B decays and CKM

Steven Robertson Institute of Particle Physics

Presented at **Physics in Collision 2010** (on behalf of BABAR and Belle) 1-4 Sepember 2010 Karlsruhe, Germany

Outline

CKM overview

Determination of $|V_{cb}|$:

• $B \rightarrow D l \nu$ and $B \rightarrow D^* l \nu$ decays

Determination of $|V_{ub}|$:

- inclusive $B \to X_u \, \mathit{l} \, \nu$ branching fraction measurements
- exclusive $B \rightarrow (\pi, \rho) l \nu$ decays
- $B^+ \rightarrow \tau^+ \nu$

B decays and CKM

CKM matrix parametrizes the mixing of quark flavours via weak interaction

 Unitary by construction, implying non-trivial relationships between elements

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- Angles related to CP violation measurements
- Lengths of sides related to magnitudes of CKM elements (i.e. CP conserving measurements)

B decays and CKM

CP conserving B physics measurements probe the range of 3rd generation CKM elements through both tree and one-loop processes

"Redundant" determinations using theoretically and experimentally independent methods

 $V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{cd} & V_{cs} & V_{ct} \end{pmatrix}$

 Validate methodology and can be interpreted in context of new physics models

Determining CKM elements

Semileptonic B decays give direct access to CKM matrix elements **V**_{ub} and **V**_{cb}:

$$M(M_{Q\overline{q}} \to X_{q'\overline{q}} \, l\overline{v}) = -i \frac{G_F}{\sqrt{2}} V_{q'Q} L^{\mu} H_{\mu}$$
$$L^{\mu} = \overline{u}_l \gamma^{\mu} (1 - \gamma_5) v_{\nu} \qquad H_{\mu} = \left\langle X \big| \overline{q'} \gamma_{\mu} (1 - \gamma_5) Q \big| M \right\rangle$$

• Challenge is to understand hadronic current (lattice QCD, HQET etc)

 Independent theoretical approaches for inclusive (OPE) and exclusive B decay processes (form factors)

|V_{cb}| from exclusive decays

Exclusive $|V_{cb}|$ determinations are based on $B \rightarrow Dlv$ and $B \rightarrow D^* lv$ differential decay rate measurements

• Limitation is knowledge of $B \rightarrow D^{(*)}$ form factors:

$$\frac{d\Gamma}{dw}(\overline{B} \to D\ell\overline{\nu}_{\ell}) = \frac{G_F^2}{48\pi^3\hbar} M_D^3 (M_B + M_D)^2 (w^2 - 1)^{3/2} (V_{cb} \mid^2 \mathcal{G}^2(w))$$

$$\frac{d\Gamma}{dw}(\overline{B} \to D^* \ell \overline{\nu}_\ell) = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 m_{D^*}^3 (w^2 - 1)^{1/2} P(w) \mathcal{F}(w))^2$$

 $\omega = v_B \cdot v_{D^{(*)}}$

Form factors become unity at zero-recoil in heavy quark limit; corrections computed on lattice

 $|V_{cb}|$ extracted by extrapolating the differential decay rate to w = 1

- Requires assumption about shape of form factor:
 - BABAR/Belle use parametrization characterized by form factor slope parameter ρ^2 (and R_1, R_2 in D* decays)

Caprini et al., Nucl. Phys B530, 153 (1998)

•

$V_{cb} \text{ from } B \longrightarrow D lv \text{ prl 104, 011802 (2010)}$

•

BABAR measurement of $B \rightarrow Dlv$ based on 460x10⁶ BB pairs using exclusive reconstruction of the accompanying hadronic B decay

- Background from $B \rightarrow D^* l v$ due to missing slow π^0
- Extract differential branching fraction from fit to missing mass spectrum in 10 bins of w

