

Performance Studies of the p-spray/p-stop implanted Si Sensors for the SiD Experiment

Pooja Saxena, Kirti Ranjan, Ashutosh Bhardwaj, R. K. Shivpuri, S. Bhattacharya **Center for Detectors & Related Software Technologies** Department of Physics and Astrophysics, University of Delhi, Delhi, INDIA

FRAMEWORK

- Silicon Detector (SiD) is one of the proposed detector for future e⁺ e⁻ linear collider experiments.
- Double-sided silicon strip sensor provides two-dimensional position information with high resolution.
- Innermost vertex detector : background of ~ 1 1.6 x 10¹⁰ 1-MeV equivalent neutrons cm⁻² year⁻¹

RESULTS	
Silvaco-TCAD, DEVICE SIMULATOR (ATLAS)	P-SPRAY EFFECT
Semiconductor Eqns. $\nabla.D = \rho$ $\nabla.(J_n / -q) = (G - R)$ $\nabla.(J_p / q) = (G - R)$ 3coupled, nonlinear, second order PDE's for the 3 unknowns: V, n, p Device Parameters Device Cross-section = $80 \times 320 \ \mu m^2$ \cdot Strip pitch= $80 \ \mu m$, strip width= $18 \ \mu m$ \cdot Substrate conc. = $7 \times 10^{11} \ cm^{-3}$, Uniform \cdot peak p-spray conc. (Np) = 4×10^{16} , 12×10^{16} , $24 \times 10^{16} \ (cm^{-3})$, Gaussian \cdot Oxide charge density (Q _F) = 5×10^{11} , 10^{12} , $2 \times 10^{12} \ (cm^{-2})$ \cdot Models : conc. & field dependent mobility, SRH with conc. dependent lifetime, GRANT (Impact Ionization)	 Interstrip Capacitance (Cint) AC- Interstrip Conductance (Gint) Addition of p-spray/p-stop results in hole layer. For effective isolation, holes must be in excess of e⁻. p-spray: affects Cint, Gint & V_{BD}. Bulk Damage Bulk Damage Surface Damage Modeled by fin Q_F
ISOLATION CHARACTERISTICS	
Interstrip Capacitance (Cint) w/o p-spray with p-spray Interstrip Conductance (Gint) 1.5e-16 1.5e-16 Iow dose high dose high dose	

• e-/hole conc. provides all the needed information of AC characteristics (Cint & Gint) electric field provides information of breakdown characteristics.

SUMMARY

1. The p⁺n⁻n⁺ silicon detector has been investigated with respect to isolation & breakdown char.

2. The isolation is important for position resolution in DSSD.

3. In order to achieve good isolation (low Gint) & reasonable breakdown voltage (high V_{BD}), we need to optimize N_P dose

FUTURE OUTLOOK

--Ongoing studies with p-stop and comparison between p-stop & p-spray isolation technique.

Acknowledgments : CSIR 📩 Email : psaxena@physics.du.ac.in

Physics in Collision 2010, XXX Symposium on Physics In Collision, September 1- 4 2010 Karlsruhe, Germany