

Online conference

IGGS 2020 October 26-30

Higgs boson to charms, taus, and muons

on behalf of the ATLAS and CMS Collaborations

Introduction

Higgs decay to lepton and second fermion generation

- Higgs to $\tau\tau$
- Higgs to µµ
- Higgs to cc

ATLAS

HC Delivered

ATLAS Recorded

Good for Physics

ATLAS ATLAS ATLAS ATLAS ATLAS Ref ATLAS Ref ATLAS Ref ATLAS ATLAS ATLAS Ref ATLAS ATL

20

Jan'15

ِ 160 وَ

ATLAS & CMS are upgrading the analysis To the full Run 2 luminosity

√s = 13 TeV

Delivered: 156 fb

Recorded: 147 fb⁻¹ Physics: 139 fb⁻¹

Jul¹⁵Jan¹⁶Jul¹⁶Jan¹⁷Jul¹⁷Jan¹⁸Jul¹⁸

Andrea Carlo Marini

The fermionic sector

- The fermionic sector is characterised by Yukawa couplings to the Higgs boson
 - Proportional to the fermion mass!
- New physics may modify the fermionic sector differently from the boson one.
 - Precision mapping of the couplings is key to understand the nature of the Higgs boson
 - Asymmetries in the leptonic vs the quark sector
 - Asymmetries across the fermionic generations

Exploring the couplings to the leptons (taus, muons) and to the second fermion generation (muons, charms)

CERN

$H \rightarrow \tau \tau - ATLAS$

PRD 99 (2019) 072001

• Challenges: $\tau_{\text{lep}} \tau_{\text{lep}} \text{VBF}$ $Z \rightarrow \parallel \text{CR}$ $\tau_{\text{lep}} \tau_{\text{lep}}$ boosted $Z \rightarrow H \text{ CR}$ Talk from Andrew ATLAS Trigger and identification √s = 13 TeV, 36.1 fb⁻¹ $H \rightarrow \tau \tau$ III Top Other backgrounds $\rightarrow \tau \tau$ $Z \rightarrow \parallel$ \square Misidentified τ • Analyzed all final states in τ^{had} and τ^{let} $\tau_{\rm lep} \tau_{\rm lep}$ boosted $\begin{array}{c} \tau_{\rm lep} \tau_{\rm lep} \, {\rm VBF} \\ {\rm top} \, {\rm CR} \end{array}$ $\tau_{\rm lep}\tau_{\rm had}\,{\rm VBF}$ $\tau_{\rm lep} \tau_{\rm had}$ boosted $\tau_{had} \tau_{had} VBF$ top CR top CR top CR high- $p_{\tau}^{\tau\tau}$ SR Targeting STXS Stage 0 $\tau_{\text{lep}} \tau_{\text{had}}$ boosted high- $p_{\tau}^{\tau\tau}$ SR $au_{had} au_{had} VBF$ tight SR $\tau_{lep} \tau_{lep}$ VBF tight SR $\tau_{\text{lep}} \tau_{\text{lep}}$ boosted high- $p_{\tau}^{\tau\tau}$ SR $\tau_{lep} \tau_{had} VBF$ tight SR $\tau_{\rm had} \tau_{\rm had}$ boosted high-p_T SR Dominant background: • Misidentified taus and $DY \rightarrow \tau \tau$ $\tau_{\rm lep} \tau_{\rm had} \, {\rm VBF}$ $au_{\rm lep} au_{\rm lep}$ VBF loose SR $\tau_{\rm lep} \tau_{\rm lep}$ boosted $\tau_{\rm lep} \tau_{\rm had}$ boosted $\tau_{had} \tau_{had} VBF$ $\tau_{had} \tau_{had}$ boosted loose SR low- $p_{-}^{\tau\tau}$ SR $low - p_{-}^{\tau\tau} SR$ loose SR low-p_T SR DY estimated from MC simulation misided taus from fake factors $\tau_{\rm lep} \tau_{\rm lep}$ $\tau_{\rm lep} \tau_{\rm had}$ $\tau_{\rm had} \tau_{\rm had}$ Events categorized to target the Analysis $p_{\rm T}$ requirement [GeV] Analysis different production modes 2015 channel Trigger 2016 Single electron $\tau_{\rm lep} \tau_{\rm lep}$ & 25 27 21 Single muon 27 • DY MC validated in dedicated regions $\tau_{\rm lep} \tau_{\rm had}$ 15/1518/18 Dielectron $\tau_{\rm lep} \tau_{\rm lep}$ 19/10 24/10Dimuon Electron+muon 18/15 18/15 40/3040/30Di- $\tau_{had-vis}$ $au_{
m had} au_{
m had}$

