

ZEUS

Proton Structure Functions

at HERA

Katerina Lipka, DESY

For H1 and ZEUS Collaborations

Physics in Collision 2010 Karsruhe

Proton-Proton Collisions at high energies

Kinematics of HEP experiments

Parton density functions determined experimentally

HERA Measurements:

covers most of the (x, Q^2) plane, best constrain at low, medium xFrom HERA to kinematics of Tevatron, LHC:

Evolution in Q^2 via DGLAP

HERA: unique tool to study the proton

World-only *ep* collider

• HERA I : 1992-2000

- HERA II: 2003-2007
- collider experiments

H1 & ZEUS, $\sqrt{s_{max}}$ = 318 GeV

integrated Luminosity

~ $0.5 \, fb^{-1}$ / experiment

ntra icke

HERA: unique tool to study the proton

World-only *ep* collider

- HERA I : 1992-2000
- HERA II: 2003-2007
- collider experiments

H1 & ZEUS, $\sqrt{s_{max}}$ = 318 GeV

integrated Luminosity

~ $0.5 \, fb^{-1}$ / experiment

Inclusive Deep Inelastic Scattering

DIS: tool to study the proton

Kinematics:

 $Q^2 = -q^2$ $x=-q^2/2p\cdot q$ Bjorken scaling variable $y = p \cdot q / p \cdot k$ transferred energy fraction $s=(k+p)^2$ center of mass energy $Q^2 = sxy$

photon virtuality

Inclusive Deep Inelastic Scattering

DIS: tool to study the proton

Kinematics:

 $Q^2 = -q^2$ $y = p \cdot q / p \cdot k$ $s = (k + p)^2$ $Q^2 = sxy$

photon virtuality $x=-q^2/2p\cdot q$ Bjorken scaling variable transferred energy fraction center of mass energy

γ, Z : Neutral Current $ep \rightarrow e X$

W^{\pm} : Charged Current $ep \rightarrow vX$

DIS and proton structure

DIS and proton structure

DIS cross sections vs Q²

Neutral Current:

- small Q^2 : γ exchange
- high Q^2 : Z/γ interference:
 - constructive in e-
 - destructive in e^+

Charged Current:

- e-u enhanced
- e^+d suppressed

Ultimate precision DIS: combined HERA Data

Published in JHEP 01 (2010) 109 : complete HERA I data, \perp ~115 pb⁻¹

1.6 $\sigma^+_{r,NC}(x,Q^2)$ x=0.002 • HERA I NC e^+p x=0.0002 \Box ZEUS • H1 1.2 x=0.008 1 0.8 x=0.032 0.6 x=0.08 0.4 x=0.25 0.2 σ_r : $\overline{2\pi\alpha^2 Y_{\perp}} dx dQ^2$ 10³ 10^{2} 10⁴ 10 1 Q^2 / GeV^2

H1 and ZEUS

e.g. NC cross section vs Q^2 : 6 bins in x

H1 and ZEUS data averaged:

- global fit of 1402 measurements
- 110 sources of systematic errors
- account for systematic correlations (cross-calibration of experiments)
- total uncertainty: 1-2% for Q²< 500 GeV²
- covered kinematics:

10⁻⁷<*x*<0.65,

 $0.05 < Q^2 < 30000 \ GeV^2$

Ultimate precision DIS: combined HERA Data

Published in JHEP 01 (2010) 109 : complete HERA I data, \perp ~115 pb⁻¹

1.6 $\sigma^+_{r,NC}(x,Q^2)$ x=0.00 • HERA I NC e^+p x=0.0002 \Box ZEUS • H1 1.2 x=0.008 1 0.8 x=0.032 0.6 x=0.08 0.4 x=0.25 0.2 $\frac{\sim}{2\pi\alpha^2 Y_{\perp}} \, dx dQ^2$ 10⁴ 10^{3} Q^2 / GeV^2

