D Mixing and Decay

Anže Zupanc

Karlsruhe Institute of Technology

for the Belle Collaboration

XXX. PHYSICS IN COLLISION September 1st, 2010

Charm as a probe of New Physics in

- $D \overline{D}$ mixing
- OP violation
- 8 Rare decays

э

▶ ∢ ≣

-

Image: A matrix

Mixing Phenomena

Mixing is a process

- in which particle changes to its anti-particle and vice versa
- possible only in flavored neutral particle-anti-particle systems

Meson M	Flavors	Particle discovered	Mixing discovered	Implication		
<i>K</i> ⁰	<u></u> sd	1950 (Caltech)	1956 (Columbia)	m _c		
B_d^0	Бd	1983 (CESR)	1987 (Desy)	m_t		
B_s^0	- bs	1992 (LEP)	2006 (Fermilab)	??		
D^0	сū	1976 (SLAC)	2007 (KEK, SLAC)	??		
Mixing is not possible in π^0 system since $\pi^0 = \overline{\pi}^0$.						

Mixing observed in all neutral meson systems:

Mixing is not possible in π^0 system since $\pi^0 \equiv \overline{\pi}^0$;

t quark decays before it could form a hadron.

Uniqueness of Charm:

() the only Up-type neutral meson allowing full range of probes for New Physics

Mixing Phenomenology - Time evolution

• Time evolution of $D^0 - \overline{D}{}^0$ system given by time-dependent Schrödinger Eq.

$$i \frac{\partial}{\partial t} \begin{pmatrix} |D^0\rangle \\ |\overline{D}^0\rangle \end{pmatrix} = [\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}] \begin{pmatrix} |D^0\rangle \\ |\overline{D}^0\rangle \end{pmatrix}$$

• Eigenstates of $[\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}]$ are mass eigenstates $D_{1,2}$ with $m_{1,2}$ and $\Gamma_{1,2}$

 $\hookrightarrow \neq$ flavor eigenstates D^0 and $\overline{D}{}^0$

$$|D_{1,2}
angle=
ho|D^0
angle\pm q|\overline{D}^0
angle \qquad p^2+q^2=1$$

$$|D^{0}(t)\rangle = \left[|D^{0}\rangle cosh\left(\frac{ix+y}{2}t\right) + \frac{q}{p}|\bar{D}^{0}\rangle sinh\left(\frac{ix+y}{2}t\right)\right] \times e^{-\frac{1}{2}(1+\frac{im}{\Gamma})t}$$

Mixing parameters:

$$\mathbf{x} = \frac{\mathbf{m}_1 - \mathbf{m}_2}{\Gamma}, \quad \mathbf{y} = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}, \quad \Gamma = \frac{1}{2}(\Gamma_1 + \Gamma_2)$$

Standard Model

Burdman, Shipsey, Ann.Rev.Nucl.Part.Sci.53,431; Falk et al., PRD65, 054034; Bigi, Uraltsev, Nucl. Phys. B592, 92;

Large uncertainty in SM mixing rate

 → difficult to identify New Physics

contributions (except if $x \gg y$)

provide usefull constraints on many New

< 4 → <

however, measurements of x and y still

New Physics predictions for |x|

A. Petrov, Int.J.Mod.Phys.A21, 5686;

A. Zupanc (KIT)

D Mixing and Decay

Physics models

PIC2010, 1/09/2010 5 / 53

CP Violation in Charm

Q: If $D - \overline{D}$ mixing can't reveal New Physics, what can? A: CP violation!

Source of CP violation in the Standard Model
 →single complex phase (η) in the quark mixing matrix

$$\mathbf{V}_{\rm CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta + \frac{i}{2}\eta\lambda^2) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 - i\eta\mathbf{A}^2\lambda^4 & A\lambda^2(1 + i\eta\lambda^2) \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- Charmed meson processes
 - \hookrightarrow CP violation in Standard Model is CKM suppressed: $\sim \mathcal{O}(10^{-3})$
 - \hookrightarrow Possible only in Singly Cabbibo supressed decays (tree + penguin amplitudes)
 - \hookrightarrow CP violation in New Physics models: up to 1%

Grossman, Kagan, Nir, PRD75, 036008; Bigi, hep-ph/0104008

 \hookrightarrow Current experimental sensitivity: few 0.1%

Observation of large $\mathcal{O}(1\%)$ CPV in charm decays would be a sign for New Physics!

A. Zupanc (KIT)

CP Violation Phenomenology

• Classification of *CP*-violating effects:

$$\hookrightarrow \ \ \, \mathsf{A}^{\mathrm{f}}_{\mathsf{CP}} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})} \approx a^{\mathrm{f}}_{\mathrm{d}} + a^{\mathrm{f}}_{\mathrm{m}} + a^{\mathrm{f}}_{\mathrm{i}}$$

3 \mathbf{a}_{d}^{f} : *CP* violation in decay $\hookrightarrow |\mathcal{A}_{f}| \neq |\overline{\mathcal{A}}_{\overline{f}}|$ $\mathcal{A}_{f} = \langle f|D \rangle, \quad \overline{\mathcal{A}}_{\overline{f}} = \langle \overline{f}|\overline{D} \rangle$ **3** \mathbf{a}_{m}^{f} : *CP* violation in mixing $\hookrightarrow |\mathbf{q}/\mathbf{p}| \neq \mathbf{1}$ $|D_{1,2}\rangle = p|D^{0}\rangle \pm q|\overline{D}^{0}\rangle$ **3** \mathbf{a}_{i}^{f} : *CP* violation in interference of decays with and without mixing $(f = \overline{f})$ $\hookrightarrow \phi \neq \mathbf{0}$ or π $\phi = \arg(\frac{q}{n}\frac{\overline{A}_{f}}{\Delta t})$

Experimental observables

Time-integrated measurements:

 $A^{f}_{CP} = \frac{N(D \to f) - N(\overline{D} \to \overline{f})}{N(D \to f) + N(\overline{D} \to \overline{f})}$