Andrea Carlo Marini

CMS-PAS-HIG-19-010

- Cut based analysis targeting STXS production
 - STXS Stage 1.2

 $H \rightarrow \tau \tau - CMS$

• In $\ell \tau^{h}$ channels requirement on m_T<50 GeV (ℓ =e,µ)

NUTITI PROTIN

- In the eµ channel requirement on $D_{\zeta} > -30$ GeV
- Sensitivity to ggH high p_{T} and to VBF topology

Channel	Trigger requirement	Minimal lepton selection		
		$p_{\rm T}$ (GeV)	η	Isolation
$ au_{\rm h} au_{\rm h}$	$ \begin{array}{c} \tau_{\rm h}[35] \And \tau_{\rm h}[35] \ (2016) \\ \tau_{\rm h}[40] \And \tau_{\rm h}[40] \ (2017, 2018) \end{array} $	$p_{\mathrm{T}}^{\tau_{\mathrm{h}}} > 40$	$ \eta^{\tau_{\rm h}} < 2.1$	DNN τ_h ID
$\mu \tau_{\rm h}$	$ \begin{array}{l} \mu[22] \ (2016) \\ \mu[19] \& \tau_{\rm h}[21] \ (2016) \\ \mu[24] \ (2017, 2018) \\ \mu[20] \& \tau_{\rm h}[27] \ (2017, 2018) \end{array} $	$p_{\rm T}^{\mu} > 20 \ p_{\rm T}^{{ au}_{\rm h}} > 30$	$ \eta^{\mu} < 2.1$ $ \eta^{ au_{ m h}} < 2.3$	$I^{\mu} < 0.15$ DNN $ au_{ m h}$ ID
eτ _h	$\begin{array}{c} e[25] \ (2016) \\ e[27] \ (2017) \\ e[32] \ (2018) \\ e[24] \ \& \ \tau_h[30] \ (2017, 2018) \end{array}$	$p_{\rm T}^{\rm e} > 25 \ p_{\rm T}^{ au_{\rm h}} > 30$	$ \eta^{ m e} < 2.1$ $ \eta^{ au_{ m h}} < 2.3$	$I^{ m e} < 0.15$ DNN $ au_{ m h}$ ID
eμ	$e[12] \& \mu[23]$ (all years) $e[23] \& \mu[8]$ (all years)	$\min(p_{T}^{e}, p_{T}^{\mu}) > 15$ $\max(p_{T}^{e}, p_{T}^{\mu}) > 24$	$ert \eta^{\mathrm{e}} ert < 2.4 \ ert \eta^{\mu} ert < 2.4$	$I^{ m e} < 0.15$ $I^{\mu} < 0.15$

$$m_{\rm T} \equiv \sqrt{2p_{\rm T}^{\ell}p_{\rm T}^{\rm miss}[1-\cos(\Delta\phi)]}$$

$$D_{\zeta} = p_{\zeta} - 0.85 \, p_{\zeta}^{\mathrm{vis}}$$

 p_{ζ} : p_{T}^{miss} bisector of the leps p_{ζ}^{vis} : Σp_{T}^{lep} on the bisector

Andrea Carlo Marini

26 October 2020

CERN

FUILI RUID 2 Categories constructed targeting STXS Stage 0

 $H \rightarrow \tau \tau - CMS$

• In each category 2D fit, $m_{\tau\tau}$ and an observable discriminating the Stage 1.2 process.