H1 and ZEUS

e.g. NC cross section vs Q^2 : 6 bins in x

Reduced cross section: $\sigma_r = F_2(x, Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L(x, Q^2)$ Scaling violations in F_2 : at small x: F_2 rises with Q^2 gluon splits into quark pair, $\Rightarrow \gamma$ resolves the quark-pair

QCD:
$$\frac{\partial F_2}{\partial \ln Q^2} \propto \alpha_s(Q^2) xg(x,Q^2)$$

PDFs from inclusive NC and CC cross sections: g(x) from scaling violations 12

Determination of Parton Density Functions

Structure Function Factorization: for an exchange-Boson V

$$F_{2}^{V}(x, Q^{2}) = \sum_{i} \int_{x}^{1} dz \cdot C_{2}^{V,i}\left(\frac{x}{z}, Q^{2}, \mu\right) f_{i}(x, \mu_{F})$$

x-dependence of PDFs is not yet calculable in QCD:

- > parameterize at a starting scale $Q_0^2 : f(x) = Ax^B(1-x)^C(1+Dx+Ex^2)$
- > evolve these PDFs using DGLAP equations to $Q^2 > Q^2_0$
- construct structure functions from PDFs und coefficient functions: predictions for every data point in (x, Q^2) – plane
- > χ^2 fit to the experimental data

Global PDF Fit Groups: use data from different experiments, best coverage at high x

HERAPDF: only H1 and ZEUS data: consistent data sample,

proper error correlation best precision at low and medium x

HERAPDF1.0: NLO PDF, VFNS

10 parameter fit, NLO DGLAP Heavy quarks: massive Variable Flavour Number Scheme Scales: $\mu_r = \mu_f = Q^2$ Experimentally very precise Parameterization at starting scale: $xg(x) = A_{a}x^{B_{g}}(1-x)^{C_{g}}$ $xu_{v}(x) = A_{u} x^{B_{u_{v}}} (1-x)^{C_{u_{v}}} (1+E_{u} x^{2})$ $xd_{v}(x) = A_{d} x^{B_{d_{v}}} (1-x)^{C_{d_{v}}}$ $x\overline{U}(x) = A_{\overline{U}}x^{B_{\overline{U}}}(1-x)^{C_{\overline{U}}}$ $x\overline{D}(x) = A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}}$

+ sum rules...

HERAPDF1.0 vs NC data

QCD⊗HERAPDF1.0 describes the cross sections very well everywhere

HERAPDF1.0 vs CC data

QCD⊗HERAPDF1.0 describes the cross sections very well everywhere

Heavy Quarks and PDF Fits

Factorization:
$$F_2^V(x, Q^2) = \sum_i \int_x^1 dz \cdot C_2^{V,i} \left(\frac{x}{z}, Q^2, \mu\right) f_i(x, \mu_F)$$

i - number of active flavours in the proton, what about heavy c and b?

QCD analysis of the proton structure: treatment of heavy quarks essential

Fixed Flavour Number Scheme (FFNS) : *i* fixed

charm (beauty) quarks massive, produced in Boson-Gluon Fusion (BGF) only light flavours in the proton: i = 3 (4)

Problem: expected to be less precise at $Q^2 \gg m_{HO}^2$

Variable Flavour Number Scheme (VFNS) : i variable

- Zero Mass: all flavours massless. Breaks down at $Q^2 \sim m_{HQ}^2$

- *Generalized Mass:* matched scheme, expect appropriate description at all Q^2 , different implementations available and used by global fit groups

Use HQ measurements to test different HQ treatment in PDF Fits

Heavy Quark Structure Functions

Heavy Quarks in ep Scattering produced in Boson-Gluon Fusion

• Heavy: charm and beauty

$$m_c \sim 1.5 \text{ GeV}, m_b \sim 5 \text{ GeV},$$

- Contribution to total DIS cross section charm: up to 30% at high Q²
- > Gluon directly involved: cross-check of g(x) from scaling violations
- Measure HQ structure functions: direct test of HQ schemes in PDF fits

Charm structure function:
$$\sigma^{cc} \propto F_2^{cc}(x,Q^2) - \frac{y^2}{1 + (1-y)^2} F_L^{cc}(x,Q^2)$$

