

Cornell University





## Quantum Correlations in Charm Decays

Werner Sun, Cornell University (CLEO-c) 1-4 September 2010, Physics in Collision, Karlsruhe, Germany

> Introduction Formalism Experimental results Summary and outlook



### **Threshold Charm Production**

- Running near  $c\overline{c}$  threshold produces quantum correlated  $D^0$  and  $\overline{D}^0$ :
  - $e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D}^0$  [C = -1] OR  $e^+e^- \rightarrow \gamma^* \rightarrow D^0\overline{D}^0\gamma$  [C = +1]
  - At  $\psi(3770)$ , same-CP final states forbidden; opposite-CP states enhanced
    - Tagging the CP of one D identifies the CP of other D.
  - Unique access to amplitude ratios, phases, & charm mixing.
    - Exploit interference effects in time-integrated rates.

Correlated  
amplitudes 
$$\Gamma_{ij}^{2} = \left| \left\langle i \mid D^{0} \right\rangle \left\langle j \mid \overline{D^{0}} \right\rangle \mp \left\langle j \mid D^{0} \right\rangle \left\langle i \mid \overline{D^{0}} \right\rangle \right|^{2}$$

- D<sup>0</sup> strong phases are necessary inputs for
  - Charm mixing studies at *B*-factories, CDF, FOCUS
  - CKM studies at B-factories and LHCb

charm mixing.  
I rates.  
[Cabibbo-  
suppressed] 
$$\langle i \mid \overline{D}^{0} \rangle$$
  
 $\langle i \mid D^{0} \rangle$   
[Cabibbo-  
[Cabibbo-  
[Cabibbo-  
favored]

• This talk: CLEO-c  $\psi(3770)$  measurements of strong phases in  $D^0 \rightarrow K^+\pi^- K^+\pi^-\pi^0 K^+\pi^-\pi^+\pi^- K_{S,L}{}^0h^+h^-$  (h = K or  $\pi$ )

Werner Sun, Cornell University

### Charm Mixing (no CPV)

- Flavor eigenstates  $(D^0, \overline{D^0}) \neq$  mass eigenstates  $(D_1, D_2)$ .
- Mixing characterized by  $x = \frac{\Delta M}{\Gamma}$  and  $y = \frac{\Delta \Gamma}{2\Gamma}$
- $y = (0.73 \pm 0.14)\%$ :
  - Direct lifetime measurements:
    - Compare  $K^+K^-$  and  $\pi^+\pi^-$  with  $K^-\pi^+$ .
  - Time-dependent Dalitz analysis of K<sup>0</sup><sub>s</sub>π<sup>+</sup>π<sup>-</sup> and K<sup>0</sup><sub>s</sub>K<sup>+</sup>K<sup>-</sup>
    - Intermediate CP-eigenstates give y.
    - Interference between CP+ and CP- gives x.
- $y' = y \cos \delta_{K\pi} x \sin \delta_{K\pi} = (0.48 \pm 0.23)\%$ 
  - Time-dependent wrong-sign rate  $D^0 \rightarrow K^+\pi^-$ :
    - Interfering DCS and mixing amplitudes modulate exponential decay time.
    - Ambiguity from strong phase:

 $D_{1,2} = \frac{D^0 \pm D^0}{\sqrt{2}}$ 

~0.06

 $r_{K\pi}e$ 

 $\delta_{K\pi}$  connects

measurements

of y and y'

 $\frac{\left\langle K^{-}\pi^{+} \middle| \overline{D^{0}} \right\rangle}{\left\langle K^{-}\pi^{+} \middle| D^{0} \right\rangle} = -$ 

### **CKM Phenomenology for** $\gamma/\phi_3$

- Interference between  $B^- \rightarrow D^0 K^-$  and  $B^- \rightarrow \overline{D}^0 K^-$  is sensitive to  $\gamma/\phi_3$ .
  - Need D final states that are common to  $D^0$  and  $\overline{D^0}$ .