Final state	Category	Selection	Observables
	0-jet	0 jet	$m_{\tau\tau}, \tau_{\rm h} p_{\rm T} (\ell \tau_{\rm h})$
			$m_{\tau\tau}$ (e μ)
	VBF low $p_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_$	\geq 2 jets, m_{jj} > 350 GeV, p_{T}^{H} < 200 GeV	$m_{\tau\tau}, m_{jj}$
$\ell \tau_{\rm h}$, e μ	VBF high $p_{\rm T}^{\rm H}$	\geq 2 jets, $m_{jj} > 350 \text{GeV}$, $p_{\text{T}}^{\text{H}} > 200 \text{GeV}$	$m_{\tau\tau}, m_{jj}$
	Boosted 1 jet	1 jet	$m_{ au au}, p_{\mathrm{T}}^{\mathrm{H}}$
	Boosted \geq 2 jets	Not in VBF, \geq 2 jets	$m_{ au au}, p_{\mathrm{T}}^{\mathrm{H}}$
-	0-jet	0 jet	$m_{\tau\tau}$
	VBF low $p_{\rm T}^{\rm H}$	\geq 2 jets, $\Delta \eta_{jj} > 2.5(2.0 \text{ for } 2016)$,	$m_{ au au}, m_{ii}$
$ au_{\rm h} au_{\rm h}$		$100 < p_{\rm T}^{\rm H} < 200 { m GeV}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	VBF high $p_{\rm T}^{\rm H}$	\geq 2 jets, $\Delta \eta_{ii} > 2.5(2.0 \text{ for } 2016)$,	$m_{ au au}$, m_{ii}
	14	$p_{\rm T}^{\rm H} > 200 {\rm GeV}$	"
	Boosted 1 jet	1 jet	$m_{ au au}, p_{\mathrm{T}}^{\mathrm{H}}$
	Boosted \geq 2 jets	Not in VBF, \geq 2 jets	$m_{ au au}, p_{\mathrm{T}}^{\mathrm{H}}$
-			

Andrea Carlo Marini

FUITI RUID 2 $H \rightarrow \tau \tau - CMS$

CMS-PAS-HIG-19-010

CMS Simulation Preliminary

ggH-0j/pT[0-10]

ggH-1j/pT[60-120]

ggH-2j/pT[60-120]

ggH-2j/mJJ>700

ggH/pT[450-650]

qqH-2j/mJJ[120-350]

qqH-1j

137 fb⁻¹ (13 TeV)

ggH-1j/pT[0-60]

ggH-2j/pT[0-60]

ggH/pT[300-450]

qqH-0j

ggH-2j/mJJ[350-700]

qqH-2j/mJJ[60-120]

qqH-2j/mJJ>700

Exp.

 $\tau_h \tau_h$

ggH-0j/pT[10-200]

ggH-1j/pT[120-200]

ggH-2j/pT[120-200]

ggH/pT[200-300]

qqH-2j/mJJ[0-60]

qqH-2j/mJJ[350-700]

ggH/pT>650

Deep Tau ID:

- Deploying DNN for τ -ID
- Increase background rejection

Tau embedding:

- for precise estimate of the Z background
- Background from jet $\rightarrow \tau_h$ from fake

