

CMS Experiment at the LHC, CERN Data recorded: 2016-May-31 09:26:24.197376 GMT Run / Event / LS: 274250 / 1058807020 / 543

Measurements of associate VH production

L. Mastrolorenzo¹ On behalf of the CMS and ATLAS Collaboration

RWTH Aachen University

<u>Higgs 2020</u> 26-30 October 2020

Higgs-Strahlung (associated production)

- > 4% of Higgs production mechanism
- Full EW corrections known: they decrease the cross section by 5-10%

- > For ZH at NNLO, further diagrams from gg initial state
- > Important at the LHC (+2-6% effect up to +14% at high- p_T)

Experimental advantages:

- ➤ Vector boson (V) decay leptonically: → Benefit from lepton triggers
- V-Boost: Further reduce background requiring high vector-p_T

- Unique final state to measure coupling with down-type quarks
- > H \rightarrow bb has the largest BR (58%) for m_H=125 GeV
- > Drives the uncertainty on the total Higgs boson width
 - Constraints potential BSM contributions
- > Only recently observed by both ATLAS and CMS

- High BR
- Low mass resolution
- Low S/B

- Highly efficient b-jets identification
- Improved resolution on m(bb)
- Full event information to increase S/B

VH production plays a crucial role

- > W/Z decays leptonically
- W/Z produced generally back-to-back wrt Higgs
- Possible to exploit the W/Z transverse boost
- \rightarrow Provides the highest sensitivity to $H \rightarrow bb$

- Exploiting the most discriminating variables ($m_{b\bar{b}}$, $\Delta R_{b\bar{b}}$, b-tag)
- > Control regions to validate backgrounds and constrain normalizations
- Signal extraction: binned maximum likelihood fit of final MVA/mass distribution

 \geq

SATLAS CMS - Event Selection+Categorization

- Selections (jets, leptons, b-tagging) optimized separately by channel
 - > 4 analysis categories:
 - 0-lepton: p_T(Z) > 170 GeV
 - 1-lepton: p_T(W) > 150 GeV
 - 2-lepton High-Vp_T: p_T(Z) > 150 GeV
 - 2-lepton Low-Vp_T: 50 GeV < p_T(Z) < 150 GeV

- Control regions designed to map closely each signal region
 - Inverted selections to enhance purity in targeted backgrounds:
 - tt, V+light flavor, and V+heavy flavor

SATLAS CMS - Improvements in m(jj) resolution

Improvements in di-jet mass resolution:

- Better b-jet identification vs 2016
 - → Improved b-tagger (2017)
 - →+ new pixel detector (2017)
- b-jet energy regression + FSR
- Kinematic fit in 2-lepton channel

Signal extraction:

> Use of (DNN) to discriminate sig. from bkg. in SR + various bkg in CRs

CMS.

CMS - Combinations

Combination of VH(H→bb) measurement

Significance (σ)						
Data set	Expected Observed		Signal strength			
2017	3.1	3.3	1.08 ± 0.34			
Run 2	4.2	4.4	1.06 ± 0.26			
Run 1 + Run 2	4.9	4.8	1.01 ± 0.23			

<u>Combination of VH(H→bb) with</u> other H→bb measurement

Physics case:

- VH(bb) analysis with full run-2 dataset, provides best constraint to Higgs boson width
- > Provides best sensitivity to WH(bb) and ZH(bb) decays
- > Interpretation within the STXS framework and EFT

■ H→bb analysis strategy

- ≻ Full Run-2 dataset (~139 fb⁻¹)
 → MET and single-lepton triggers
- Categorization based on lepton multiplicity (targeting Z(II), Z(nn), W(In))
- MV2c10 tagger, based on BDT, receiving as inputs the tracks d₀, displaced vertex collection, and the topological decay chain reconstruction to identify b-jets
- > Higgs boson reconstructed via 2 AK4 jets

Improvements

- Enhanced object calibrations
- More coherent categorisation (selection vs STXS binning)
- Re-optimised multivariate discriminants
- Redefinition of signal and control regions
- Significant increase in MC stats

2007.02873

Results:

- Signal extraction: Likelihood fit to MVA discriminant in signal regions + normalization taken from fit in control regions.
- Inclusive analysis dominated by systematics
- > Reached >5 σ in ZH channel and >4 σ in WH