Time-dependent measurements:

$$A_{\Gamma} = \frac{\tau(D \to f_{CP}) - \tau(\overline{D} \to f_{CP})}{\tau(D \to f_{CP}) + \tau(\overline{D} \to f_{CP})} = -(a_m + a_i)$$

・ 何 ト ・ ヨ ト ・ ヨ ト …

Available Charm Samples

B-factories:

- continuum production @ $\Upsilon(4S)$: $\sigma(c\overline{c}) \approx 1.3 \text{ nb}$
- Belle: $\sim 1.3 \cdot 10^9 \ c\overline{c}$ pairs
- Babar: $\sim 0.7 \cdot 10^9 \ c\overline{c}$ pairs

Tevatron:

- *pp* @ ~ 2 TeV
- CDF: $\sim 70 \cdot 10^9 D^0$'s

Charm factories:

- $\psi(3770) \rightarrow D^0 \overline{D^0}, \ D^+ D^-$
- CLEO: $\sim 2.8 \cdot 10^6 \ D^0 \overline{D}{}^0$ pairs
- BESIII: $\sim 3.4 \cdot 10^6 \ D^0 \overline{D}{}^0$ pairs

LHC:

- pp @ 7 TeV
- LHCb: has only started

Mixing measurements

Decay time distribution sensitive to mixing parameters x and y and depends on the final state: (x,y) = (x,y) + (x,y)

 $\sqrt{-}$ measurement performed; \star – evidence for mixing

Full list of all $D^0 - \overline{D}^0$ mixing measurements is available at: http://www.slac.stanford.edu/xorg/hfag/charm/index.html

イロト 不得 トイヨト イヨト

Mixing and CPV in decays to CP eigenstates (KK, $\pi\pi$)

- Measurement of lifetime difference between $D^0 \to K^- \pi^+$ (*CP*-mixed) and $D^0 \to K^+ K^-$, $\pi^+ \pi^-$ (*CP*-even) decays (tagged and untagged samples) $\hookrightarrow \Gamma(D^0 \to K^- \pi^+) \propto e^{-t/\tau_{D^0}} \qquad y_{CP} = \frac{\tau_{K\pi}}{\tau_{KK,\pi\pi}} - 1$ $\hookrightarrow \Gamma(D^0 \to K^+ K^-, \pi^+ \pi^-) \propto e^{-(1+y_{CP})t/\tau_{D^0}} \qquad A_{\Gamma} = \frac{\tau(\overline{D^0} \to f_{CP}) - \tau(D^0 \to f_{CP})}{\tau(\overline{D^0} \to f_{CP}) + \tau(D^0 \to f_{CP})}$
- In case of no *CP* violation: $y_{CP} = y$ and $A_{\Gamma} = 0$

Mixing and CPV in decays to CP eigenstates (KK, $\pi\pi$)

- Measurement of lifetime difference between $D^0 \to K^-\pi^+$ (*CP*-mixed) and $D^0 \to K^+K^-$, $\pi^+\pi^-$ (*CP*-even) decays (tagged and untagged samples) $\hookrightarrow \Gamma(D^0 \to K^-\pi^+) \propto e^{-t/\tau_{D^0}} \qquad y_{CP} = \frac{\tau_{K\pi}}{\tau_{KK,\pi\pi}} - 1$ $\hookrightarrow \Gamma(D^0 \to K^+K^-, \pi^+\pi^-) \propto e^{-(1+y_{CP})t/\tau_{D^0}} \qquad A_{\Gamma} = \frac{\tau(\overline{D^0} \to f_{CP}) - \tau(D^0 \to f_{CP})}{\tau(\overline{D^0} \to f_{CP}) + \tau(D^0 \to f_{CP})}$
- In case of no *CP* violation: $y_{CP} = y$ and $A_{\Gamma} = 0$

Mixing and CPV in decays to CP eigenstates (KK, $\pi\pi$)

BaBar performed measurements of y_{CP} using:

① Tagged Sample: require D^0 to originate in $D^{*+} \rightarrow D^0 \pi^+$ decay

PRD78, 011105 (2008) $y_{CP} = (1.24 \pm 0.39 \pm 0.13)\%$ $\Delta Y = -(0.26 \pm 0.36 \pm 0.08)\%$ $\Delta Y = (1 + y_{CP})A_{\Gamma}$

Ontagged Sample: take all D⁰ candidates (except from the tagged sample)

Time dependent Dalitz analyses

• Many quasi 2-body intermediate states, e.g. in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ decays: $\hookrightarrow CF: D^0 \rightarrow K^{*-} \pi^+$ $\hookrightarrow DCS: D^0 \rightarrow K^{*+} \pi^ \hookrightarrow CP: D^0 \rightarrow \rho^0 K_S^0$

$$\begin{aligned} D^{0}: \ \mathcal{A}(m_{-}^{2}, m_{+}^{2}) &= \sum_{r} a_{r} e^{i\phi_{r}} \mathcal{A}_{r}(m_{-}^{2}, m_{+}^{2}) + a_{nr} e^{i\phi_{n}r} \\ \overline{D}^{0}: \ \overline{\mathcal{A}}(m_{-}^{2}, m_{+}^{2}) &= \sum_{r} \overline{a}_{r} e^{i\phi_{r}} \overline{\mathcal{A}}_{r}(m_{-}^{2}, m_{+}^{2}) + a_{nr} e^{i\phi_{n}r} \end{aligned}$$

If
$$f = \overline{f} \Rightarrow$$
 relative phases determined
(unlike $D^0 \to K^+\pi^-(\pi^0)$)

• Time dependent decay rate
$$(\mathcal{A}_{1,2} = \frac{1}{2}(\mathcal{A} \pm \overline{\mathcal{A}}))$$

 $\Gamma(m_{-}^{2}, m_{+}^{2}, t) = e^{-\Gamma t}(|\mathcal{A}_{1}|^{2}e^{-y\Gamma t} + |\mathcal{A}_{2}|^{2}e^{y\Gamma t} + 2\mathcal{R}[\mathcal{A}_{1}\mathcal{A}_{2}^{*}]\cos(x\Gamma t) + 2\mathcal{I}[\mathcal{A}_{1}\mathcal{A}_{2}^{*}]\sin(x\Gamma t))$

Simultaneous determination of x and y!

