Monte Carlo challenges for the future

Stefan Höche

Fermilab

Higgs 2020 Online, 10/30/2020

State of the art

- LO Matrix Element generators and Loop-ME Generators
- Parton showers, mostly based on dipole/antenna picture
- Multiple interaction models possibly interleaved with shower
- Hadronization models string/cluster fragmentation
- Hadron decay packages
- Photon emission generators YFS formalism or QED shower

Much of the development focused on increase in perturbative precision

 \rightarrow Incorporation of higher orders in $\alpha_s,\,\alpha_s L,\,1/N_c,\,\ldots$ expansion while maintaining local, fully differential event generation paradigm

This talk: A sample of results and developments, and a (biased) outlook

Where do we stand? $N^{(2)}LO / MC$ comparison in gg \rightarrow Hj

[Bellm at al.] arXiv:1903.12563

- ► Good agreement between MC@NLO (Herwig / Sherpa) and fixed-order pQCD for inclusive observables in pp → Hj
- Radius dependence of cross section well modeled by MC in comparison to NNLO
- Spurious reduction of uncertainties at small R, more pronounced at NNLO than NLO → alternative prescription needed,

e.g. [Dasgupta, Dreyer, Salam, Soyez] arXiv:1602.01110

Where do we stand? $N^{(2)}LO / MC$ comparison in VBF

[Jäger,Scheller,Plätzer,Karlberg,Zaro] arXiv:2003.12435

- Comparison between common tools Herwig/HJets, POWHEG/Pythia, and fixed-order NNLO
- Uncertainties of order 10% for more inclusive observables, order 20% for observables sensitive to radiative effects
- ► VBF process quite insensitive to form of Sudakov in POWHEG-BOX → little impact of hdamp parameter

Parton showers beyond LL accuracy

[Dasgupta, Dreyer, Hamilton, Monni, Salam] arXiv:1805.09327

- Two problems in commonly used parton showers when compared to analytic NLL resummation:
 - Angular correlations across multiple emissions due to recoil strategy and choice of evolution variable spoil accuracy
 - Average color charge of initial $q\bar{q}$ dipole after radiation not reflected correctly in commonly used dipole shower approaches

 C_F

Parton showers beyond LL accuracy

[Dasgupta,Dreyer,Hamilton,Monni,Salam,Soyez] arXiv:2002.11114

▶ Both problems solved by partitioning of antenna radiation pattern and choosing a suitable evolution variable ($\beta \sim 1/2$)

$$k_T = \rho v e^{\beta |\bar{\eta}|} \qquad \rho = \left(\frac{s_i s_j}{Q^2 s_{ij}}\right)^{\beta/2}$$

- Three different recoil schemes lead to NLL result if β chosen appropriately: Local dipole, local antenna, and global antenna
- ▶ First provably NLL correct parton shower for $e^+e^- \rightarrow$ hadrons

► Collinear limit: Higher-order DGLAP kernels obtained by factorization

- Being able to compute P⁽¹⁾_{ji} fully differentially in the parton shower is a prerequisite for NNLL accuracy in an observable-independent way
- ▶ $P_{ji}^{(1)}$ not probabilities, but sum rules hold (\leftrightarrow unitarity constraint) In particular: Momentum sum rule identical between LO & NLO
- ► Soft limit schematically identical, but beware of overlap with collinear!

[Hartgring,Laenen,Skands] arXiv:1303.4974, [Li,Skands] arXiv:1611.00013

- ► ME-corrected showers (e.g. Vincia) predict correct 2-emission pattern → possibility to extend to full NLO by including virtual corrections
- ► Result depends on evolution variable due to phase-space restrictions in real emission integrals that arise from ordering (e.g. A → B → C)
- ► If missing phase space region is filled by direct 2 → 4 transitions (A → B) obtain complete NLO antenna shower framework

- Alternative approach based on standard parton shower:
 - ► Subtracted 2 → 4 splitting function in ordered phase-space region
 - Complete 2 → 4 splitting function in unordered phase-space region
- Structurally identical to fixed-order subtraction (e.g. Catani-Seymour)

$$\begin{split} P_{qq'}^{(1)}(z) &= \mathcal{C}_{qq'}(z) + \mathcal{I}_{qq'}(z) + \\ &\int \mathrm{d}\Phi_{+1} \Big[\mathcal{R}_{qq'}(z, \Phi_{+1}) - \mathcal{S}_{qq'}(z, \Phi_{+1}) \Big] \end{split}$$