Physics case:

2008.02508

- The previous ATLAS analyses were mainly sensitive to Higgs boson with a 100<p_T<300geV</p>
- For higher Higgs boson p_T, the Higgs decay product can be so close that it results difficult to reconstruct them as two distinct jets

■ H→bb boosted analysis strategy

- > Full Run-2 dataset (~139 fb⁻¹) \rightarrow selected by MET and single-lepton triggers
- Categorization based on lepton multiplicity (targeting Z(II), Z(nn), W(In))
- > Higgs boson reconstructed in a single large calorimeter jet (R=1.0) with ≥2 constituents and a p_T >250 GeV (same threshold also for vector p_T)
- The b-tagging algorithm used to identify b-jet is the same as in the resolved analysis
- Dominant background: V+jets, tt+jets, single-top, di-bosons

Results:

- Signal extraction: Likelihood fit to large-jet mass, combined in signal and control regions
- > Measurement of the signal strength $\mu_{VH}^{bb} = 0.72^{+0.39}_{-0.36} = 0.72^{+0.29}_{-0.28} (\text{stat.})^{+0.26}_{-0.22} (\text{syst.})$
- STXS analysis + constraints on anomalous Higgs boson interactions
- Significant overlap with the "resolved" H(bb) analysis, difficult to combine
- > The analysis still dominated by statistical uncertainties

1st CMS analysis with full Run-2 data!

Higgs boson properties

Eur. Phys. J. C 80 (2020) 957

- Inclusive cross section measurement
- Cross section measurements for different production mode (STXS)
- Interpretation of coupling modifier and tensor structure within EFT theory
- > Re-analysis with full run-2 data to increase the sensitivity

Higgs boson properties

- Extensive categorization used to target different production mode
- Categorization based on decay of Ws in ttH mode, lepton multiplicity (VH) and number of jets (ggH, VBF)
- > MLP and RNN used to separate signal from background in final fit

CMS

ATLAS

CMS Preliminary

137 fb⁻¹ (13 TeV)

Predicted STXS class

- Select events with 2 isolated photons from full Run-2 dataset (137 fb⁻¹) \succ
- Categorization to tag ggH, VBF, VH and ttH production mechanisms \triangleright
- The di-photon signal is very well reconstructed thanks to the excellent energy \geq resolution of the CMS ECAL
- **Analysis strategy**

Classify

180

Fit data per category

CMS Preliminary

137 fb⁻¹ (13 TeV)

160

170

 $m_{\gamma\gamma}$ (GeV)

Results

- > Assuming SM couplings, an 8% uncertainty on the signal strength is achieved (neglecting theory uncertainties) $\mu = 1.03^{+0.11}_{-0.09} = 1.03^{+0.07}_{-0.05}$ (theo) $^{+0.04}_{-0.03}$ (syst) $^{+0.07}_{-0.06}$ (stat)
- > All μ 's targeting specific production modes are in agreement with the SM
- > Analysis start be limited by theory uncertainties

CMS - $H \rightarrow \gamma \gamma$ Full Run2

Results

ATLAS

CMS.

- > Analysis designed to enable measurements within STXS framework (stage 1.2)
- All results are found to be in agreement with the SM expectations
 CMS Preliminary
 137 fb⁻¹ (13 TeV)

ATLAS - $H \rightarrow \gamma \gamma$ Full Run-2

Analysis strategy <u>ATLAS-CONF-2020-026</u>

- Analysis optimized to measure x-sec in STXS-1.2 framework (in |y_H|<2.5)
- Each class is divided into multiple categories via binary BDT classifier
- The analysis is sensitive to the x-sec of the different production modes
- Signal modelled with DSCB and the continuous background with function that fit template build out of MC and data in control regions

Results

- > Inclusive cross section measurement: $(\sigma \times B_{\gamma\gamma})_{obs} = 127 \pm 10 \text{ fb} = 127 \pm 7 \text{ (stat.)} \pm 7 \text{ (syst.) fb}$
- > ZH and WH:

→ SM expected:
$$(\sigma \times B_{\gamma\gamma})_{exp} = 116 \pm 5 \text{ fb.}$$

- Higher uncertainties
- Small tension if compared to SM, but still compatible within 2 sigma