Mixing and CPV $D^0 \rightarrow K_S^0 \pi^+ \pi^-$, $D^0 \rightarrow K_S^0 K^+ K^-$ decays

68%, 95% and 99.9% confidence level contours

Measurements are consistent and together provide the most accurate determination of x and y! Belle [PRL99,131803] $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

Conserved *CP* symmetry $(|q/p| = 1 \& \phi = 0)$ $x = (0.80 \pm 0.29^{+0.13}_{-0.16})\%$ $y = (0.33 \pm 0.24^{+0.10}_{-0.14})\%$

CPV allowed $(|q/p| \& \phi \text{ free parameters of the fit})$ $|q/p| = 0.86 \pm 0.30 \pm 0.09$

 $\phi = -0.24 \pm 0.30 \pm 0.09$

Consistent with no CPV!

D Mixing and Decay

Mixing and CPV in WS hadronic decays $(D^0 \rightarrow K^+ \pi^-)$

- Right sign (RS) charge combination $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$ $\Gamma_{PS} \propto e^{-t/\tau_{D^0}}$
- Wrong sign (WS) charge combination $D^{*+} \rightarrow D^0(K^+\pi^-)\pi^+$ $\rightarrow DCS$ or mixing

 $\Gamma_{WS} \propto [R_D + y'\sqrt{R_D}(\Gamma t) + \frac{x'^2 + y'^2}{4}(\Gamma t)^2]e^{-\Gamma t}$

DCS • interference • mixing

- $\hookrightarrow R_D$: DCS/CF rate
- $\hookrightarrow \mathsf{x}' = \mathsf{x} \cos \delta + \mathsf{y} \sin \delta$
- $\hookrightarrow \mathbf{y'} = \mathbf{y}\cos\delta \mathbf{x}\sin\delta$

 $\hookrightarrow \delta$ strong phase between DCS and CF

Mixing and CPV in WS hadronic decays $D^0 \rightarrow K^+ \pi^-$

A. Zupanc (KIT)

D Mixing and Decay

PIC2010, 1/09/2010 15 / 53

Mixing in WS $D^0 \rightarrow K^+ \pi^- \pi^0$ decays (BaBar)

PRL103, 211801

Analysis similar to the WS $D^0 \rightarrow K^+\pi^-$ analysis, however the strong phase δ varies across the Dalitz plot.

• DCS • interference • mixing $\frac{dN_{\bar{f}}(s_0,s_+,t)}{ds_0ds_+dt} = e^{-\Gamma t} \{ |A_{\bar{f}}|^2 + |A_{\bar{f}}| |\bar{A}_{\bar{f}}| [y'' \cos \delta_{\bar{f}} - x'' \sin \delta_{\bar{f}}] (\Gamma t) + \frac{x''^2 + y''^2}{4} |\bar{A}_{\bar{f}}|^2 (\Gamma t)^2 \}$ $s_0 = m_{K^+\pi^-}^2 : s_0 = m_{K^+\pi^0}^2$

• Mixing parameters

 $\mathbf{x}'' = \mathbf{x} \cos \delta_{\mathsf{K}\pi\pi^0} + \mathbf{y} \sin \delta_{\mathsf{K}\pi\pi^0} \quad \text{and} \quad \mathbf{y}'' = \mathbf{y} \cos \delta_{\mathsf{K}\pi\pi^0} - \mathbf{x} \sin \delta_{\mathsf{K}\pi\pi^0}$

Mixing in WS $D^0 \rightarrow K^+ \pi^- \pi^0$ decays (BaBar)

Results consistent with no CPV.

World average of mixing parameters

Heavy Flavor Averaging Group (HFAG) perfromes an average of 8 underlying physics parameters from currently 30 observables. [www.slac.stanford.edu/xorg/hfag/]

No mixing point (x, y) = (0, 0) is excluded at 10.2σ , while no *CP* violation point $(|q/p|, \phi) = (1, 0)$ is consistent within 1σ .

A. Zupanc (KIT)

PIC2010, 1/09/2010 18 / 53

< m

Impact - Constraints on new physics models from mixing

E. Golowich et al., PRD76,095009

- Constraints on new physics models from D⁰ − D⁰ complementary to those obtained in B and K sector
 → FCNC transitions with *down-like* quarks in charm sector (unique feature)
- 21 NP models considered \rightarrow 17 with useful constraints

Example: quark b' from 4th generation

Impact - Constraints on new physics models from mixing

E. Golowich et al., PRD76,095009

- Constraints on new physics models from D⁰ − D⁰ complementary to those obtained in B and K sector
 → FCNC transitions with *down-like* quarks in charm sector (unique feature)
- $\bullet~21~\text{NP}$ models considered $\rightarrow~17$ with useful constraints

Example: quark b' from 4th generation

 $|V_{ub'}V_{cb'}| < 0.002$ order of magnitude stronger constraint as from CKM unitarity

Providing complementary and improved constraints!

Time-integrated searches of CP Violation

- Searches for direct CP violation performed in total over 30 D^0 , D^+ and D_s^+ decay modes in past 15 years
 - \hookrightarrow Belle, BaBar, Cleo, CDF, FOCUS, E796, E687
- No evidence for CP violation found so far
 - \hookrightarrow Sensitivity is in some cases reaching 0.2%
- Measurements statistical limited

 $\hookrightarrow \mathsf{All} \text{ measurements can be significantly improved!}$