Most precise determination of $B \rightarrow Dl_v$ branching fraction to date

$$B(B \rightarrow Dl^+ v) = (2.17 \pm 0.06 \pm 0.09)\%$$

 $\begin{array}{l} G(1)|V_{cb}| = (43.0 \pm 1.9 \pm 1.4) \times 10^{-3} \\ \rho^2 = 1.20 \pm 0.09 \pm 0.04 \end{array}$

Methodology

Advantage:

 Improved knowledge of signal kinematics, missing energy and suppression of combinatorial backgrounds

Disadvantage:

Low tag reconstruction efficiency

$V_{cb} \text{ from } B \longrightarrow D lv \text{ prl 104, 011802 (2010)}$

•

BABAR measurement of $B \rightarrow Dlv$ based on 460x10⁶ BB pairs using exclusive reconstruction of the accompanying hadronic B decay

- Background from $B \rightarrow D^* l v$ due to missing slow π^0
- Extract differential branching fraction from fit to missing mass spectrum in 10 bins of w

Most precise determination of $B \rightarrow Dlv$ branching fraction to date

$$B(B \rightarrow Dl^+ v) = (2.17 \pm 0.06 \pm 0.09)\%$$

 $\begin{array}{l} G(1)|V_{cb}| = (43.0 \pm 1.9 \pm 1.4) \times 10^{-3} \\ \rho^2 = 1.20 \pm 0.09 \pm 0.04 \end{array}$

$|V_{cb}|$ from $B^0 \rightarrow D^* l^+ v$

New untagged $B^0 \rightarrow D^{*-}l^+\nu$ measurement based on 711 fb⁻¹ of Belle data

- Consider only $D^{*^+} \rightarrow D^0 \pi^+$; $D^0 \rightarrow K^- \pi^+$ (and charge conjugate) modes, with no tag B reconstruction
 - about 120,000 B⁰→D*⁻l⁺v decays selected in total
- Extract branching fraction from fits to w and angles ($\cos \theta_l$, $\cos \theta_v$, χ) characterizing the D* decay

$$B(B^{0} \rightarrow D^{*-} l^{+} v) = (4.56 \pm 0.03 \pm 0.26)\%$$

$$F(1)|V_{cb}| = 34.5 \pm 0.2 \pm 1.0$$

$$\rho^{2} = 1.214 \pm 0.034 \pm 0.009$$

$$R_{1}(1) = 1.401 \pm 0.034 \pm 0.018$$

$$R_{2}(1) = 0.864 \pm 0.024 \pm 0.008$$

http://belle.kek.jp/results/summer10/dstlnu/

Measurement of |Vub|

$$\Gamma(\bar{B} \to X_u \ell \bar{\nu}) = \frac{G_F^2 |V_{ub}|^2 m_b^5}{192\pi^3} \left[1 + \mathcal{O}(\alpha_s) + \mathcal{O}(1/m_b^2) + \text{h.c.} \right]$$

 $\begin{array}{ll} \text{Challenge for } B \rightarrow X_u l \nu \text{ determination due to background from} \\ \text{CKM-favored } B \rightarrow X_c l \nu \text{ decays:} & \frac{\Gamma(b \rightarrow u \ell \nu)}{\Gamma(b \rightarrow c \ell \nu)} \approx \frac{|V_{ub}|}{|V_{cb}|} \approx \frac{1}{50} \end{array}$

 convergence of Heavy Quark Expansion spoiled in partial rate calculations, but kinematic selection required to suppress backgrounds:

- p_{ℓ}^{*} lepton momentum M_{X} hadronic invariant mass q^{2} squared momentum transfer $P+=E_{X}-|p_{X}|$ light-cone momentum
- introduces dependencies on non-perturbative shape functions to account for efficiency loss in inaccessible regions of phase space)
 - ⇒ Tradeoff between extending measurements into higher backgrounds regions and increased theory uncertainties on |V_{ub}| extraction

Inclusive |V_{ub}|

- p_l* > 1.0 GeV/c
- Suppression of B→X_clv background via 20-input Boosted Decision Tree

PRL 104:021801 (2010)

Yield extracted from 2D fit to M_x , q^2 with background floated:

