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Why test QCD?

● Everyone knows QCD is the theory of the 
strong interaction

● Everyone knows that a particle and an 
antiparticle have the same mass

● Everyone knows that (after the big bang) there 
is the same amount of matter and antimatter in 
the universe
– or not?

● It is important not to take such things for 
granted and continue to test even established 
theories
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Why test QCD and measure α
S
?

● With the start of the LHC we hope to discover 
life beyond the Standard Model

● The pp cross section is many orders of 
magnitude larger than the interesting new 
physics cross sections

● QCD backgrounds are dominant in many 
processes

● α
S
 is the parameter (apart from masses) that 

fixes QCD!
● Calculations and precise tests are hard as α

S
 is large 
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Outline

● Measurements of α
S

– How can one measure α
S
?

– Low-energy (τ, ) + LEP measurements
– HERA measurements
– Averages

● Other precision QCD tests
– What one has to worry about
– Selected results

● Summary
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How to measure α
S
?

● Measure the leptonic branching fraction of the  
lepton!
– Obvious?
– 3 colours lead to leptonic BR of 20%
– QCD corrections lead to:

e: (17.85 ± 0.05)%, μ: (17.36 ± 0.05)%
– From this extract α

S

– Using properties of hadronic system leads to further 
improvement:

S m=0.330±0.014

R=
 hadrons
  l l

Refs in S. Bethke
EPJ C64:(2009) 689, 

arXiv:0908.1135
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Running of 
S

● Running coupling satisfies renormalisation 
group equation(RGE):

● 1-loop approximation (β
1
=0)
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LO, NLO, NNLO and all that
● What is leading order (LO)?

● Usually defined as lowest relevant order in α
S

● In this talk NLO means calculations to  α
S
2

● NNLO = next-to-next-to-leading order: N2LO
● NNNLO = next-to-next-to-next-to...: N3LO

QED LO QCD LO
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LO, NLO, NNLO and all that

● LO: calculations exist (by definition) for all 
processes

● NLO: exist for many processes
– but not always in the form of a MC

● NNLO: few results mostly for inclusive 
kinematics

● N3LO: very few, e.g. 4-loop running coupling
● Summing/including leading logs helps 

precision:
– NLL etc.
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Running of α
S

● Is a precision of 4% 
at m

τ 
competitive?

– α
S 
runs and error goes 

down!
– Error goes as

● Swim to M
Z
:

S M Z =0.1197±0.0016

S Q
2
/S Q

2
~S Q

2


m
τ

N3LOM
Z
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How to measure α
S
?

● (1S) → ggg is proportional to α
S
3

– but significant theoretical uncertainties 
● Look at ratio: 

BR((1S) → γgg) / BR( (1 S) → ggg)
– Slightly more obvious?
– Many systematics cancel:

S M Z=0.119−0.005
0.006 NLO

N. Brambilla et al.
Phys. Rev.D75 (2007)  074014

arXiv:hep-ph/0702079
CLEO  Collab.

Phys. Rev. D74 (2006) 012003
arXivhep-ex/:0512061
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How to measure α
S
?

● Take m((2S)) – m((1S))
● Adjust u,d,s masses to give correct light mesons 

masses
● Let lattice gauge theory do the work for you!

S M Z =0.1183±0.0008 Lattice

C.T.H. Davies et al., HPQCD Collab., Phys.Rev. D78
(2008) 114507; arXiv:0807.1687 [hep-lat]
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How to measure α
S
?

● Take lots of data with an e+e- collider, i.e. LEP 
(c.m. energy 90 GeV)

● Measure event shapes in hadronic events

● Include α
S
 in the electroweak fits

● Go back and re-analyse JADE (PETRA) data 
including latest theory  

S M Z =0.1172±0.0051

S M Z =0.1193−0.0027
0.0028

±0.0005

S M Z =0.1224±0.0039

RZ=
Z hadrons

 Z l l−

NNLO

N3LO

NNLO

Refs in S. Bethke
EPJ C64:(2009) 689, 

arXiv:0908.1135



Precision QCD tests - Ian C. Brock 1602/09/10

How to measure α
S
?

