

Quasy-Stable Gluino Stopping in the CMS Detector ONE OF THE FIRST LHC SEARCHES EXTENDING TEVATRON LIMITS!

Motivation

Inspired by physics scenarios predicting long living heavy particles

Summary

Searched for particles stopped in CMS in 203-232nb⁻¹ of data at √s=7TeV

- - some SUSY flavors predict long living gluino, stop, stau...
 - Hidden valley models, certain GUTs
 - Lifetimes 10²..10³s of particular interest by cosmology
 - may explain ⁷Li and ⁶Li abundance discrepancy between measurement and conventional nucleosinthesis
- Strongly interacting particles form stable states with quarks/gluons R-Hadrons
- Being charged, particles lose energy when traversing the detector
 - fraction of them eventually stop in the detector.
 - They will eventually decay: μs, minutes, hours, days, months after their production
- We will run a calorimeter trigger in periods when there are no collisions in the LHC, and look for energy released in these decays
- An observation of such a decay with no beam in the machine will be an unambiguous sign of physics beyond the SM
- Ultimate Idea
- Run trigger during normal run but beyond filled bunch crossings
- Several different LHC bunch structures during early 2010 collisions

- Therefore For 120 ns < τ < 6 μ s, exclude gluinos of mass up to 200 GeV/c²
- For lifetimes of 2.6 μ s, exclude gluinos of mass up to 225 GeV/c²
- For lifetimes of 200 ns, exclude gluinos of mass up to 229 GeV/c^2
- Sector Extend Tevatron limit for lifetimes below 30 μ s
- More details in CMS public analysis summary CMS-PAS-EXO-10-003
 - http://cdsweb.cern.ch/record/1280689

Stopping Power

Significant amount of all produced R-Hadrons stop in the calorimeter

- Stopping power essentially depends from details of interaction of the R-hadrons with detector material
 - It is the biggest uncertainty for the cross section measurement
 - Consider "cloud" model and two others for comparison

Signal Behaviors

Energy cluster in the calorimeter

- Time profile of the signal is the same as for signals from interactions, but with arbitrary offset
- Deposited energy mostly depends from the difference between gluino and neutralino masses

No other activity in the detector

Selection efficiency: 17% of all R-hadrons stopped in the detector

Backgrounds

- Cosmics interacting in the calorimeter
 - suppressed by veto events with track in muon system
- Instrumental noise
 - suppressed by sophisticated analysis of spatial and time profiles of the energy deposition
- Both cosmics contribution and instrumental noises were measured in
 2008/2009 cosmics runs and confirmed in 2009/2010 collision runs
- Measured background rate: 6.9×10⁻⁵ Hz
- Beam related: early triggers, beam halo, beam-gas, parasitic bunches suppress events within ±1 BX around collision/parasitic bunches

Observe 19 events in 203 nb⁻¹ of data

Statistics Processing Counting Experiment Timing profile fit ($\tau < 100 \ \mu s$)

Systematic uncertainties Background – 30% (counting) experiment only) Luminosity – 11%
Jet energy scale and other efficiencies - 7%

Model independent result Production × stopping efficiency