Inclusive |V_{ub}|

$|V_{ub}|$ from $B \rightarrow X_u l v$

Most precise BABAR value obtained for full M_x , q^2 determination with $p_{\ell}^* > 1.0$ GeV/c

- Equivalent phase space coverage to Belle analysis
- Significantly reduced theory uncertainties compared with other methods

Partial branching fraction measurements translated into values of $|V_{ub}|$ using theoretical models (BLNP, GGOU, DGE ADFR M. Sigamani

ICHEP 732 (2010)

$|V_{ub}|$ from $B \rightarrow (\pi, \rho) l v$

 $|V_{lb}|$ can be extracted from measurements of exclusive B $\rightarrow \pi l v$ and $B \rightarrow \rho l v$ differential branching fractions

$$\frac{\mathrm{d}\Gamma(B \to \pi \ell \nu)}{\mathrm{d}q^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_\pi|^3 |f_+(q^2)|^2$$

theory input needed for form factor • $f_{+}(q^2)$ determination

New preliminary Belle measurement based on 605 fb⁻¹ of data:

 $0 < q^2 < 16 \text{ GeV}^2$

 $B \rightarrow X_{\mu} I \nu$

→ X_a I_V R

(a)

B decays and CKM

5.26

5.28

M_{bc} (GeV)

BABAR measurement of $B \rightarrow (\pi^{\pm}, \pi^{0}, \rho^{\pm}, \rho^{0})$ *lv* based on 337x10⁶ BB pairs

- Neutrino inferred from total event missing momentum vector
- Multivariate (NN) selection to suppress large $B \rightarrow X_c h$ background as well as continuum and other $B \rightarrow X_u h$ backgrounds
- Branching fractions extracted from simultaneous fit with isospin constraint in m_{ES} , ΔE and q^2 :

 $B(B^{0} \rightarrow \pi^{-} l^{+} \nu) = (1.41 \pm 0.05 \pm 0.07) \times 10^{4}$ B(B⁰ $\rightarrow \rho^{-} l^{+} \nu) = (1.75 \pm 0.15 \pm 0.27) \times 10^{4}$

BABAR preliminary

$|V_{ub}|$ from $B \rightarrow (\pi, \rho)l v$

•

Extract shape of the $B \rightarrow \pi l v$ form factor $f_+(q^2)$ from differential branching fraction spectrum:

$|V_{ub}|$ from $B \rightarrow (\pi, \rho)l v$

 $|V_{ub}|$ from alternatively be extracted from a simultaneous fit to data and lattice (FNAL/MILC):

$$V_{\rm ub}| = (3.43 \pm 0.33) \times 10^{-3}$$

to to remove known QCD effects

Vub summary

- Significant improvements in techniques for $|\mathrm{V}_{ub}|$ extraction in recent years, but long-standing discrepancy between inclusive and exclusive determinations persists

September 2, 2010

 $\frac{m_{\rm ES}}{\Delta E^*} \equiv \frac{\sqrt{E_{\rm beam}^{*2} - p_B^{*2}}}{E_B^* - E_{\rm beam}^*}$

Theoretically clean determination of |V_{ub}| from helicity suppressed leptonic modes

$$\mathcal{B}r(B^+ \to \ell^+ \nu_\ell) = \frac{G_\ell^2}{8\pi} |V_{ub}|^2 f_B^2 m_B m_\ell^2 \tau_B \left(1 - \frac{m_\ell^2}{m_B^2}\right)$$

$$B^{+} \bigvee_{u} f_{B}V_{ub} \bigvee_{u} V_{u}$$

Experimental challenge due to small branching fractions and limited kinematic information

- $B \rightarrow \tau v$ most accessible mode at B factories
- Possible to use both hadronic and semileptonic reconstruction of tag B:

 $\frac{2E_{\text{beam}}^{\text{cms}}E_{D^{(*)}\ell}^{\text{cms}} - m_B^2 - M_{D^{(*)}\ell}^2}{2P_B^{\text{cms}} \cdot P_{D^{(*)}\ell}^{\text{cms}}}$