$D^0 ightarrow$	A _{CP} [%]	$D^+ \rightarrow$	A _{CP} [%]	$D_s^+ \rightarrow$	A _{CP} [%]
K^+K^-	-0.16 ± 0.23	$K_S^0\pi^+$	-0.72 ± 0.26	$K^0_S K^+$	-0.28 ± 0.41
$\pi^+\pi^-$	$+0.22\pm0.37$	$K_{S}^{0}K^{+}$	-0.09 ± 0.63	$K_{S}^{0}\pi^{+}$	$+6.5\pm2.5$
$\pi^+\pi^-\pi^0$	-0.23 ± 0.42	$\breve{K^+}K^-\pi^+$	$+0.39\pm0.61$	$K^+K^-\pi^+$	$+0.3 \pm 1.4$
$K^-\pi^+\pi^0$	$+0.16\pm0.89$	$K^-\pi^+\pi^+$	-0.5 ± 1.0	$\pi^+\pi^-\pi^+$	$+2.0 \pm 4.7$
$K_{S}^{0}\pi^{0}$	$+0.10\pm1.3$	$K^-\pi^+\pi^+$	-0.5 ± 1.0	$K^+\pi^-\pi^+$	$+11.2\pm7.1$
$\check{K^+}K^-\pi^0$	$+1.00\pm1.7$	$K_{S}^{0}\pi^{+}\pi^{0}$	$+0.3 \pm 0.9$	$\pi^+\eta$	-8.2 ± 5.3
$\pi^{0}\pi^{0}$	$+0.10\pm4.8$	$\pi^{+}\pi^{-}\pi^{+}$	-1.7 ± 4.2	$\pi^+\eta'$	-5.5 ± 3.9
		:	:	:	:

Full list of all *CPV* measurements is available at: http://www.slac.stanford.edu/xorg/hfag/charm/index.html

PIC2010, 1/09/2010 20 / 53

Time-integrated searches of *CP* Violation

Key is to distinguish possible CPV asymmetry from detector effects and production asymmetry in reconstructed asymmetry

$$A^{\rm reco} = \frac{N_D^{\rm reco} - N_{\overline{D}}^{\rm reco}}{N_D^{\rm reco} + N_{\overline{D}}^{\rm reco}}$$

 $N_D^{\text{reco}} = N_D^{\text{prod}} \cdot \mathcal{B}(D \to f) \cdot \varepsilon_f \Longrightarrow \text{if } A_i \ll 1 \Longrightarrow \left| \mathbf{A}^{\text{reco}} = \mathbf{A}_{\text{FB}}^{\mathbf{D}} + \mathbf{A}_{\text{CP}}^{\mathbf{f}} + \mathbf{A}_{\epsilon}^{\mathbf{f}} \right|$

A^f CP asymmetry **Production asymmetry Reconstruction asymmetry**

independent of any

Acp

due to γ/Z interference in kinematic variable $e^+e^- \rightarrow c\overline{c}$ (only at e^+e^- coll.)

AFR

 $(p^{\text{lab}}, cos\theta^{\text{lab}})$

(日) (同) (三) (三)

(anti-symmetric in $cos\theta_{D}^{*}$)

In order to control systematics A_i's are estimated on real data sample!

A. Zupanc (KIT)

PIC2010, 1/09/2010 21 / 53

ΔA_{CP} between $D^+ \to \phi \pi^+$ and $D_s^+ \to \phi \pi^+$ and A_{CP} in $D^0 \to K_S^0 P^0$ (Belle preliminary)

• ΔA_{CP} between $D^+
ightarrow \phi \pi^+$ and $D^+_s
ightarrow \phi \pi^+$

• A_{CP} in $D^0 \to K^0_S \pi^0$, $D^0 \to K^0_S \eta(\star)$ and $D^0 \to K^0_S \eta'(\star)$

* - first measurement

A. Zupanc (KIT)

D Mixing and Decay

PIC2010, 1/09/2010

22 / 53

Search for CP Violation with T-odd correlations

Assuming CPT invariance: T violation \Rightarrow CP violation

- Possible only in \geq 4-body decay $\hookrightarrow D^{0} \to K^{-}K^{+}\pi^{-}\pi^{+}$
- *T*-odd quantity:

$$C_T \equiv \langle \vec{p}_{K^+} \cdot (\vec{p}_{\pi^+} imes \vec{p}_{\pi^-}) \rangle$$

• T violating asymmetry A_T D^0 : $A_T = \frac{\Gamma(-C_T > 0) - \Gamma(-C_T < 0)}{\Gamma(-C_T > 0) + \Gamma(-C_T < 0)}$ \overline{D}^0 : $\overline{A}_T = \frac{\Gamma(-\overline{C}_T > 0) - \Gamma(-\overline{C}_T < 0)}{\Gamma(-\overline{C}_T > 0) + \Gamma(-\overline{C}_T < 0)}$ $\overline{A}_T = \frac{1}{2} (A_T - \overline{A}_T)$

Bigi, hep-ph/0107102 (2001) Bensalem et al., PRD66, 094004 (2002)

 A_T can be different from zero due to final state interactions, but $A_T \neq 0$ represents *CP* violation.

Charm rare decays: $D^0 \rightarrow \ell^+ \ell^-$ (Motivation)

• Standard Model:

 \hookrightarrow Flavor Changing Neutral Current decays $(D^0 \to \ell^+ \ell^-)$ are highly suppressed

 \hookrightarrow with long distance contributions $\mathcal{B} \sim 10^{-13}$

 \hookrightarrow Lepton Flavor Violating decays ($D^0 \to e^\pm \mu^\mp)$ are forbidden

• New Physics:

← Flavor Changing Neutral Current transitions may be enhanced by many orders of magnitude

 \hookrightarrow R-parity violating SUSY: $\mathcal{B}(\mu^+\mu^-)$ up to 10^{-8}

 \hookrightarrow Leptoquarks: $\mathcal{B}(\mu^+\mu^-) \sim 8 \cdot 10^{-8}$

Golowich et. al., PRD79 114030 (2009); Dorsner et. al. PLB682 67 (2009)

Search for $D^0 \rightarrow \ell^+ \ell^-$ at Belle and CDF

Conclusions

- Collective evidence for $D^0 \overline{D}^0$ mixing are compelling
 - ${\, \bullet \,}$ No single measurement exceeds 5 σ
 - $\bullet\,$ The no-mixing point is excluded at around $10\sigma\,$
 - The WA of x and y seem consistent with SM expectations
 - Providing strong constraints for some New Physics models
- No evidence of *CP* violation (at the level of 0.3%)
- Still room for improvements using existing data sets
 - exploiting the entire data sets and covering all the sensitive measurements (Belle, BaBar, CDF)
- Is the best yet to come?