Phys. Rev. Lett. 120 (2018) 211802

VH(cc) search:

- > Targeting VH(cc) process in the di-lepton Z final state
- Exploit lepton trigger + boost of Z boson to reduce background
- Categorization in number of c-tagged jets

- New search for ZH(cc) production exploiting new c-tagging techniques provides
 95% C.L exclusion limit of (pp→ZH)xBR(H→cc)<2.7 pb
- Excluded 110xSM prediction with 36.1fb⁻¹ of data collected

JHEP03(2020)131

Combination: resolved-jet: p_T(V) < 300 GeV / merged-jet: p_T(V) > 300 GeV

- > Systematics: correlated, but: c/cc-tagging efficiency & PDF, μR, μF for V+jets
- Validation with VZ(Z \rightarrow cc) : $\mu_{VZ(Z\rightarrow cc)}$ = 0.55^{+0.86}-0.84 with 0.7 σ obs. (1.3 σ exp.)

95% C.L. Exclusion Limits							
	Resolved-jet	Boosted-jet	Combination				
	p _T (V)<300 GeV	p _⊤ (V)>300 GeV	OL	1L	2L	All. Ch.	
Exp.	45 ⁺¹⁸ -13	73 ⁺³⁴ -22	79 ⁺³² -22	72 ⁺³¹ -21	57 ⁺²⁵ -17	37 ^{+16 (+35)} -11 (-17)	
Obs.	86	75	83	110	93	70	

CMS

ATLAS EXPERIMENT

Conclusions

- The excellent LHC performance has delivered an enormous dataset:
 - With full Run-2 dataset, we are measuring precise features of the Higgs boson, with particular focus on its couplings and CP properties
- > During Run-2, ATLAS and CMS have both achieved a >5σ observation of the H→bb decay
 - Combination of several channels: sensitivity dominated by VH(bb)
- Exploring more detailed kinematic regions sensitive to BSM effects through STXS and differential distributions
 - VH production mode has been investigated by ATLAS and CMS in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$
 - ATLAS carried out the measurements of the VH(bb) process with full Run-2 data, targeting the resolved and boosted regimes of the Higgs boson
 - ATLAS observed ZH production mode and reached a strong evidence of WH with the full Run-2 analysis
 - CMS VH(bb) full Run-2 will be out soon as well

Back Up

Introduction

CMS Integrated Luminosity, pp, $\sqrt{s} = 13$ TeV

- Average of 34 pile-up interaction per bunch crossing
- During 2017, max pile-up in data-taking, reaching >60
- Great challenge for CMS event reconstruction

Data-taking in Run-2

- LHC outperformed expectation, delivering 163 fb⁻¹ (>8x10⁶ Higgs boson produced!)
- CMS recorded more than 92% of the delivered luminosity
- > Thanks LHC!

Biggest achievement during Run-2

Couplings to 3rd generation fermions

- > In 2016, CMS <u>observed $H \rightarrow \tau \tau$ </u>. It was the first evidence of such decay by a single experiment (previously observed in 2015 by ATLAS+CMS)
- In 2018, observation of ttH
- > In 2018, <u>observation of H→bb</u>

Biggest achievement during Run-2

Couplings to 2rd generation fermions

Event Selection+Categorization - ATLAS

- Selections (jets, leptons, b-tagging) optimized separately by channel
 - > 4 analysis categories + split in 2- and 3-jets:
 - 0-lepton: p_T(Z) > 150 GeV
 - 1-lepton: p_T(W) > 150 GeV
 - 2-lepton High-Vp_T: p_T(Z) > 150 GeV
 - 2-lepton Low-Vp_T: 75 GeV < p_T(Z) < 150 GeV

6 Control regions:

- > 2 W+HF CRs
- > 4 top CRs

2-lepton

Signal extraction – CMS

• <u>CMS</u>

ATLAS O long

1-lepton

2-lepton Events / 0.13 - Data ATLAS VH, H → bb (µ=1.16) vs = 13 TeV, 79.8 fb⁻¹ 10⁴ Diboson 2 leptons, 2 jets, 2 b-tags Z+jets p^V ≥ 150 GeV tī Single top 10 Uncertainty ···· Pre-fit background - VH, H → bb × 10 10² 10 Ba Data/Pi 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 1