rate method

IFUITI RUID $H \rightarrow \tau \tau - CN$

CMS-PAS-HIG-19-010

 Results presented in topology based and process 137 fb⁻¹ (13 TeV) CMS Preliminary Topology-based based merging · Obs. -±**1**σ ±**1**σ stat. th. stat. syst. bbb Stage 0 0.16^{+3.22} +1.63 +1.91 +1.00 +1.74 -3.91 -1.86 -1.92 -1.88 -2.13 μ qqH non-VBF topo. 2016 2017 2018 $\frac{\tau_{\rm h}\tau_{\rm h}}{0.76^{+0.19}_{-0.17}}$ Combined eμ eτ $\mu \tau_{\rm h}$ $\begin{array}{c} 0.85\substack{+0.12\\-0.11}\\ 0.98\substack{+0.20\\-0.19}\\ 0.67\substack{+0.23\\-0.22}\end{array}$ $\begin{array}{c} 0.64\substack{+0.20\\-0.19}\\ 0.72\substack{+0.35\\-0.34}\end{array}$ $\begin{array}{r} 0.93\substack{+0.20\\-0.15}\\ 1.40\substack{+0.33\\-0.29}\end{array}$ $1.29^{+0.51}_{-0.47}$ $2.47^{+0.91}_{-0.84}$ $0.99^{+0.27}$ $0.95^{+0.17}_{-0.17}$ $1.13^{+0.23}_{-0.21}$ $0.99_{-0.27}^{+0.27}$ $\frac{1.13^{+0.29}_{-0.21}}{0.83^{+0.39}_{-0.36}}$ $0.42^{+0.53}_{-0.24}$ $\begin{array}{c} 0.76 \substack{-0.17\\-0.17}\\ 1.29 \substack{+0.44\\-0.37}\\ 0.09 \substack{+0.39\\-0.38}\end{array}$ **-0.04**^{+0.54} +0.10 +0.48 +0.14 +0.23 _0.56 -0.10 -0.48 -0.15 -0.24 μ mJJ[350-700] μ_{ggH} $-0.17^{+0.98}_{-0.95}$ $1.41^{+0.49}_{-0.46}$ $1.54^{+0.502}_{-0.47}$ $0.51_{-0.46}^{+0.48}$ $0.36_{-0.29}^{+0.30}$ $0.89^{+0.38}_{-0.37}$ μ_{qqH} -0.46μ mJJ>700 Stage 1.2 μ qqH-2j/pT>200 $0.57^{+0.44}_{-0.42} \ \ {}^{+0.09}_{-0.38} \ \ {}^{+0.11}_{-0.18} \ \ {}^{+0.18}_{-0.08} \ \ {}^{-0.18}_{-0.18}$ 137 fb⁻¹ (13 TeV) **CMS** Preliminary σB (fb) **Observed** \blacksquare ±1 σ (stat.) - ±1 σ Uncertainty in SM prediction 10⁴ 2960+394 3060⁺⁵⁹²-552 $0.64^{+1.31}_{-0.99} \ \ {}^{+1.10}_{-0.53} \ \ {}^{+0.58}_{-0.51} \ \ {}^{+0.27}_{-0.51} \ \ {}^{+0.33}_{-0.51}$ μ ggH-2j/mJJ<350 Process-based -964⁺⁸⁶⁴ 1010+264 374⁺⁵⁵²-515 -756⁺⁵¹⁹ 10³ $1.09_{-0.80}^{+0.88} \ \ \, {}^{+0.51}_{-0.31} \ \ \, {}^{+0.58}_{-0.29} \ \ \, {}^{+0.33}_{-0.36}$ μ ggH/pT[200-300] 221^{+75.3} 19.0⁺²⁵¹ 100300000 99.1^{+51.9} ł 32.9^{+17.7} 10² μ ggH/pT>300 -18.9^{+45.8} 24.2+24.3 13.0^{+7.8} 6.41^{+4.40} $0.03^{+0.45}_{-0.50} \ \ \, \overset{+0.04}{_{-0.04}} \ \ \, \overset{+0.17}{_{-0.17}} \ \ \, \overset{+0.37}{_{-0.29}} \ \ \, \overset{+0.19}{_{-0.29}}$ μ ggH-0j/pT<200 10 Ratio to SM $\textbf{-1.53}^{+1.32}_{-1.33} \begin{array}{c} +0.33 \\ +0.72 \\ +0.87 \\ +0.61 \\ -0.71 \\ -0.84 \\ -0.59 \end{array}$ ^{*}ggH-1j/pT[0-60] **3.86**^{+1.25} +0.83 +0.74 +0.38 +0.43 -1.21 -0.61 -0.74 -0.51 -0.52 μ ggH-1j/pT[60-120] -3 ggH-1j/pT[60-120] ggH-1j/pT[0-60] ggH-1j/pT[120-200] ggH-2j/pT<200 ggH/pT>300 qqH non-VBF topo qqH-2j/mJJ>700 qqH-2j/pT>200 ggH-0j/pT<200 ggH/pT[200,300] 100-700] adH-2j/mJJ[350-700] ╈ -Hgg qqH μ ggH-1j/pT[120-200] 0 5 10 15 Parameter value

Andrea Carlo Marini

26 October 2020

25

20

$H \rightarrow cc - ATLAS$

PRL 120 (2018) 211802

- BR (H → cc) 2.9%
- Analysis using 2016 dataset
- Targeting $ZH \rightarrow \ell \ell cc$ $(\ell=e,\mu)$
 - 4 categories (c-tagging & pTZ)
- Main background from Z+jets production
- Charm tagging:
 - Training 2 BDT to discriminate vs light and b jets

ATLAS $\mu_{\rm VH(H\to cc)} < 110(150^{+80}_{-40})$

Andrea Carlo Marini

$H \rightarrow J/\psi \gamma$, $\psi(2s) \gamma - ATLAS$

PLB 786 (2018) 134

- Sensitivity to the coupling of the charm through a loop contribution
 - Also $\Upsilon \gamma$ presented (sensitivity to the bottom coupling)
 - Kinematic requirements are applied in order to enhance the signal contribution
- Non parametric background model derived from Control regions and validated in dedicated regions
- 2D fit in $m_{\mu\mu}$ and $m_{\mu\mu\gamma}$