Backup slides

イロト イ団ト イヨト イヨト

2

Common steps in $D^0 - \overline{D}^0$ mixing and CPV measurements

Tag the flavor of the produced neutral *D* meson Measure proper decay time Flavor tagging Proper

- require $D^{*+} \rightarrow D^0 \pi^+$
 - \hookrightarrow flavor tagging with $\pi\text{'s}$ charge
 - \hookrightarrow background suppression with $\Delta M = M_{D^*} - M_{D^0}$

Proper decay time

• Vertexing with beam point constraint

$$t = rac{I_{dec}}{ceta\gamma} \;, \quad eta\gamma = rac{p_{D^0}}{M_{D^0}}$$

 σ_t uncertainty of the measurement typically between $~1/6\tau_{D^0}$ and $~1/2\tau_{D^0}$

A. Zupanc (KIT)

PIC2010, 1/09/2010 28 / 53

Mixing probability

• probability to observe an initial M^0 as M^0 or \overline{M}^0 after time t

 $\begin{aligned} \mathcal{P}_{\text{non-mix}}(t) &= |\langle M^0(t) | M^0 \rangle|^2 = \frac{1}{2} e^{-\Gamma t} \left[\cosh(y \Gamma t) + \cos(x \Gamma t) \right] \\ \mathcal{P}_{\text{mix}}(t) &= |\langle M^0(t) | \overline{M}^0 \rangle|^2 = \frac{1}{2} e^{-\Gamma t} \left[\cosh(y \Gamma t) - \cos(x \Gamma t) \right] \end{aligned}$

New Physics in Charm Mixing

• Possible New Physics contributions can increase x, while y is mostly unaffected

 $\hookrightarrow |x| \gg |y|$ would be a hint of New Physics

Compilation of predictions for x and y

Compilation of SM predictions for |x| (\triangle) and |y| (\Box) and New Physics predictions for |x| (•)

A. Petrov, Int.J.Mod.Phys.A21, 5686;

- ∢ 🗗 ▶

Mixing and CPV in $D^0 \rightarrow K^+ K^-$, $\pi^+ \pi^-$ decays

• Belle tagged analysis (540 fb⁻¹): PRL98, 211803 (2007)

$D^0 \rightarrow$	Sig. yield	Purity
$K^{-}\pi^{+}$	1.22M	99%
$\kappa^+\kappa^-$	111k	98%
$\pi^+\pi^-$	49k	92%

• BaBar tagged analysis (384 fb⁻¹): PRD78, 011105 (2008)

$D^0 \rightarrow$	Sig. yield	Purity
$K^{-}\pi^{+}$	731k	99.9%
$\kappa^+\kappa^-$	70k	99.6%
$\pi^+\pi^-$	31k	98%

• BaBar untagged analysis (384 fb⁻¹): arXiv:0908.0761

$D^0 \rightarrow$	Sig. yield	Purity		
$K^{-}\pi^{+}$	2.71M	94.2%		
K^+K^-	264k	80.9%		
4 imes the size of the tagged				
sample	and indep	endent		
		= 000		

A. Zupanc (KIT)

D Mixing and Decay

Mixing in $D^0 \rightarrow K^0_S K^+ K^-$ decays (Belle)

arXiv:0905.4185 (PRD accepted) [673 fb⁻¹]

Measurement of lifetime difference between CP-even and CP-odd eigenstates

Effective lifetimes in ON and OFF regions

 $\hookrightarrow | \tau_{\text{ON,OFF}} = [1 + (1 - 2f_{\text{ON,OFF}})y_{CP}]\tau_{D^0} | \Rightarrow y_{CP} = \frac{1}{f_{\text{ON}} - f_{\text{OFF}}} \left(\frac{\tau_{\text{OFF}} - \tau_{\text{ON}}}{\tau_{\text{OFF}} + \tau_{\text{ON}}}\right)$

 \hookrightarrow f_{ON} , f_{OFF} are *CP*-even fractions in ON and OFF regions, determined using 8-resonant Dalitz model (REF!!!)

 $y_{CP} = +(0.11 \pm 0.61 (\text{stat.}) \pm 0.52 (\text{syst.}))\%$

TABLE I: Results from the mixing fits. The first uncertainty is statistical, the second systematic and the third systematic from the amplitude model. For the nominal fit, the corresponding correlation coefficients between x and y are 3.5%, 16.0% and -2.7%, respectively.

Fit type	$x/10^{-3}$	$y/10^{-3}$
Nominal	$1.6 \pm 2.3 \pm 1.2 \pm 0.8$	$5.7 \pm 2.0 \pm 1.3 \pm 0.7$
$K_{S}^{0}\pi^{+}\pi^{-}$	2.6 ± 2.4	6.0 ± 2.1
$K_{s}^{0}K^{+}K^{-}$	-13.6 ± 9.2	4.4 ± 5.7
D^0	0.0 ± 3.3	5.5 ± 2.8
\overline{D}^0	3.3 ± 3.3	5.9 ± 2.8

Mixing in semileptonic decays $D^0 \to K^{(*)} - \ell^+ \nu_\ell$

U. Bitenc *et al.* [Belle Collaboration], PRD77, 112003 (2008). [$\mathcal{L} = 492 \text{ fb}^{-1}$]

• Wrong sign (WS) charge combination accessible only via mixing

Time integrated mixing rate:

$$R_M \simeq rac{x^2 + y^2}{2} = rac{N_{
m WS}}{N_{
m RS}}$$

Mixing in semileptonic decays $D^0 \rightarrow K^{(*)} - \ell^+ \nu_\ell$

TABLE V: Expected precision (σ) on the measured quantities using methods described in the text for SuperB with an integrated luminosity of 75 ab⁻¹ at SuperB at 10 GeV, 300 fb⁻¹ (~ two months) running at charm threshold with SuperB, and LHCb with 10 fb⁻¹[13].