- Essentially no additional loss of kinematic information from use of $B{\rightarrow}D^{(*)}{\it l}\nu$ tags

September 2, 2010

 $\cos\theta_{B,D^{(*)}\ell} = -$

cosθ_{R-D(*)}

Topological selection of τ decay candidates in e,μ,π and ρ modes from particles not associated with the tag B candidate

 Signal B⁺→τ⁺ν events expected to have little or no other activity in the detector, while backgrounds have higher multiplicity

 Validate E_{extra} shape using samples in which the second B is exclusively reconstructed

arXiv:1008.0104 [hep-ex]

Decay Mode	$\epsilon \times 10^{-4}$	Branching Fraction $(\times 10^{-4})$
$\tau^+ \to e^+ \nu \bar{\nu}$	2.73	$0.39\substack{+0.89\\-0.79}$
$\tau^+ \to \mu^+ \nu \bar{\nu}$	2.92	$1.23^{+0.89}_{-0.80}$
$\tau^+ \to \pi^+ \nu$	1.55	$4.0^{+1.5}_{-1.3}$
$\tau^+ \to \rho^+ \nu$	0.85	$4.3^{+2.2}_{-1.9}$
combined	8.05	$1.80\substack{+0.57\\-0.54}$

 Both results consistent with previously published SL tag analysis and Belle hadronic tag analyses*

arXiv:1006.4201v1 [hep-ex]

Decay Mode	Signal Yield	ε , 10^{-4}	$B, 10^{-4}$
$\tau^- \to e^- \overline{\nu}_e \nu_\tau$	73^{+23}_{-22}	5.9	$1.90^{+0.59}_{-0.57}{}^{+0.33}_{-0.35}$
$\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau$	12^{+18}_{-17}	3.7	$0.50^{+0.76}_{-0.72}{}^{+0.18}_{-0.21}$
$\tau^- ightarrow \pi^- \nu_{ au}$	55^{+21}_{-20}	4.7	$1.80^{+0.69}_{-0.66}{}^{+0.36}_{-0.37}$
Combined	143^{+36}_{-35}	14.3	$1.54^{+0.38}_{-0.37}{}^{+0.29}_{-0.31}$

K. Ikado et al., Phys. Rev. Lett. 97, 251802 (2006)
 B. Aubert et al., Phys. Rev. D 81, 051101(R) (2010)

September 2, 2010

B decays and CKM

 Comparison with B mixing measurements permits cancelation of parametric uncertainty from f_B

Constraint from $B^+ \rightarrow \tau^+ \nu_{\tau}$ and Δm_d

1.0

1.5

0.5

 $\overline{\rho}$

 Δm_d

$$\Delta m_d = \frac{G_F^2}{6\pi^2} \eta_B m_{B_d} f_{B_d}^2 B_d m_W^2 S(x_t) |V_{td} V_{tb}^*|^2$$
$$\eta_B = 0.551 \pm 0.007 \quad S(x_t) \approx 0.784 x_t^{0.76} \quad x_t = \overline{m}_t^2 / m_W^2$$

 "Tension" with respect to indirect |V_{ub}| determination from sin2β at the level of ~2.5σ

CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005) [hep-ph/0406184],

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-1.0

Ц

excluded area has CL > 0.9

 $B^+ \rightarrow \tau^+ \nu$

-0.5

0.0

2.0

Conclusions

Measurements of CKM element magnitudes provide an important counterpoint to CP violation studies at B factories and hadron colliders

- Substantial improvements in experimental techniques and theoretical input in recent years have resulted in significantly decreased uncertainties on |V_{db}| and |V_{ub}| determinations
- Discrepancies persist between inclusive and exclusive determinations, as well as between |V_{ub}| measurements and the unitarity triangle fit driven by sin2β
- Recent (and internally consistent) B⁺→τ⁺ν measurements also favouring large |V_{ub}|

