
and interfere

r The cross section for W-Z0 is 

r The cross section for Z0Z0 is

s channel

s-t
s-u

t u t-u interference



VI.11 W & Z Pair Production 
r For W+Z0 production we just need to 

interchange !t « "u
r The energy dependence of total cross section

is crucially dependent on gauge cancellations

r For example, in e+e-®W+W- the contribution 
of the n exchange diagram grows rapidly 
with energy

σ (ν − exchange) ! πα 2s
96xW

2MW
4 (6.125)

whereas
σ SM !

πα 2

2xW
2 s
ln s
MW

2

⎛

⎝⎜
⎞

⎠⎟
(6.126)

r In e+e-®W+W-, the W+

is preferentially produced
along e+ direction

r The energy distribution
is more sharply peaked as
s1/2 increases



VI.11 W & Z Pair Production 
r This will enable us to separate off contributions from new physics 

sources that decay to W+W- (Higgs, heavy lepton, heavy quark)

r In e+e-®W+W- production boson spins are correlated è yields
correlation between their decay products W+® a!b, W-® c!d, where
a,b,c,d are leptons or quarks 
(jets)

r To calculate these effects the
full ME for e+e-® a!bc!d must
be evaluated

r There are many lepton-
lepton, lepton-quark, quark-
quark correlations that can
be studied to test the
gauge theory couplings

r The WZ production
process has a clean
experimental signature 
with W+®e+n & Z®e+e-

(6.127)CDF :σ (pp→WZ) = (4.1± 0.7)pb

(6.128)CDF :σ (pp→ ZZ) = (1.7−0.7
+1.2 ± 0.2)pb

s1/2=1.96 TeV



VI.11 W & Z Pair Production 
r ATLAS measurements are in good agreement with NNLO predictions 



VI.11 W & Z Pair Production 
r The W and Z pair cross sections for transversely & Longitudinally

polarized vector bosons have also been evaluated 

r At high s1/2»MW, the cross sections for transversely-polarized W
and Z bosons dominates over those for longitudinal polarizations   



VI.11 W & Z Pair Production 
r The Goldstone-boson equivalence theorem states that the 

amplitude involving longitudinally-polarized gauge bosons is 
equivalent to the amplitude with external gauge bosons replaced
by corresponding Goldstone bosons up to corrections of order
MV/EV, where EV is the gauge boson energy

r The couplings of Goldstone bosons are like those of the physical
Higgs boson, since they belong to the original SU(2) Higgs doublet
è the coupling of longitudinally-polarized W & Z bosons to light
quarks is at high energies by a factor of ~ MV/EV

r On the other hand, W & Z bosons that result from the decay of
heavy particles are predominantly longitudinally polarized 

r For example the couplings of Goldstone boson pairs to H, Z & a
heavy quark are enhanced by factors of (mH/MW)2, (mZ /MW)2, and
(mf/MW)2, respectively èthis helps to separate these signals from
continuum backgrounds



VI.11 W & Z Pair Production 
r In order to observe VV production we encounter 3 topologies for

WW final states: 

Ø WW® 4q: 45.7%  è 4 jets
Ø WW®2qℓn: 43.8%  è 2 jets + 1 ch lepton + missing energy
Ø WW® ℓnℓn: 10.5%  è 2 ch leptons + missing energy

Ø ZZ ® 4q: 49.0%   è 4 jets
Ø ZZ ®2qn"n: 28.0%   è 2 jets + missing energy
Ø ZZ®2qℓ+ℓ-: 14.0%  è 2 jets + 2 ch leptons
Ø ZZ®ℓ+ℓ-n"n :  4.0%   è 2 ch leptons + missing energy
Ø ZZ® 2ℓ+ℓ-:  1.0% è 4 ch leptons
Ø ZZ® 2n"n :  4.0% è missing energy (not seen)

r For ZZ final states we encounter 6 different topologies 



VI.11 W & Z Pair Production 
r The e+e- ® W+W- cross section 

has been measure at LEP II

r The measurements are in 
excellent agreement with the
SM prediction

Ratios of LEP-combined W pair cross
section measurements for different
energies to 2 predictions. The yellow
band shows a 0.5% theoretical error
between the 2 predictions

Measurements of W-pair cross section
vs energy in comparison to 2 predictions.
The shaded band shows theoretical
uncertainties, ranging from 0.7% to 0.4%
above s1/2>170 GeV & 2% below.



VI.11 W & Z Pair Production 
r The e+e- ® Z0Z0 cross section 

has been measure at LEP II

r The measurements are in 
excellent agreement with the
SM prediction

Ratios of LEP-combined Z pair cross
section measurements for different
energies to 2 predictions. The yellow
band shows a 2% theoretical error
between the 2 predictions

Measurements of Z-pair cross section
vs energy in comparison to 2 predictions.
The shaded band shows theoretical
uncertainty of 2%.



VI.12 Tripple Gauge Couplings 
r In the SM 3 or 4 gauge bosons can couple to each other, which is

a consequence of the non-Abelean group SU(2)´U(1)

r The most general Lorentz-invariant Lagrangian that describes 
triple gauge-boson interactions has 14 independent complex 
couplings, 7 for WWg vertex and 7 for WWZ vertex

r Assuming EM gauge invariance as well as C & P conservation, the # of
independent TGC reduces to 5 è common set  {g1

Z, kZ, kg, lZ, lg}; (g1
g=1)

r In the SM we expect g1
Z=kZ=kg=1 and  lZ=lg=0; 

r The LEP experiments used g1
Z, kg, lg with the gauge constraint

κ Z = g1
Z − (κ γ −1)tan

2θW (6.130)λ
Z
= λ

γ&

where all couplings are considered real 

r The neutral TGC (ZZg, ZZZ) are described by the parameters hV
i, i=1..4, &

fVj, j=4,5, assumed to be real & vanishing in the SM (V=g, Z)

L = ig
WWV

g
1
V W

µµνν
+W −µµ −W +µµW

µµνν
−( )V νν +κκ VW

µµ
+W

νν
−V µµνν + λλV

m
W
2
W

µµ
+ννW

νν
− ρρV

ρρ
µµ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(6.129)g
WWγγ

= e

g
WWZ

= e i cotθθ
W



VI.12 Tripple Gauge Couplings 
r The LEP results for charged TGC are consistent with the SM  

r Similarly, the results for the neutral TGC are consistent with zero 
and thus in good accord with the SM

r New gauge bosons would contribute to this coupling & modify the
SM values è need precision measurements to detect new physics

(6.131)g1
Z = 1.051−0.032

+0.031      κ Z = 0.933−0.059
+0.051      λγ = −0.067−0.038

+0.036