Mode	Observable	$\Upsilon(4S)$	$\psi(3770)$	LHCb
		(75 ab^{-1})	(300 fb^{-1})	(10 fb^{-1})
$D^0 \rightarrow K^+ \pi^-$	$x^{\prime 2}$	3×10^{-5}		6×10^{-5}
	y'	$7 imes 10^{-4}$		$9 imes 10^{-4}$
$D^0 \rightarrow K^+K^-$	y_{CP}	5×10^{-4}		5×10^{-4}
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	x	4.9×10^{-4}		
	y	3.5×10^{-4}		
	q/p	3×10^{-2}		
	ϕ	2°		
$\psi(3770) \rightarrow D^0 \overline{D}^0$	x^2		$(1\!-\!2)\times 10^{-5}$	
	y		$(1-2) \times 10^{-3}$	
	$\cos \delta$		(0.01 - 0.02)	

arXiv:0810.1312

3

イロト イ団ト イヨト イヨト

Table 5.23: Expected number of reconstructed $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$ decays at different facilities (projected using [292], [293], [294], [295]). [†]For charm factory the expected yield of $\Psi(3770) \rightarrow D^0 \bar{D}^0$, $D^0 \rightarrow K^- \pi^+$, $\bar{D}^0 \rightarrow K^+ \pi^-$ is quoted.

Facility	num. of $D^{*+} \rightarrow D^0 \pi^+$,	int. luminosity [fb ⁻¹]	Comment
	$D^0 \rightarrow K^- \pi^+$		
existing B factories	$2.5 imes 10^6$	1000	final data set
Super-KEKB	$14 imes 10^6$	5000	purity $\sim 99\%$
Charm factory [†]	$4 imes 10^4$	20	both D^0 's reconstructed;
			$D^0 \overline{D}^0$ in coherent state
Tevatron	$0.5 imes10^6$	0.35	
LHCb	$15 imes 10^6$	2	

http://belle2.kek.jp/physics.html

э

(日) (同) (三) (三)

Figure 5.67: Left: The probability contours for the current world average values of the mixing parameters x and y [338]. The error bars denote the expected accuracy on the parameters with 50 ab⁻¹ following from the extrapolation of results using K^+K^- , $\pi^+\pi^-$, $K^+\pi^-$ and $K_S\pi^+\pi^-$ final states. Right: The probability contours for the current world average values of the *CPV* parameters |q/p| and ϕ [338]. The error bars denote the expected accuracy with the same assumptions as above.

http://belle2.kek.jp/physics.html

< 🗇 🕨

World average

$$R_{M} = \frac{1}{2}(x^{2} + y^{2})$$

 $\begin{array}{lll} \mathbf{2} \mathbf{y}_{CP} &=& \Big(\left| q/p \right| + \left| p/q \right| \Big) y \cos \phi \ - \ \Big(\left| q/p \right| - \left| p/q \right| \Big) x \sin \phi \\ \mathbf{2} \mathbf{A}_{\Gamma} &=& \Big(\left| q/p \right| - \left| p/q \right| \Big) y \cos \phi \ - \ \Big(\left| q/p \right| + \left| p/q \right| \Big) x \sin \phi \end{array}$

$$\begin{array}{rcl} x_{K^0\pi\pi} &=& x\\ y_{K^0\pi\pi} &=& y\\ |q/p|_{K^0\pi\pi} &=& |q/p|\\ \operatorname{Arg}\left(q/p\right)_{K^0\pi\pi} &=& \phi \end{array}$$

$$\begin{pmatrix} x'' \\ y'' \end{pmatrix}_{K^+\pi^-\pi^0} = \begin{pmatrix} \cos \delta_{K\pi\pi} & \sin \delta_{K\pi\pi} \\ -\sin \delta_{K\pi\pi} & \cos \delta_{K\pi\pi} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{array}{l} \begin{pmatrix} \boldsymbol{x}'\\ \boldsymbol{y}' \end{pmatrix} &=& \begin{pmatrix} \cos\delta & \sin\delta\\ -\sin\delta & \cos\delta \end{pmatrix} \begin{pmatrix} \boldsymbol{x}\\ \boldsymbol{y} \end{pmatrix} \\ \\ \boldsymbol{A}_{\boldsymbol{M}} &=& \frac{|q/p|^2 - |p/q|^2}{|q/p|^2 + |p/q|^2} \end{array}$$

$$\begin{split} x'^{\pm} &= \; \left(\frac{1\pm A_M}{1\mp A_M}\right)^{1/4} (x'\cos\phi\pm y'\sin\phi) \\ y'^{\pm} &= \; \left(\frac{1\pm A_M}{1\mp A_M}\right)^{1/4} (y'\cos\phi\mp x'\sin\phi) \end{split}$$

$$\begin{array}{ll} \displaystyle \frac{1}{2} \left[R(D^0 \to K^+ \pi^-) + \overline{R}(\overline{D}{}^0 \to K^- \pi^+) \right] &=& R_D \\ \\ \displaystyle \frac{R(D^0 \to K^+ \pi^-) - \overline{R}(\overline{D}{}^0 \to K^- \pi^+)}{\pi^{--} \pi^{--} \overline{R}(\overline{D}{}^0 \to K^- \pi^+)} &=& A_D \end{array}$$

HFAG: arXiv:0808.1297 or http://www.slac.stanford.edu/xorg/hfag/

 χ^2 fit of 8 underlying parameters using all measured quantaties (30 observables) including correlations between them

Parameter	Value
X	$(0.59\pm20)\%$
У	$(0.80 \pm 0.13)\%$
δ	$(27.8^{+11.2}_{-13.2})^{\circ}$
$\delta_{K\pi\pi}$	$(23.2^{+22.3}_{-23.3})^{\circ}$
R_D	$(0.3319\pm 0.0081)\%$
A_D	$(-2.0 \pm 2.4)\%$
q/p	$0.91\substack{+0.19\\-0.16}$
ϕ	$(-10.0^{+9.3}_{-8.7})^{\circ}$