L. Mastrolorenzo - LHCP2019 - Puebla (Mexico)

Observation of $H \rightarrow bb$ decay mode

■ <u>Combination of VH(H→bb) with other H→bb measurement</u>

Phys. Lett. B 786 (2018) 59

- > Adopted by the LHC experiments as a common framework for Higgs measurements
- Purpose: reduce the theoretical uncertainties that are directly folded into the measurements as much as possible
- Allowing for the combination of the measurements between different decay channels as well as between experiments
- When combining measurements in different decay channels, one can either assume the SM branching ratios or consider the ratios of the branching ratios as additionalfree parameters.

Figure 2. Stage 1.1 bins for electroweak qqH production, $VBF+V(\rightarrow qq)H$.

Figure 3. Stage 1.1 bins for VH production, $V(\rightarrow \text{leptons})H$.

ATLAS - $VH \rightarrow bb$

STXS results

ATLAS - $VH \rightarrow bb$

EFT interpretation

HIG-19-001

- News:

STXS stage 1.2;

rare signal included: bbH, tHW, tqH (then bbH merged con ggH e tH con ttH);

electroweak bkg included (VVV e tt+V(V) e VBS); signal strength mu_WH and mu_ZH splitted (always VH merged).

- Kinematic discriminants: combining information of production and decay;

- Objects and event selections common between HIG-19-001 and HIG-19-009;
- Background estimation: qqZZ/ggZZ/EWK =>MC, reducible ZX => Data-driven.

HLT path	prescale	primary dataset
HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_v*	1	DoubleEG
HLT_DoubleEle25_CaloIdL_MW_v*	1	DoubleEG
HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass3p8_v*	1	DoubleMuon
HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_v*	1	MuonEG
HLT_Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ_v*	1	MuonEG
HLT_Mu12_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ_v*	1	MuonEG
HLT_DiMu9_Ele9_CaloIdL_TrackIdL_DZ_v*	1	MuonEG
HLT_Ele32_WPTight_Gsf_v*	1	SingleElectron
HLT_IsoMu24_v*	1	SingleMuon

Event is required to trigger on at least one of listed HLT paths

- Trigger eff. measured using TnP approach on events triggering single lepton HLT paths.
- Propagated to systematic uncertainty.

ZZ CANDIDATE SELECTION

Z candidate = any OS-SF pair that satisfy $12 < m_{ll(\gamma)} < 120$ GeV

Build all possible ZZ candidates, define Z₁ candidate with $m_{ll(\gamma)}$ closest to the PDG m(Z) mass @ m_{Z1} > 40 GeV, p_T(I1) > 20 GeV, p_T(I2) > 10 GeV @ Δ R>0.02 between each of the four leptons @ m_{II} > 4 GeV for OS pairs (regardless of flavour) @ reject 4µ and 4e candidates where the alternate pairing Z_aZ_b satisfies Im(Z_a)-m(Z)I<Im(Z₁)-m(Z)I and m(Z_b)<12 GeV @ m_{4I} > 70 GeV

If more than one ZZ candidate is left, choose the one of highest \mathcal{D}_{bkg}^{kin} If \mathcal{D}_{bkg}^{kin} is the same, take the one with Z₁ mass closest to m(Z)*

*For fiducial measurements take the one with Z₁ mass closest to m(Z)

Z2

17

Zb

OBSERVABLES

Production + decay discriminants used in VBF-2jet and VH-hadronic categories and their sub-categories exploit jet information to provide separation between different signal production modes

27

CP-even

CP-odd

- evolving from measuring 4 signal strengths (μ) in HIG-16-040 to over 20 parameters in HIG-19-015
- Not covered in this analysis:
- Higgs boson mass measurement (m_H)
- differential cross-section measurements

Analysis strategy

- Aim: to have a pure sample of diphoton events, fit the invariant mass distribution, exploiting the narrow H peak
- Analysis targets ggH, qqH (VBF and VH hadronic), ttH and tH, VH leptonic Stage 1.2 STXS bins
- Categories defined to target as many STXS bins as possible in each production mode, category splits made depending on available statistics
- Background reduction, and contamination from other H production modes reduced through the use of MVAs
- Data from all years is merged together
- Simultaneous fit to the diphoton invariant mass distributions in all categories, with the background determined from data