Charm at HERA: test HQ schemes in PDFs

Charm at HERA: test choice of m_c in PDF

Direct access to the gluon: F_L

Photon-Parton Scattering:
$$\frac{d^2\sigma}{dxdQ^2} \propto (\sigma_T + \frac{2(1-y)}{Y_+}\sigma_L), Y_+ = 1 + (1-y)^2$$

Structure functions: $F_2 \sim (\sigma_T + \sigma_L), F_L \sim \sigma_L$

Angular momentum conservation: spin ½ quark absorbs spin-1 photon

quark helicity $\pm \frac{1}{2}$, $F_L=0$

off-shell quarks may absorb longitudinal photons

Measurement of F_L

Reduced cross section: $\sigma_r = F_2(x, Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L(x, Q^2)$ Idea: measure σ_r for same (Q², x) at different y (different \sqrt{s}): $y=Q^2/xs$ Vary proton beam energy:

Rosenbluth plot:

at same (x, Q^2) Intercept: F_2 , Slope: F_L

Combination of lower energy data

Combination of lower energy data

Extraction of F_L

Measured F_L vs QCD \otimes HERAPDF1.0

Combined F_L in general consistent with QCD prediction (HERAPDF1.0) Low Q^2 : QCD prediction tend to underestimate the measurement

F_L and heavy quark treatment in PDFs

Combined F_L vs HERAPDF fits with different heavy flavour treatment

 F_L data have sensitivity to treatment of heavy quarks in the PDF fit

Progress in HERAPDF adding lower energy data adding charm data performing fits at NNLO adding high Q², high x data

Low Energy Data in the PDF Fit

Does not explain difference at low Q^2 in F_L

HERA PDF Fits at NNLO

First HERA PDF Fits at NNLO:

lhapdf grids available https://www.desy.de/h1zeus/combined_results/

NNLO has impact on F_L at low Q^2

Charm Structure Function in the PDF Fit

Charm Data in the PDF Fit: $m_c = 1.4 \text{ GeV}$ and $m_c = 1.65 \text{ GeV}$ compared

HERAPDF1.0 vs CC data

Part of HERA II data added (not included in HERAPDF1.0)

QCD \otimes HERAPDF1.0 describes data very well

Better precision at high x high Q^2 : better constrained valence

Combined e⁺p CC cross section vs HERAPDF

HERAPDF1.0: HERA I data

+ part of HERA II data : HERAPDF1.5

 $QCD \otimes HERAPDF1.0$ describes data very well

Better precision at high x high Q^2 : better constrained valence

High Q² data in the PDF Fit

HERAPDF1.0: HERA I data

+ part of HERA II data : HERAPDF1.5

Valence much better constrained at high *x*:

- Reduced uncertainty (parameterization uncertainty remarkably smaller)
- Softer sea distribution

High Q² data in the PDF Fit HERAPDF1.0: HERA I data + part of HERA II data : HERAPDF1.5 n/p $Q^2 = 2 \text{ GeV}^2$ $Q^2 = 2 \text{ GeV}^2$ n/p 1.5 1.5 0.5 0.5 0 0 0.2 0.2 0 -0.2 -0.2

Valence much better constrained at high x:

- Reduced uncertainty (parameterization uncertainty remarkably smaller)
- Increased precision of d/u ratio

HERAPDF1.5 vs HERAPDF1.0

On the linear scale!

Reduced uncertainty for LHC predictions!

Parton Densities from HERA to TEVATRON and the LHC

HERAPDF1.0 vs Jets at TEVATRON

Predictions based on HERAPDF1.0 in agreement with TEVATRON data

W/Z Production at TEVATRON

Predictions based on HERAPDF1.0 in agreement with TEVATRON data

Benchmarking PDFs: LHC cross sections

HERAPDF one of the major players in benchmarking activity HERAPDF1.0 provides realistic uncertainty for LHC cross sections *dominant uncertainty (parameterization) not accounted for in most global Fit groups*

Charm at HERA and W/Z at LHC

choice of m_c =1.65 raises W/Z cross-section predictions at the LHC by ~3%

Charm mass as a model parameter in PDF

Value of m_c in PDF Fit: how sensitive are HERA structure functions?