### Removing Model Dependence in K<sup>0</sup><sub>S,L</sub> h<sup>+</sup>h<sup>-</sup>

Model-dependent  $\delta_D(x,y)$  from amplitude analysis incurs model uncertainty of  $O(5^{\circ})$  on  $\gamma/\phi_3$ , independent of *B* decay statistics.



- Each bin is a separate decay mode with  $c_i = R_i \cos \delta_i$  and  $s_i = R_i \sin \delta_i$ .
  - Bins with  $\delta \sim 0$  or  $\pi$  act like *CP* eigenstates  $\Rightarrow$  sensitive to cosines of phases.
  - Bins with  $\delta \sim \pm \pi/2$  are sensitive to sines of phases.

Werner Sun, Cornell University

#### Quantum-Correlated Decay Rates: $\psi(3770)$

Anti-symmetric wavefunction 
$$\Gamma_{ij}^{2} = \left| \left\langle i \mid D^{0} \right\rangle \left\langle j \mid \overline{D^{0}} \right\rangle - \left\langle j \mid D^{0} \right\rangle \left\langle i \mid \overline{D^{0}} \right\rangle \right|^{2}$$

| Final States |   | S | Time-Integrated Rate ( $\times A_i^2 A_j^2$ )                                                                  | $\frac{\langle l   D \rangle}{\langle l   \rho \rangle} = -re^{-i\delta}$ |
|--------------|---|---|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|              | i | j | 1 + $r_i^2 r_j^2$ - 2 $r_i \cos \delta_i r_j \cos \delta_j$ - 2 $r_i \sin \delta_i r_j \sin \delta_j \kappa_j$ | $\langle i   D^{0} \rangle$                                               |
| Exclusive    | i | j | $r_i^2 + r_j^2 - 2 r_i \cos \delta_i r_j \cos \delta_j + 2 r_i \sin \delta_i r_j \sin \delta_j $               | No y dependence                                                           |
| Inclusive    | i | X | $1 + r_i^2 + 2 y r_i \cos \delta_i$                                                                            |                                                                           |
|              |   |   | Same                                                                                                           | as incoherent decay                                                       |

• For some final states, we know r and  $\delta$ :

Semileptonic: r=0 CP eigenstates: r=1 and  $\delta=0$  or  $\pi$ 

Use CP-tagged exclusive rates to extract:

• COSO\_K: Reconstruct 
$$K^+K^-$$
 with  $K^-\pi^+ \Rightarrow K^-\pi^+$  must come from  $D_1$  (CP–).  
rate  $\propto B_{KK} (1+y) B_{K\pi} \left| 1+re^{-i\delta} \right|^2 \approx B_{KK} B_{K\pi} (1+2r\cos\delta+R_{WS}+y)$ 

$$R_{WS} = \Gamma(D^0 \to K^+\pi^-) / \Gamma(D^0 \to K^-\pi^+)$$
$$= r_{K\pi}^2 + r_{K\pi}y' + (x^2 + y^2) / 2$$

 $y \propto 2 \sum A_i^2 r_i \cos \delta_i$ 

• <u>y</u> at first order:

- Reconstruct  $K^+K^-$  (*CP*+) with semileptonic  $\Rightarrow$  SL must be  $D_1$  (*CP*-).
- Semileptonic width independent of CP, but total width depends on CP.

$$n_{e/KK} / n_{KK(ST)} = B_e \Gamma / \Gamma_1 = B_e / (1 - y)$$



### **Experimental Technique**

- Single tag: fully reconstruct one D
- Double tag: reconstruct both  $D^0$  and  $\overline{D}^0$ 
  - Both  $D^0$  and  $\overline{D^0}$  fully reconstructed.

Or one missing particle (v or  $K_{1}^{0}$ ):



$$M_{BC} = \sqrt{E_{beam}^2 - |p_D|^2}$$

#### Pair-produced $D^0$ and $\overline{D}^0$





Clean event environment, very low backgrounds



Use detector hermeticity and beam parameters to infer missing mass.