CMS

Triggers

- 2016: HLT_Diphoton30_18_R9Id_OR_IsoCaloId_ANDHE_R9Id_Mass90 ($p^{\gamma 1}_{T} > 30$ GeV, $p^{\gamma 2}_{T} > 18$ GeV)
- 2017+2018: HLT_Diphoton30_22R9Id_OR_IsoCaloId_ANDHE_R9Id_Mass90 ($p^{\gamma 1}_{T} > 30$ GeV, $p^{\gamma 2}_{T} > 22$ GeV)
- Trigger efficiency
- measured using the <u>tag-and-probe</u> method on DY events (less than 1% uncertainty)
- weights from the trigger efficiency are applied to simulated events in bins of η and R_g

ggH categorisation

Ingredients: diphoton BDT score + ggH multiclassifier

generator-level bins defined with p_T^H, N_{iets}, m_{ii}

- dedicated BSM region with $p_T^H > 200 \text{ GeV}$
- VBF-like ggH region with N_{iets} ≥ 2, m_{ii} > 350 GeV

reconstructed STXS 1.2 categories

- events assigned using a multiclass BDT: predicts probability that an event belongs to a given STXS bin
- inputs: jet, photon and diphoton kinematics
- training: ggH simulated events with standard pre-selection and m_i < 350 GeV cut

(VBF-like region considered in VBF categorisation instead)

p_T^H > 200 GeV events treated as a single class in multiclassifier

(further splits made using reco $p_{T}^{\gamma\gamma}$ value)

CMS

- observed (expected) 95% CL limit is 12 (9) x SM value
- two pairs of parameters highly correlated (2D fits in backup-S56)
- BSM bins (in qqH and ggH) : in agreement with SM

ATLAS - $H \rightarrow \gamma \gamma$ Full Run2

$\mathbf{H} \rightarrow \gamma \gamma: \mathbf{Categorization}$

All processes considered simultaneously, maximising global STXS sensitivity. Replaces sequential categorization.

- Step1: signal: Multi-class BDT with output discriminant for each STXS bin splits signal into classes, aiming to minimise determinant of the covariance matrix.
- Step2: signal vs continuum background: binary BDT in each class.

ATLAS - $H \rightarrow \gamma \gamma$ Full Run2

${ m H} ightarrow \gamma \gamma : { m VH}$

ATLAS - $H \rightarrow \gamma \gamma$ Full Run2

Uncertainties

	ggF+bbH	VBF	WH	ZH	$t\bar{t}H + tH$
Uncertainty source	$\Delta\sigma[\%]$	$\Delta\sigma[\%]$	$\Delta\sigma[\%]$	$\Delta\sigma[\%]$	$\Delta\sigma[\%]$
Underlying Event and Parton Shower (UEPS)	± 2.3	± 10	$<\pm1$	± 9.6	± 3.5
Modeling of Heavy Flavor Jets in non- $t\bar{t}H$ Processes	$<\pm1$	$<\pm1$	$<\pm1$	$<\pm1$	± 1.3
Higher-Order QCD Terms (QCD)	± 1.6	$<\pm1$	$<\pm1$	± 1.9	$<\pm1$
Parton Distribution Function and α_S Scale (PDF+ α_S)	$<\pm1$	± 1.1	$<\pm1$	± 1.9	$<\pm1$
Photon Energy Resolution (PER)	± 2.9	± 2.4	± 2.0	± 1.3	± 4.9
Photon Energy Scale (PES)	$<\pm1$	$<\pm1$	$<\pm1$	± 3.4	± 2.2
$ m Jet/E_T^{miss}$	± 1.6	± 5.5	± 1.2	± 4.0	± 3.0
Photon Efficiency	± 2.5	± 2.3	± 2.4	± 1.4	± 2.4
Background Modeling	± 4.1	± 4.7	± 2.8	± 18	± 2.4
Flavor Tagging	$<\pm1$	$<\pm1$	$<\pm1$	$<\pm1$	$<\pm1$
Leptons	$<\pm1$	$<\pm1$	$<\pm1$	$<\pm1$	$<\pm1$
Pileup	± 1.8	± 2.7	± 2.1	± 3.8	± 1.1
Luminosity and Trigger	± 2.1	± 2.1	± 2.3	± 1.1	± 2.3
Higgs Boson Mass	$<\pm1$	$<\pm1$	$<\pm1$	± 3.7	± 1.9