 Shown to reproduce known NLO splitting functions in collinear limit [Curci,Furmanski,Petronzio] NPB175(1980)27

[Dulat,Prestel,SH] arXiv:1805.03757

- Alternative approach for soft radiation
 - ME correction implements kinematic corrections, angular correlations and first non-trivial sub-leading color contributions
 - ► Complete $2 \rightarrow 4$ splitting function in unordered phase-space region
- Reproduces benchmark given by soft gluon resummation at 2 loops [Belitsky] hep-ph/9808389
- CMW factor generated differentially by endpoint contributions, yields good agreement with inclusive CMW scheme

Parton showers beyond LC accuracy

[Nagy,Soper] arXiv:1902.02105, arXiv:1905.07176

- Systematic expansion of shower operator acting on statistical space
- Starts with LC+ approximation → simplify color insertion operators T_iT_k → T²_i but retain bra/ket states exactly
- Extension to higher number of terms in $1/N_c$ by means of additional operators
 - $\Delta \mathcal{H}$ real-emission
 - ΔV_{Re} virtual correction (real part)
 - $V_{i\pi}$ virtual correction (imaginary part)
- Threshold resummation possible [Nagy,Soper] arXiv:1711.02369

Parton showers beyond LC accuracy

singlet $\rightarrow gg N^k$ composition at n = 1

[DeAngelis, Forshaw, Plätzer] arXiv:2007.09648

- Amplitude based evolution using color flow decomposition
- ► Systematic expansion in 1/N_c terms related to number of swaps of color lines

Computing challenges

[HSF Generator WG] arXiv:2001.10028

- Event generation will consume significant fraction of resources at LHC soon
- Need to scrutinize both generator usage and underlying algorithms
- Dedicated effort in HEP Software Foundation (HSF)

[ATLAS] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults

Computing challenges

- Hard scattering simulation much more demanding than parton shower & hadronization in multi-jet merged simulations
- Complexity of merging ME&PS grows quickly due to inherent N! scaling of algorithms, but still negligible compared to hard scattering calculation

Origin of the problem

- Best case ME computation naively scales as $\approx \mathcal{O}(3^N)$
- Monte-Carlo unweighting efficiency degrades quickly due to high dimensionality of phase-space integral (3N-4)
- \blacktriangleright Overall scaling $\approx \mathcal{O}(4^N)$ if not taking cuts into account
- Cut inefficiencies worsen the picture significantly

Parallel computing

[Prestel,Schulz,SH] arXiv:1905.05120

- Integration / event generation performed on multiple cores
- \blacktriangleright Vegas grid warmup step scales (strong & weak) up to \sim 2048 cores
- Event generation step scales (strong & weak) up to \sim 2048 cores
- Performance limited by number of events being processed per rank (Average timing can only be expected if statistics is large enough)

Improved NLO matching

[Frederix, Frixione, Prestel, Torrielli] arXiv:2002.12716

- For NLO matched simulations, efficiency largely depends on negative weight fraction in hard cross section calculation
- Negative weights can be significantly reduced by performing partial merging, schematically

$$\begin{split} \mathbb{H} &\to (R-S)\Delta \\ \mathbb{S} &\to B+V+I+\int S\Delta + \int R(1-\Delta) \end{split}$$

 Convergence of additional contribution to S-events can be improved by folding

Sectorization

[Brooks, Preuss, Skands] arXiv:2003.00702

- Renewed interest in sector showers using antenna approach
- May provide avenue to more efficient merging due to unique branching history
- Novel implementation of algorithm in Vincia for hadron colliders and decays [Brooks,Skands] arXiv:1907.08980

	$\mid n=1$	n=2	n=3	n = 4	n = 5	n = 6	n = 7
CS Dipole	2	8	48	384	3840	46080	645120
Global Antenna	1	2	6	24	120	720	5040

Summary

- Good agreement between different MC generators when using similar setups / assumptions
- \blacktriangleright NLL accurate evolution \rightarrow direct comparison to analytic resummation
- ► NLO accurate evolution → first realistic uncertainty estimates Pathway to observable-independent, NNLL accurate resummation
- ► Sub-leading color evolution → improved predictions for processes with high jet multiplicity
- Most of the above improvements imply a certain fraction of negative weights or some other compute inefficiency
- It is possible that the theoretically improved MCs we desire will not be the tools to produce events for full simulation
- We might instead want to think about how to calibrate lower-precision (NLO+NLL,LC) MCs with higher-precision (NNLO+NNLL(?),NLC(?)) and then propagate uncertainty predictions