● Take lots of data with an ep collider, i.e. HERA
● Use PDF data and its development as a 

function of Q2

– See also earlier talk (K. Lipka)

● Look at jet cross sections and ratios of 
cross sections

S M Z =0.1142±0.0023 N3LO

J. Blümlein, H. Böttcher and A. Gu antiff
 Nucl. Phys. B774 (2007) 182; hep-ph/0607200
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Jets and Kinematics at HERA

● Measurements in both DIS and 
photoproduction (PhP) are used to determine α

S

● Cross-section ratios are a good way to reduce 
systematics
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From jets to α
S

● QCD factorisation theorem allows perturbative 
from non-perturbative contributions to cross-
sections to be separated:

– f
a
: parton density

–      : subprocess 
cross-section

d  jet= ∑
a=q ,q , g
∫ dx f a x ,F ⋅

                            d a x ,S R ,R ,F 

d a
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Jets in DIS

● Sources of (di)jet production:

Boson-gluon fusion QCD Compton
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Jets at high Q2

● DIS events with 1,2 and 3 jets and their ratios
● Compare cross-sections as a function of Q2, 

P
T
jet and ξ with NLO predictions

● Normalise to NC cross-section

H1 Collab, Eur Phys J. C 65 (2010) 363

395 pb-1, Event:
150 < Q2 < 15000 GeV2

0.2 < y < 0.7 
Jet:

P
T
 > 7(5) GeV

-0.8 < η
lab

 < 2.0
k

T
 algorithm in BF 

=xBj1M jj /Q
2
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Jets at high Q2

● Plenty of statistics even in 3-jet channel
● NLO uncertainties at 10% level
● Good agreement with predictions over whole Q2 

range

H1 Collab, Eur Phys J. C 65 (2010) 363
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Jets at high Q2

● Each cross-section and cross-section ratio can 
be used to derive α

S
 as a function of the scale

● Running of α
S
 (within a single experiment) 

clearly seen

H1 Collab, Eur Phys J. C 65 (2010) 363
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Jets at high Q2

● Inclusive jet cross-
sections:
Q2, E

T
 (BF)

● Compare with NLO 
predictions

● Good agreement over 
whole measured range

300 pb-1, Event:
Q2 > 125 GeV2

|cosγ
h
 | < 0.65

Jet:
E

T
 > 8 GeV

-2 < η
BF

 < 1.5
k

T
 algorithm in BF ZEUS Collab, ZEUS-prel-10-002

S M Z =0.1208±0.0007stat.−0.0031
0.0036

exp.±0.0022 th.

NLO
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Dijets in NC DIS

● NLO predictions using 
NLOJET++

● Gluon fraction 
substantial up to 
Q2 ~ 500 GeV2

● Theory uncertainty 
~ 5-10%

➔ PDF sensitivity
374 pb-1, Event:

125 < Q2 < 20000 GeV2

0.2 < y < 0.6
Jet:

E
T
 > 8 GeV (BF)

-1 < η
lab

 < 2.5
k

T
 algorithm in BF 

ZEUS Collab, ZEUS-pub-10-005
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Dijets in NC DIS

● NLO predictions using 
NLOJET++

● Gluon fraction 
substantial up to 
Q2 ~ 500 GeV2

● Theory uncertainty 
~ 5-10%

➔ PDF sensitivity
374 pb-1, Event:

125 < Q2 < 20000 GeV2

0.2 < y < 0.6
Jet:

E
T
 > 8 GeV (BF)

-1 < η
lab

 < 2.5
k

T
 algorithm in BF 

ZEUS Collab, ZEUS-pub-10-005
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Jets at low Q2

● Look at distributions 
as a function of
Q2, P

T
jet and ξ

● Good description of 
data by NLO 
predictions

H1 Collab, Eur Phys J. C67 (2010) 1

43.5 pb-1, Event:
5 < Q2 < 100 GeV2

0.2 < y < 0.7
Jet:

P
T
 > 5 GeV

-1 < η
lab

 < 2.5
k

T
 algorithm in BF 
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Jets at low Q2

● Use measured jet 
cross-sections to 
extract α

S

● Simultaneous fit of 
inclusive, dijet and 
trijet measurements 

S M Z =0.1160±0.0014exp.−0.0079
0.0094

 th. NLO
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Jets at low Q2

● Shame that precise 
exp. measurement 
has large theory error

● Using 3-jet/2-jet ratio 
reduces theory error

S M Z =0.1215±0.0032exp.−0.0059
0.0067

 th.