Werner Sun, Cornell University

### Update: Strong Phase in $D^0 \to K\pi$ [ $\delta_{K\pi}$ ]

- Previous publication: PRL 100, 221801 (2008) / PRD 78, 012001 (2008).
  - Dataset: 281 pb<sup>-1</sup> at ψ(3770) [C-odd initial state]
  - First meas. of strong phase between CF  $A(D^0 \rightarrow K^-\pi^+)$  and DCS  $A(D^0 \rightarrow K^+\pi^-)$ .
  - Standard fit:  $\cos \delta = 1.03^{+0.31}_{-0.17} \pm 0.06$
  - Extended fit:
     [Incl. external mixing meas.]

CLEO

 $\cos \delta = 1.10 \pm 0.35 \pm 0.07$  $x \sin \delta = (4.4^{+2.7}_{-1.8} \pm 2.9) \times 10^{-3}$ 

| Type      | Final States                                         |
|-----------|------------------------------------------------------|
| Flavored  | $K^-\pi^+,~K^+\pi^-$                                 |
| $S_+$     | $K^+K^-,  \pi^+\pi^-,  K^0_S\pi^0\pi^0,  K^0_L\pi^0$ |
| $S_{-}$   | $K^0_S\pi^0,K^0_S\eta,K^0_S\omega$                   |
| $e^{\pm}$ | Inclusive $Xe^+\nu_e, Xe^-\bar{\nu}_e$               |



#### New today: preliminary update with full CLEO-c dataset

- 818 pb<sup>-1</sup> at ψ(3770).
- Additional final states.
  - Includes direct measurements of  $r_{K\pi}^2$  and  $\sin \delta_{K\pi}$ .

Not yet in HFAG average



### Final States $[\delta_{K\pi}]$

- Single tags for all fullyreconstructed modes except *K*<sup>0</sup><sub>S</sub>π<sup>+</sup>π<sup>-</sup>.
- Double tags for almost all combinations of modes.
  - Like-sign and opposite-sign.
  - At most one missing particle (K<sup>0</sup><sub>L</sub> or v).
    - Except for Kev vs. K<sup>0</sup><sub>L</sub>π<sup>0</sup> (2 missing particles).
- 261 yield measurements
  - K<sup>0</sup><sub>s</sub>π<sup>+</sup>π<sup>-</sup> from PRD 80, 032002 (2009)



Werner Sun, Cornell University

1-4 September 2010, Physics in Collision, Karlsruhe, Germany

- CLEO muon chambers inefficient below 1 GeV.
- Identify right-sign  $D^0 \rightarrow K^-\mu^+\nu$  using missing energy and momentum.
  - Main background:  $D^0 \rightarrow K^-\pi^+\pi^0$  separated kinematically.
- Wrong-sign uses similar technique, but 300x lower yield.
  - Main background: mis-ID  $K\pi$  flavor in RS decays.
  - Dramatically reduced by requiring kaon to be in Cherenkov counter acceptance.
    - S/(S+B) goes from 50% to 97%.
  - Combined *Kev/K*µv relative uncertainty ~25%.
- Unlike with incoherent  $D^0$ , wrong-sign gives  $r^2$ , not  $R_{WS}$ .  $R_{WS} = \Gamma(D^0 \to K^+\pi^-)/\Gamma(D^0 \to K^-\pi^+)$

 $= r_{K\pi}^{2} + r_{K\pi}y' + (x^{2}+y^{2})/2$ 

Mixing effects cancel in the interference term



CLEO-c

**Preliminary** 





### Semi-Muonic Decays $[\delta_{K\pi}]$



## Kev vs. $K_L \pi^0 [\delta_{K\pi}]$

- Doubles the number of *Kev* vs. *CP*+
- Technique for two missing particles:
  - Used at B-factories for semileptonic decays
- Paar/Brower: NIM A 421, 411 (1999) BaBar: PRL 97, 211801 (2006) Belle: PLB 648, 139 (2007)
- Kinematic constraints on v and  $K_{L}^{0}$  define two cones for  $D^{0}$  and  $\overline{D^{0}}$ .
- If cones intersect, then  $0 < x_D^2 < 1$ .