(x, y) = (0, 0) excluded at 10.2σ No CPV within 1σ

A. Zupanc (KIT)

D Mixing and Decay

40 / 53

CPV backup

Number of reconstructed decays:

$$N^{reco} = N^{prod}_{D^{*+}} \cdot \mathcal{B}(D^{*+} o D^0 \pi^+) \cdot \mathcal{B}(D^0 o h^+ h^-) \cdot \epsilon_{hh} \cdot \epsilon_{\pi}$$

- Contributions to asymmetry in N^{reco}:
 - production (A_{FB})
 - branching fractions (A_{CP})
 - efficiencies (A_e)
- If asymmetries are small $(A_{FB}, A_{CP}, A_{\epsilon} \ll 1)$ it is easy to see, that the asymmetry in N^{reco} is:

$$\mathcal{A}^{ extsf{reco}} = \mathcal{A}_{FB}^{D^{*+}} + \mathcal{A}_{CP}^{D^0\pi} + \mathcal{A}_{CP}^{hh} + \mathcal{A}_{\epsilon}^{hh} + \mathcal{A}_{\epsilon}^{\pi}$$

• Some are zero: $A_{CP}^{D^0\pi} = 0$ (strong decay), $A_{\epsilon}^{hh} = 0$ (same final state)

CPV backup

- Production asymmetry (A_{FB}) is due to interference in e⁺e⁻ → cc̄ (mediated by virtual γ or Z⁰)
 - anti-symmetric function of $\cos \theta^*$ (follows from *CP* conservation)

$$A_{FB}(\cos \theta^*) = -A_{FB}(-\cos \theta^*)$$

• Measured asymmetry:

$$A^{reco} = A^{D^{*+}}_{FB}(\cos\theta^*) + A^{hh}_{CP} + A^{\pi}_{\epsilon}(\theta, p)$$

- Asymmetry in π_{slow} efficiency $A^{\pi}_{\epsilon}(\theta, p)$ can be measured in $D^0 \to K^- \pi^+$ by using tagged and untagged decays
- Corrected asymmetry

$$\begin{aligned} A_{corr}^{reco} &= A^{reco} - A_{\epsilon}^{\pi}(\theta, p) \\ A_{corr}^{reco}(\cos \theta^*) &= A_{FB}^{D^{*+}}(\cos \theta^*) + A_{CP}^{KK} \end{aligned}$$

42 / 53

CPV backup

Number of reconstructed tagged and untagged $D^0 \to K^- \pi^+$ decays:

$$\begin{array}{lll} \mathcal{N}^{\mathrm{untag}} &=& \mathcal{N}_{D^0}^{\mathrm{prod}} \cdot \mathcal{B}(D^0 \to K^- \pi^+) \cdot \epsilon_{K\pi} \\ \mathcal{N}^{\mathrm{tag}} &=& \mathcal{N}_{D^{*+}}^{\mathrm{prod}} \cdot \mathcal{B}(D^{*+} \to D^0 \pi_S^+) \cdot \mathcal{B}(D^0 \to K^- \pi^+) \cdot \epsilon_{K\pi} \cdot \epsilon_{\pi} \end{array}$$

Measured asymmetry:

$$egin{array}{rcl} A^{ ext{untag}} &=& A^{D^0}_{FB} + A^{K\pi}_{CP} + A^{K\pi}_{\epsilon} \ A^{ ext{tag}} &=& A^{D^0}_{FB} + A^{K\pi}_{CP} + A^{K\pi}_{\epsilon} + A^{\pi}_{\epsilon} \end{array}$$

Assuming $A_{FB}^{D^0} = A_{FB}^{D^{*+}}$:

$$A^{\pi}_{\epsilon} = A^{\mathrm{tag}} - A^{\mathrm{untag}}$$

 $A_{\epsilon}^{K\pi}$ and A_{ϵ}^{π} are functions of corresponding phase spaces.

イロト イポト イヨト イヨト 二日

CPV in $D^0 \rightarrow K^- K^+, \pi^- \pi^+$ decays backup (time-integrated)

Determination of soft pion π_s asymmetry:

• using tagged and untagged $D^0
ightarrow K^- \pi^+$ decays

- $\Rightarrow \text{ asymmetry map of the untagged} \\ K\pi \text{ sample (left)} \\ \text{with uncertainty (right)}$
 - \hookrightarrow weight D^0 candidates in the π_s tagged $K\pi$ sample
- ⇒ asymmetry map of the slow pion efficiency (left)
 - with uncertainty (right)
 - \hookrightarrow weight D^0 yields to correct for tagging asymmetry

Averaging over the phase space the correction due to the π_S efficiency is found to be $(0.76 \pm 0.09\%)$.

A. Zupanc (KIT)

CPV in $D^0 \rightarrow K^- K^+, \pi^- \pi^+$ decays backup (time-integrated)

The signal counting was performed by the mass-sideband subtraction.

Systematics:

Signal co	unting		π_S eff. corr	ection		A _{CP}	extract	ion
	KK	$\pi\pi$		KK	$\pi\pi$		KK	$\pi\pi$
Signal shape diff.	0.02%	0.04%	Statistics of $K\pi$	0.09%	0.09%	Binning	0.03%	0.03%
Sideband position	0.01%	0.03%	Binning	0.03%	0.02%	SVD1/2	0.03%	0.00%
Random π_{slow} bkg.	0.03%	0.03%	Min. num. events/bin	0.04%	0.03%	Total	0.04%	0.03%
Total	0.04%	0.06%	Total	0.10%	0.10%		_	_

A. Zupanc (KIT)

PIC2010, 1/09/2010 45 / 53

Time integrated CPV in $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$ decays

A. Zupanc (KIT)

D Mixing and Decay

PIC2010, 1/09/2010 46 / 53

$\mathsf{CPV} ext{ in } D^+_{(s)} o \mathsf{PP} ext{ decays}$

What is so special about $D^+_{(s)} \to K_S h^+$ decays?