Branching fraction limit (95% CL)	Expected	Observed un					
$\mathcal{B}(H \to J/\psi \gamma) [10^{-4}]$	$3.0^{+1.4}_{-0.8}$	3.5					
$\mathcal{B}\left(H \to \psi\left(2S\right)\gamma\right)[10^{-4}]$	$15.6^{+7.7}_{-4.4}$	19.8					
ATLAS							

26 October 2020

ATLAS

60

40

30

20

10

50

Data/Bkgd

$H \rightarrow \mu \mu - ATLAS$

arXiv 2007.07830

RUIN

Tiny BR (H \rightarrow µµ) ~ 2.2 × 10⁻⁴

large SM irreducible DY $\rightarrow \mu\mu$ background - S/B ~ 0.1% for inclusive events at 125 GeV Improvements to increase sensitivity:

- wrt 36fb⁻¹ ATLAS result (25%)
- Targeting all production modes
- Improved MVA categorisation to select events at high S/B, e.g. from VBF
- γ -FSR recovery to improve $\sigma(m_{\mu\mu})$
- Improved rejection of jets from pileup
- Background modelling
- Signal extraction from m_{µµ} fit

Background parametrisation:

- inclusive "core" pdf + per-category
 - empirical function

Andrea Carlo Marini

26 October 2020

110

115

120

125

130

135 140 145

150

155

 $m_{\mu\mu}$ [GeV]

160

Andrea Carlo Marini

Andrea Carlo Marini

26 October 2020

H→µµ

arXiv 2009.04363

Not Contraction of the second second

-ocal p-value

10

 10^{-2}

2σ

- IS WILL RUND & Resulted reported at the best mass measurement m_H=125.38 GeV
- Strength 1.19 +0.44 -0.42
- Evidence for $H \rightarrow \mu\mu$ 3.0 σ (2.5 σ)
- Coupling measurement of κ_{μ}
 - With the inputs from EPJ C79 (2019) 412

Summary

35.9-137 fb⁻¹ (13 TeV)

Quarks

Higgs boson

 10^{2}

particle mass (GeV)

 ν_{μ}

g

10

Force carriers

- CMS and ATLAS have been updating the analyses to the full run 2 luminosity **CMS** Preliminary ້ວ † ຍ|>¹⁰⁻¹ Ηττ m_H = 125.38 GeV p-value = 44% STXS stage 1.2 by CMS (137 fb⁻¹) ATLAS 36 fb⁻¹ results Stage 0 Stage 0 not dominated by stat. 10⁻² Leptons and neutrinos **Hcc** (36 fb⁻¹) 10⁻³ searched in VH associated production • *σB* < 70 (37) SM **CMS** • *σB* < 110 (150) SM **ATLAS** 10^{-4} Ratio to SM 1.5 **H**μμ full Run 2 analyses: • ATLAS 2.0 σ (1.7 σ), 0.5 10^{-1}
 - CMS Evidence for $H \rightarrow \mu\mu$ 3.0 σ (2.5 σ)
 - Best fit strength: $\mu = 1.2$ for both

Thankyou

CN

October 26-30

The CMS Detector

The CMS Detector

The ATLAS detector

Andrea Carlo Marini

202

26 October 2020

CMS

The ATLAS detector

Tile calorimeters Tile calorimeters LAr hadronic end-cap and forward calorimeters Muon chambers Solenoid magnet Transition radiation tracker

Semiconductor tracker

.....

25m

STXS

• A compromize between theory and experiments

Andrea Carlo Marini

$H \rightarrow \tau \tau - CMS$

• Merging criteria in STXS Stage 1.2

Andrea Carlo Marini

$H \rightarrow \tau \tau - CMS$

• Merging criteria in STXS Stage 1.2

The Higgs boson mass

Precise measurement of the Higgs boson mass using the diphoton and ZZ (4-leptons) decay channels

$m_H = 125.38 \pm 0.14 \text{ GeV}$

Andrea Carlo Marini

Higgs production

Η

bbH

ttH+tH

ZΗ

0'48:pb

WН

VBF

ttH

Huu invariant mass

• Invariant mass of the Hµµ peak in MC simulation

Andrea Carlo Marini

Core PDF — Hµµ CMS

• The background function is designed to minimise possible mismodels due to the choice of the analytical form

Andrea Carlo Marini

Core PDF — Hµµ CMS

• The background function is designed to minimise possible mismodels due to the choice of the analytical form