NLO
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Jets in Photoproduction

Direct photoproduction Resolved photoproduction
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Jets in Photoproduction

● High E
T
 inclusive jet 

cross sections used 
to extract α

S

● Proton and photon 
PDFs play a role

● Non-perturbative 
effects (underlying 
event) are also 
relevant

ZEUS Collab, ZEUS-prel-10-003=−ln tan /2
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Jets in Photoproduction

● Include non-
perturbative effects 
using PYTHIA-MI
– much better 

agreement at large η
● Size of effect also 

much reduced for 
higher E

T
jet

S M Z =0.1160−0.0023
0.0024

exp−0.0033
0.0044

 th NLO
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Dijets in Photoproduction

x
γ
: Fraction of photon momentum
carried by interacting parton 
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HERA α
S 
measurements

● DIS and photoproduction 
measurements in good 
agreement with each 
other
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HERA α
S 
measurements summary

● Compare several 
precise 
determinations of α

S

● Trade off between 
statistics and 
theoretical 
uncertainties clearly 
visible
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α
S 
measurements summary

● Most effort on NLO MC 
generators expended for 
LHC; similar effort for 
HERA would be very 
welcome! S M Z =0.1184±0.0007
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Running at the Tevatron
● Careful attention paid 

to avoid circular 
reasoning!
– g(x) and α

S
 are often 

correlated
● DØ errors are dominated 

by correlated experimental 
uncertainties

● Complementarity of 
HERA and Tevatron 
kinematic ranges

DØ Collab.
Phys.Rev.D80 (2009) 111107

arXiv:0911.2710
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α
S 
measurements summary

● Recent determination using soft collinear 
effective theory and only thrust:

● Not included in current world average (data is 
already in LEP event shape)

R. Abbate et al., arXiv:1006.3080

N3LL'
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Does α
S
 run as expected?

● For selected 
measurements look at α

S
 

as a function of 1 / log Q
● α

S
(Q) → 0 as Q  → ∞

● Demonstrate the validity 
of the concept of 
asymptotic freedom

● “Threshold matching” 
also necessary
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Precision QCD tests

● What do we have to worry about?
– α

S
 is not small

– Leading order calculations are often/usually not sufficient
– Divergences!

– Improve if summed over all orders, but...
– Absorb most of remaining infinities in renormalisation

● Buzzwords: soft and collinear divergences
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Precision QCD tests
● Inclusive quantities without initial-state hadrons 

best suited for precision tests (can be 
calculated to higher order):
– τ decay rates
– Z width

● Infrared safe quantities:
– Event shape distributions
– Jet cross-sections

● Unsafe quantities:
– Hardest QCD particle
– Require absence of radiation (rapidity gaps etc.)
– Particle multiplicity

Even here convergence not
as fast as expected!
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Inclusive jet production

● Compare data with 
NLO predictions for 
different process 
and kinematics

● Remarkably good 
and consistent 
agreement seen
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Is QCD the right theory?

● LEP result from 2004
● e+e- collisions
● Look at 

– event shapes
– qqgg final state

● Nice demonstration of 
consistency of data 
with SU(3)

-

C
F
, C

A
: colour factors
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QCD and LHC

● LHC already has first results on QCD tests
● Huge cross-sections means 100 nb-1 are 

enough to make comparisons with theory
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Summary
● α

S
 measured with an accuracy of 0.6%

● Many different methods, colliders, experiments 
give in general very consistent results
– DIS (and thrust) determinations tend to be a bit 

lower
● Running of α

S
 seen within single experiments

● Trend consistent with expectations from 
asymptotic freedom

● Further precision QCD tests show good 
agreement between data and predictions

● LHC has entered the game!
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Backup
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Theory uncertainty

● Assess theory uncertainty by requiring physical 
observable to be independent of scale for a 
given order of calculation

Equation motivates commonly adopted 
approach of varying renormalisation and 
factorisation scale by ½ and 2

d
d ln2 pp X=O S

l1
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Running of 
S

● Running coupling satisfies renormalisation 
group equation(RGE):

● 1-loop approximation (β
1
=0)

2 d S

d 2 = S =−0S
21S

32S
4⋯

b0 = 11CA−4n f T R/12
= 33−2n f /12

b1 = 153−19 n f /242

C F ≡ N c
2−1/2Nc=4 /3

C A ≡ N c=3
T R = 1/2
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α
S
 from τ measurements
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Jets at high Q2

● Compare average 
P

T
jet distribution in 

different Q2 ranges
● Again good 

description by NLO 
prediction

H1 Collab, Eur Phys J. C 65 (2010) 363
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Jets in Photoproduction
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Jet algorithms
k

T
anti-k

T SIScone

d ij=min [ET
i
2p ,ET

j
2p]R2

/R2

p=−1 p=1
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Jet algorithms
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Cross-section ratios

● Measured cross-sections with different 
algorithms similar

● pQCD calculations account adequately for 
differences in algorithms
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