Werner Sun, Cornell University



### Other Yield Measurements $[\delta_{K\pi}]$



Werner Sun, Cornell University

# Fit Results $[\delta_{K\pi}]$

#### CLEO-c Preliminary

51 free parameters

CLEO

- N<sub>DD</sub>, 21 branching fractions
- 24 amplitude/phase parameters for K<sup>0</sup><sub>s</sub>π<sup>+</sup>π<sup>-</sup>
- 5 *K*π and mixing parameters
- Fit performed with and without external measurements of y, x, y' (same as in HFAG May 2010 avg.)

- Statistical uncertainties on y and  $r_{K\pi} cos \delta_{K\pi}$  (w/o ext. meas.) 3x smaller than 2008 analysis.
  - Estimated impact on HFAG average: σ(y) reduced by ~10%
  - First direct measurements of  $r_{K\pi}^2$ and  $\sin \delta_{K\pi}$
- Preliminary systematics.

| Parameter                                               | Previous: PDG,<br>HFAG, or CLEO                                     | Fit: no ext. meas.                                          | Fit: with ext. y, x, y'               |                                                 |
|---------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|-------------------------------------------------|
| y (10 <sup>-2</sup> )                                   | 0.79 ± 0.13                                                         | 3.0 ± 2.0 ± 1.2                                             | 0.635 ± 0.118                         | Average of y and                                |
| <i>x</i> <sup>2</sup> (10 <sup>-3</sup> )               | 0.037 ± 0.024                                                       | $1.5 \pm 2.0 \pm 0.9$                                       | $0.022 \pm 0.017$ (r)                 | = $y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$ |
| <i>r<sub>K</sub></i> π <sup>2</sup> (10 <sup>-3</sup> ) | 3.32 ± 0.08                                                         | 4.12 ± 0.92 ± 0.23                                          | 3.32 ± 0.08                           | $M$ (infined by $Sino_{K\pi}$ )                 |
| cosδ <sub>Kπ</sub>                                      | 1.10 ± 0.36                                                         | <b>0.98</b> <sup>+0.27</sup> <sub>-0.20</sub> ± <b>0.08</b> | 1.15 ± 0.16 ± 0.12                    |                                                 |
| sinδ <sub>Kπ</sub>                                      |                                                                     | -0.04 ± 0.49 ± 0.08                                         | 0.55 <sup>+0.36</sup> -0.40 ± 0.08    |                                                 |
| $\delta_{K\pi}$ (°) [derived]                           | <b>22</b> <sup>+11</sup> <sup>+9</sup> <sup>+9</sup> <sup>-11</sup> | 0 ± 22 ± 6                                                  | 15 <sup>+11</sup> - <sub>17</sub> ± 7 |                                                 |

Werner Sun, Cornell University 1-4 Septem





- Published result using 818 pb<sup>-1</sup> of  $\psi(3770)$  data
  - [ PRD 80, 031105(R) (2009) ]
- Similar formalism for Kπ, except now include coherence factors (R) for multi-body decay as free parameters.

| Typ          | e Final states                                                                      |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------|--|--|--|--|
| Flavo        | red $K^{\mp}\pi^{\pm}, K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}, K^{\mp}\pi^{\pm}\pi^{0}$ |  |  |  |  |
| <i>СР</i> -е | $CP$ -even $K^+K^-, \pi^+\pi^-, K_S^0\pi^0\pi^0, K_L^0\pi^0, K_L^0\omega$           |  |  |  |  |
| CP-c         | odd $K_S^0 \pi^0, K_S^0 \omega, K_S^0 \phi, K_S^0 \eta, K_S^0 \eta'$                |  |  |  |  |
|              | total CP-tagged ~3200 vs. $K^+\pi^-\pi^+\pi^-$                                      |  |  |  |  |
|              | events ~4700 vs. <i>K</i> <sup>+</sup> π <sup>-</sup> π <sup>0</sup>                |  |  |  |  |