Searches: VH(cc) (2016)

JHEP03(2020)131

Channel	Resolved-jet	Merged-jet
Ζ(νν)Η(cc): 0L	p _T (Z) > 170 GeV	
W($\ell \nu$)H(cc): 1L	p _T (W) > 100 GeV	p _T (V) > 200 GeV
Z(ℓℓ)H(cc): 2L	р _т (Z) > 50 GeV	

Resolved-jet topology

- Higgs decay products resolved in two AK4 (R=0.4) jets (di-jet)
- Probe larger fraction of the available signal cross-section (95% of events have p_T(V)<200 GeV)
- DeepCSV tagger (CvsL, CvsB)

Merged-jet topology

- ➤ A single AK15 (R=1.5) jet to reconstruct the H→cc decay
- Allows to better exploit the correlations between the two charms
- > DeepAK15 tagger

Final results: combination of the two topologies to maximise the sensitivity

Searches: VH(cc) (2016)

- Combination: resolved-jet: p_T(V) < 300 GeV / merged-jet: p_T(V) > 300 GeV
 - > Systematics: correlated, but: c/cc-tagging efficiency & PDF, μ R, μ F for V+jets
- Validation with VZ(Z \rightarrow cc) : $\mu_{VZ(Z\rightarrow cc)}$ = 0.55^{+0.86}-0.84 with 0.7 σ obs. (1.3 σ exp.)

95% C.L. Exclusion Limits								
	Resolved-jet	Boosted-jet	Combination					
	p _T (V)<300 GeV	p _T (V)>300 GeV	OL	1L	2L	All. Ch.		
Exp.	45 ⁺¹⁸ -13	73 ⁺³⁴ -22	79 ⁺³² -22	72 ⁺³¹ -21	57 ⁺²⁵ -17	37 ^{+16 (+35)} -11 (-17)		
Obs.	86	75	83	110	93	70		

Heavy flavour tagger for AK15: DeepAK15

DeepAK15 tagger – cornerstone of the boosted VHcc analysis

- Reconstruction of moderately to largely boosted Higgs
- > DeepAK15: good compromise between signal purity and acceptance p_T>200 GeV

Boosted jet tagger "DeepAK8" adapted on AK15 jets

More information \rightarrow Huilin talk

- > DNN multiclassifier for top, W, Z, Higgs, and QCD jets
- Mass decorrelation techniques to mitigate mass sculpting
- > Validation in data using proxy jets from $g \rightarrow cc$

CMS-DP-2017-049

NIPS 2017 paper,

CMS-JME-18-002

Significant gain in performance [Even larger @high p_T]

Heavy flavour tagger for AK4: DeepCSV

Define two discriminants to separate c-jets from light and b-jets

Taggers working point used in the analysis allow for ~28% efficiency for charm jet while keeping the rate from b-jet ~15% and from light ~4%

Resolved-jet: Search Strategy

Higgs boson reconstruction

- ➢ Pair of jets with the highest CvsL-score → build Higgs candidate 4-vector
- Further require: CvsL(max) >0.4 & CvsB(min)>0.2 for the leading jet
- Final State Radiation (FSR) recovery
 - > Improve dijet invariant mass resolution by a few %
- Multivariate analysis for final signal extraction
 - BDT to further discriminate signal from backgrounds
 - > Dedicated training in each channel
 - Input variables: H properties, V boson properties, c-tagging discriminants, event kinematics & object correlations

Resolved-jet: Background estimation (II)

Resolved-jet: Background estimation (II)

Combination: https://cds.cern.ch/record/2725733

Results Included in Combination

Included, will full Run 2 dataset (139 fb⁻¹)
Included with 2015-2016 data only

	ZZ→4I	YY	bb	μμ	тт	ww	multi-lep	inv
ggF	>	V		V	\checkmark	\checkmark		
VBF	~	~	\checkmark	V	\checkmark	\checkmark		<
WH	~	~	V	V				
ZH	~	V	V	V				
ttH	V	V	\checkmark	V			\checkmark	
tH		~						