Vary m_c^{model} in the Fit to inclusive DIS Vary m_c^{model} in the PDF Fit to F_2 + F_2^{c}

Charm at HERA and W/Z at LHC

Value of m_c^{model} : how different for various HQ schemes in PDF Fits?

Scan the value of m_c^{model} as PDF fit parameter for different schemes

Uncertainty significantly reduced

Summary

- > Ultimate knowledge of proton structure comes from DIS at HERA
- Combinations of H1 and ZEUS provide increasing precision
- HERAPDF1.0 best PDF measurements at medium and low x
- HERA performs PDF fits using Low Energy and charm data
- HERA NNLO PDF fits available
- > High Q^2 data improves precision of the valence at high x
- HERAPDF has a visible impact on LHC physics

Proton collisions at the LHC

LHC: p-p collisions at $\sqrt{s} = 7$, 10, 14 TeV Goal @ LHC: Higgs and new physics Main challenge: Background suppression Main Background: QCD Hard processes > 80% gluon-gluon fusion Cross section ~ $|g(x)|^2$ Precision of the gluon density essential! Luminosity: e.g. $ud \rightarrow W^+ \rightarrow l^+ v_1$ Precision of light quark densities essential!

Key issue: understanding of the proton

46

Kinematics of collision experiments

$$E_1$$
 X_1 X_2 E_2

Center-of-mass energy

$$s = 4 E_1 E_2$$
$$\hat{s} = x_1 \cdot x_2 \cdot s \ge M^{-2}$$

Energy scale *M*=*Q*

$$x_{1,2} = \left(\frac{M}{\sqrt{s}} \right) \cdot \exp(\pm y)$$

y - rapidity

HERAPDF1.0 vs other PDF set

48

HQ Contribution to the Proton Structure

Can be determined experimentally: e.g. "charm structure function":

$$F_2^{cc} \propto \frac{Q^2 \cdot \alpha_s}{m_c^2} \int \frac{dx}{x} \cdot e_c^2 g(x_g, Q^2) \cdot C(...)$$

• use and combine different charm tagging methods

measure cross sections of charm and beauty production in DIS:

$$\sigma^{cc} \propto F_2^{cc}(x,Q^2) - \frac{y^2}{1+(1-y)}F_L^{cc}(x,Q^2)$$

- Direct test of different schemes of HQ treatment in PDF fits
- Can be included in the full QCD analysis of DIS cross sections additional constrain on the gluon density in the proton reduce parameterization uncertainty

Combination Procedure

Minimized value:

$$\chi^{2}(\vec{m},\vec{b}) = \sum_{i} \frac{\left(m^{i} - \sum_{j} \gamma^{i}_{j} m^{i} b_{j} - \mu^{i}\right)^{2}}{\left(\delta_{i,stat} \mu^{i}\right)^{2} + \left(\delta_{i,unc} m^{i}\right)^{2}} + \sum_{j} b_{j}^{2}$$

 μ^i measured value at point i

 δ_i statistical, uncorrelated systematic error

 b_i – shift of correlated systematic error sources

 m^i – true value (corresponds to min χ^2)

Measurements performed sometimes in slightly different range of (x, Q^2) swimming to the common (x, Q^2) grid via NLO QCD in massive scheme

Direct access to the gluon: F_L

Photon-Parton Scattering: $\frac{d^2\sigma}{dxdQ^2} \propto (\sigma_T + \frac{2(1-y)}{Y_+}\sigma_L), Y_+ = 1 + (1-y)^2$ Angular momentum conservation: spin ½ quark absorbs spin -1 photon

QCD

quark helicity $\pm \frac{1}{2}$, $F_L = O$

off-shell quarks may absorb longitudinal photons

Scattering of longitudinally polarized photons on quarks in helicity frame

HERAPDF1.0 vs Jets at TEVATRON

W/Z Production at TEVATRON