• No single tags — estimate from external branching fractions



### $D^0 \to K^-\pi^+\pi^0$ and $K^-\pi^+\pi^-\pi^+$ Results

- Low coherence in K3π has advantages:
  - Gives sensitivity to y comparable to Kπ analysis
  - Also increases sensitivity to r<sub>B</sub>
- Expect ~40% reduction in error on  $\gamma/\phi_3$ .
- Also useful for HFAG mixing average:
  - But first need to convert average K<sup>+</sup>π<sup>-</sup>π<sup>0</sup> phase to K<sup>\*</sup>π phase

| Parameter                  | Mixing constrained            | Mixing unconstrained            |
|----------------------------|-------------------------------|---------------------------------|
| $R_{K\pi\pi^0}$            | $0.84 \pm 0.07$               | $0.78\substack{+0.11 \\ -0.25}$ |
| $\delta_D^{K\pi\pi^0}$ (°) | $227^{+14}_{-17}$             | $239^{+32}_{-28}$               |
| $R_{K3\pi}$                | $0.33\substack{+0.26\\-0.23}$ | $0.36\substack{+0.24\\-0.30}$   |
| $\delta_D^{K3\pi}$ (°)     | $114_{-23}^{+26}$             | $118^{+62}_{-53}$               |
| x (%)                      | $0.96 \pm 0.25$               | $-0.8^{+2.9}_{-2.5}$            |
| y~(%)                      | $0.81\pm0.16$                 | $0.7^{+2.4}_{-2.7}$             |
| $\delta_D^{K\pi}$          | $-151.5\substack{+9.6\\-9.5}$ | $-130^{+38}_{-28}$              |



Werner Sun, Cornell University

### Update: Strong Phase in $D^0 \rightarrow K^{0}_{S,L} h^+h^-$

- Previous results on  $K_{5.L}^0 \pi^+ \pi^-$  using 818 pb<sup>-1</sup> of  $\psi(3770)$  data:
  - PRD 80, 032002 (2009), 8 equal phase bins [used in  $\delta_{K\pi}$  analysis]
- New today: updated results with same dataset.
  - Phase binning optimized for precision on  $\gamma/\phi_{3}$ .
    - Different schemes explored.
  - Add  $K^{0}_{S.L}K^{+}K^{-}$ :

CLEO

Use {2, 3, 4} bins instead of 8 because of lower statistics.



total CP-tagged events for **c**<sub>i</sub> ~800 vs. K<sup>0</sup><sub>S.L</sub>π<sup>+</sup>π<sup>-</sup> ~4700 vs. K<sup>0</sup><sub>S.L</sub>K<sup>+</sup>K<sup>-</sup>

~2000 total  $K^0{}_{S.L}h^+h^-$  vs.  $K^0{}_{S.L}h^+h^$ events for **s**<sub>i</sub>

Werner Sun, Cornell University

1-4 September 2010, Physics in Collision, Karlsruhe, Germany



## $D^0 \rightarrow K^0$ s, L h<sup>+</sup>h<sup>-</sup> Results

- One set of binning choices shown at right.
- For most binning schemes, induced uncertainty on γ/φ<sub>3</sub> is smaller than current model uncertainty of 3 to 9 degrees:
  - arXiv:1005.1096 [BaBar]
  - PRD 81, 112002 (2010) [Belle]
- Also useful for mixing studies at B-factories:
  - Time-dependent Dalitz plot fit of K<sub>s</sub><sup>0</sup>h<sup>+</sup>h<sup>-</sup> determines x and y simultaneously.
  - Depends on knowing strong phase across Dalitz plot.
  - Could be done w/o model dependence using CLEO-c measurements.

