

Introduction to the poster:

The ALICE Silicon Strip Detector performance during the first LHC data taking

Giacomo Contin for the ALICE Collaboration Dipartimento di Fisica dell'Universita' di Trieste INFN – Sezione di Trieste

Physics in Collision 2010 – Karlsruhe – 1-4 September 2010

ALICE @ LHC: A Large Ion Collider Experiment

A multi-purpose experiment to study Heavy-Ion collisions at ultra-relativistic energies.

• *PbPb run:* to study the properties of the Quark Gluon Plasma, a high energy density and colordeconfined state of strongly interacting matter (*expected: fall 2010*) • pp run @ $\sqrt{S_{NN}}$ = 0.9 TeV: ~10 million collisions to collect benchmark data (December 2009-May 2010)

• pp run @ $\sqrt{s_{NN}}$ = 7 TeV: ~ 600 million minimum bias collisions up to now, used for calibration and alignment and to a explore new energy range (March-August 2010)

The ALICE detector

- 17 sub-systems
- tracking detectors (ITS, TPC)
- PID for specific particles
- muon arm

Tasks of the Silicon Strip Detector (SSD)

The Inner Tracking System (ITS)

Composed of 6 cylindrical layers of silicon pixel, drift and **strip** detectors, placed close to the interaction point

- → Main <u>tasks</u> of the ITS:
 - localize the primary and secondary vertices
 - track the charged particles even at low momenta
 - measure the energy loss for PID

The Silicon Strip Detector (SSD) forms the outermost layers of the ITS

Crucial to connect the tracks from the TPC to the ITS thanks to its:

- position
- point resolution
- <u>acceptance</u>

The SSD layout and features

the SSD module

The SSD during the 2009/2010 pp data taking

Average noise vs time

The SSD during the 2009/2010 pp data taking

6

Results and Conclusions

In the poster you will find all the details about...

• The SSD status during the pp data-taking:

- > active fraction
- > overall efficiency
- time stability of calibration parameters
- > typical data size and occupancy
- > noise improvements at low humidity
- > point reconstruction efficiency
- > gain calibration stability
- > typical Common Mode distributions

• The SSD performance during the pp data-taking:

- > presence in Physics acquisition
- > space point resolution from alignment
- > SSD contribution to the dE/dx measurements

Thank you for the attention and...

... see you at the poster session!