• $D^+ \rightarrow K_S \pi^+$ appears to be a CF mode, however the same final state can be reached through a DCS amplitude

$$\hookrightarrow D^+ \to \overline{K}{}^0 \pi^+ / \overline{K}{}^0 \pi^+ \to K_S \pi^+$$

 \star two interfering amplitudes generate asymmetry $\sim \mathcal{O}(10^{-4})$

• The *CP* impurity in the *K*_S wave function induces larger asymmetry $\star A_{CP}(D^+ \to K_S \pi^+) \simeq \frac{|q_K|^2 - |p_K|^2}{|q_K|^2 + |p_K|^2} \simeq -(0.332 \pm 0.006)\%$

$D^+_{(s)} \rightarrow K_S \pi^+$ channels

Use $D_{\epsilon}^+ \rightarrow \phi \pi^+$ decays to correct for:

- production asymmetry A_{FB}
- reconstruction asymmetry $A_{\epsilon}^{\pi^+}$
- no asymmetry due to $\phi \rightarrow K^+K^$ reconstruction

Method

In each $(p_{\pi}^{\text{lab}}, cos\theta_{\pi}^{\text{lab}}, cos\theta_{D}^{*})$ bin

- **1** Measure $A_{rec}^{D_{(s)}^+ \to K_S \pi^+} = A_{FP}^{D_{(s)}} + A_{\epsilon}^{\pi^+} + A_{CP}^{D_{(s)} \to K_s^0 \pi^+}$
- 2 Measure $A_{rec}^{D_s^+ \rightarrow \phi \pi^+} = A_{rec}^{D_s} + A_c^{\pi^+}$
- Subtract measured asymmetries

$$A_{CP}^{D^+ \to K_S \pi^+} = A_{rec}^{D^+ \to K_S \pi^+} - A_{rec}^{D_s^+ \to \phi \pi^+}$$

A. Zupanc (KIT)

PIC2010, 1/09/2010

$D^+_{(s)} \rightarrow K_S \pi^+$ channels

$$A_{CP}^{D^+ o K_S \pi^+} = -(0.71 \pm 0.26)\%$$

 $A_{CP}^{D^+_s o K_S \pi^+} = (5.45 \pm 2.50)\%$

PIC2010, 1/09/2010 49 / 53

A B F A B F

$D^+_{(s)} \rightarrow K_S K^+$ channels

Use $D^+_s \to \phi \pi^+$ and $D^0 \to K^- \pi^+$ decays to correct for:

- production asymmetry A_{FB}
- reconstruction asymmetry $A_{\epsilon}^{K^+}$

1. A_{rec} in $D_s^+ \rightarrow \phi \pi^+$ 2. A_{rec} in $D^0 \rightarrow K^- \pi^+$

lab

Ð

cos

ć

lab

 $\cos \theta$

á

$D^+_{(s)} \rightarrow K_S K^+$ channels

Using (anti-)symmetric properties of A_{CP} (A_{FB}) in $cos \theta_D^{CMS}$

$$A_{CP}^{D} = \frac{1}{2} \left[A_{K \ corr}^{D} (\cos \theta_{D}^{\text{CMS}}) + A_{K \ corr}^{D} (-\cos \theta_{D}^{\text{CMS}}) \right]$$

$$A_{FB}^{D} = \frac{1}{2} \left[A_{\pi \ corr}^{D} (\cos \theta_{D}^{\text{CMS}}) - A_{\pi \ corr}^{D} (-\cos \theta_{D}^{\text{CMS}}) \right]$$

Source		$D^+ \rightarrow K_S \pi^+$	$D_s^+ \rightarrow K_S \pi^+$	$D^+ \rightarrow K_S K^+$	$D_s^+ \rightarrow K_S K^+$
	$D_s^+ ightarrow \phi \pi^+$ statistics	0.18	0.18	-	-
$A_{\rm rec}^{D_s^+ \to \phi \pi^+}$	$A_{ m rec}^{D_{s}^{+} ightarrow \phi \pi^{+}}$ binning	0.03	0.03	-	-
	$M(K^+K^-)$ window	0.03	0.03	-	-
	$D_s^+ \rightarrow \phi \pi^+$ statistics	-	-	0.18	0.18
	$A_{ m rec}^{D_s^+ o \phi \pi^+}$ binning	-	-	0.03	0.03
^K ⁻	$M(K^+K^-)$ window	-	-	0.03	0.03
A_{ϵ}	$D^0 \rightarrow K^- \pi^+$ statistics	-	-	0.06	0.06
	$A_{\epsilon}^{K^{-}}$ binning	-	-	0.04	0.04
	Possible $A_{CP}^{D^0 \rightarrow K^- \pi^+}$	-	-	0.01	0.01
$\cos \theta_{D^+}^{CMS}$ binning		-	-	0.06	0.06
(s)		0.04	0.07	0.10	0.05
Fitting		0.04	0.27	0.12	0.05
K^{\vee}/K^{\vee} -material effects		0.06	0.06	0.06	0.06
Total		0.20	0.33	0.25	0.22

Table of systematic uncertainty in A_{CP} (%).

イロト イヨト イヨト イヨト

2

\overline{CPV} in $D^+_{(s)} \to K_S h^+$ decays: Results

A_{CP} in	Belle (%)	Cleo (%)	HFAG WA (%)	A_{CP}^{SM} (%)
$D^+ o K_S \pi^+$	$-0.71{\pm}0.19{\pm}0.20$	$-1.3{\pm}0.7{\pm}0.3$	-0.72 ± 0.26	-0.332^{\dagger}
$D_s^+ o K_S \pi^+$	$+5.45{\pm}2.50{\pm}0.33$	$+16.3{\pm}7.3{\pm}0.3$	$+6.5\pm2.5$	+0.332
$D^+ \to K_S K^+$	$-0.16{\pm}0.58{\pm}0.25$	$-0.2{\pm}1.5{\pm}0.9$	-0.09 ± 0.63	-0.332
$D_s^+ \to K_S K^+$	$+0.12{\pm}0.36{\pm}0.22$	$+4.7{\pm}1.8{\pm}0.9$	$+0.28\pm0.41$	-0.332^{\dagger}

[†] Interference of CF and DCS amplitudes is neglected.

Major source of systematics is due to h[±] reconstruction asymmetry correction (limited sample sizes of D⁺_s → φπ⁺ and D⁰ → K⁻π⁺)
 Scales with luminosity!