1.5-ش *K*<sup>0</sup><sub>ς</sub>π<sup>+</sup>π<sup>-</sup> 0.5 -0.5 -1.5 Statistical Systematic Model Expectation -0.5 0.5 1.5  $S_i$  VS.  $C_i$ *K*<sup>0</sup><sub>S</sub>*K*<sup>+</sup>*K*<sup>-</sup> 0.5 -0.5 Statistical -1.5 Systematic CLEO-c Model Expectation -0.5 0.5 1.5 **Preliminary** 

Werner Sun, Cornell University 1-4 September 2010, Physics

### **Summary and Outlook**

 Quantum-correlated CLEO-c dataset has yielded direct determinations of amplitudes and strong phases in D<sup>0</sup> decays.

 $D^{0} \rightarrow K^{+}\pi^{-} K^{+}\pi^{-}\pi^{0} K^{+}\pi^{-}\pi^{+}\pi^{-} K_{S,L}^{0}h^{+}h^{-}$ 

- All measurements are statistics-limited.
- Already significant impact on charm mixing and CKM studies.
- BES-III has exceeded CLEO's ψ(3770) dataset.
  - Should be able to improve on CLEO-c results.
  - Eventually:
    - Competitive measurements of mixing parameters.
    - Use  $C=+1 D^0 D^0 \gamma$  from higher-energy data.
      - Orthogonal sensitivity to mixing parameters and strong phases.
    - Access to CP violation.
- Many more possibilities to explore!

F. S

CLEO

#### BACKUP

### External Measurements $[\delta_{K\pi}]$

| able 5: Exter  | nal measurements of $y$ and         | y' with associated | me | asuremen          | ts of $r^2$ and $r^2$ |
|----------------|-------------------------------------|--------------------|----|-------------------|-----------------------|
| Parameter      | Value (%)                           | Source             |    | Avera             | ge (%)                |
| $y_{CP}$       |                                     | HFAG               |    | 1.107 :           | $\pm 0.217$           |
| x              | $1.9^{+3.2}_{-3.3} \pm 0.4 \pm 0.4$ | CLEO II.V [47]     |    | $0.419 \pm 0.000$ | 0.211 [41]            |
|                | $0.80 \pm 0.29 \pm 0.17$            | Belle [48]         |    |                   |                       |
|                | $0.16 \pm 0.23 \pm 0.12 \pm 0.08$   | BABAR              |    |                   |                       |
| y              | $-1.4\pm2.4\pm0.8\pm0.4$            | CLEO II.V [47]     |    | $0.456 \pm 0.000$ | 0.186 [41]            |
|                | $0.33 \pm 0.24 \pm 0.15$            | Belle [48]         |    |                   |                       |
|                | $0.57\pm0.20\pm0.13\pm0.07$         | BABAR              |    |                   |                       |
|                |                                     |                    | C  | orrelation        | Coefficients          |
| $r^2$          | $0.364 \pm 0.017$                   | Belle [50]         | 1  | -0.834            | +0.655                |
| y'             | $0.06^{+0.40}_{-0.39}$              |                    |    | 1                 | -0.909                |
| $x^{\prime 2}$ | $0.018^{+0.021}_{-0.023}$           |                    |    |                   | 1                     |
| $r^2$          | $0.303 \pm 0.016 \pm 0.010$         | BABAR [51]         | 1  | -0.87             | +0.77                 |
| y'             | $0.97 \pm 0.44 \pm 0.31$            |                    |    | 1                 | -0.94                 |
| $x^{\prime 2}$ | $-0.022\pm0.030\pm0.021$            |                    |    |                   | 1                     |
| $r^2$          | $0.304 \pm 0.055$                   | CDF                | 1  | -0.971            | +0.923                |
| y'             | $0.85 \pm 0.76$                     |                    |    | 1                 | -0.984                |
| $x^{\prime 2}$ | $-0.012 \pm 0.035$                  |                    |    |                   | 1                     |
| $r^2$          | $0.333 \pm 0.011$                   | Average            | 1  | -0.848            | +0.701                |
| y'             | $0.48 \pm 0.23$                     |                    |    | 1                 | -0.942                |
| $x^{\prime 2}$ | $0.002\pm0.012$                     |                    |    |                   | 1                     |

Werner Sun, Cornell University

### **Coherent vs. Incoherent Decay**



Werner Sun, Cornell University