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Standard Model Higgs Lagrangian:

EW symmetry breaking

TH: coupling known in SM 
EXP: need to find and measure 
processes involving Higgs self couplings
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Figure 1. Example of a 2-loop diagram with an insertion of the effective operator O6 that
contributes to the gg ! h amplitude at O(�).

to take the infinite quark-mass limit. In such a case, one arrives at the classic Shifman-
Vainshtein-Zakharov result c(0)g = 1/12 ' 0.083 derived first in [41].

The O(�) correction to the coefficient cg arises from both 2-loop Feynman diagrams
and 1-loop counterterm graphs involving a Higgs wave function renormalisation. To find the
former type of contribution, we apply EFT techniques (see for instance [42] for a non-trivial
application to Higgs production) and employ a hard-mass expansion procedure ⌧t ! 1 to
the full 2-loop diagrams involving a top-quark loop and a h3 vertex that arises from the
insertion of O6. A prototype graph of such a contribution is shown in Figure 1. After
setting mh = 0 and Taylor expanding in the external momenta, this technique reduces the
calculation to the evaluation of 2-loop vacuum bubbles with a single mass scale, which can
all be expressed in terms of Gamma functions (cf. [38]).

The correction proportional to the O(�) contribution to the Higgs wave function renor-
malisation constant

Zh = 1 +
�

(4⇡)2
Z(1)
h

, (4.4)

is instead found from the 1-loop Higgs-boson selfenergy with one and two insertions of O6.
By a straightforward calculation, we obtain the analytic result

Z(1)
h

=
⇣
9� 2

p
3⇡

⌘
c̄6 (c̄6 + 2) . (4.5)

Combining both contributions, we arrive at

c(1)g = �
1

12

✓
1

4
+ 3 ln

µ2
w

m2
t

◆
c̄6 +

Z(1)
h

2
c(0)g , (4.6)

with c(0)g given in (4.2). As a powerful cross-check of our calculation, we have extracted
the O(�) correction to the coefficient cg arising from 2-loop diagrams by matching in ad-
dition the gg ! 2h and gg ! 3h Green’s functions, obtaining in all three cases the exact
same result. Details on the renormalisation of the bare 2-loop gg ! h amplitude can be
found in Appendix C. Given the good convergence of the infinite quark-mass expansion
in the case of c(0)g , we believe that our analytic expression (4.6) should approximate the
full O(�) correction to the on-shell 2-loop form factor quite well. To make this statement
more precise would require an explicit calculation of the relevant gg ! h amplitudes that
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HH Production Channels at the LHC

Gluon Fusion

Vector Boson Fusion

Associated Production (W,Z)

Associated Production ( )tt̄
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Production channels similar to H 

A very important difference:

σ(pp → HH) ∼
σ(pp → H)

1000
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HH Self Coupling Dependence
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Figure 3: Total cross sections at the LO and NLO in QCD for HH production channels, at the
√

s =14 TeV LHC as a function of the
self-interaction coupling λ. The dashed (solid) lines and light- (dark-)colour bands correspond to the LO (NLO) results and to the scale and
PDF uncertainties added linearly. The SM values of the cross sections are obtained at λ/λSM = 1.
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Theory uncertainties on cross section translate into uncertainties on the self-
coupling extraction: 

For  close to SM   we observe   

Differential measurements provide additional information and break degeneracies 
present at total cross-section level

gg → HH λhhh
Δσ
σ

∼ −
Δλ
λ

1.1. Overview of production modes 7

gg → HH (NNLOFTapprox)
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Figure 1.2: Total production cross sections for Higgs pairs within the SM via gluon fusion,
vector-boson fusion, double Higgs-strahlung and double Higgs bremsstrahlung off top quarks.
PDF4LHC15 parton densities have been used with the scale choices according to Table 1.1. The size
of the bands shows the total uncertainties originating from the scale dependence and the PDF+Æs
uncertainties.
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Figure 1.3: Higgs pair invariant mass distribution at leading order for the different contributions to
the gluon fusion production mechanism and their interference.

gg → HH
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Figure 12. Invariant mass distributions for the Higgs boson pair production in proton-proton
collisions with

p
s = 13, 14, 27, 100 TeV. The bands represent the scale uncertainties. The red, green,

brown and blue bands correspond to the LO, NLO, NNLO and N3LO predictions, respectively. The
bottom panel shows the ratios to the N3LO distribution.

class-a corrections for other differential cross sections. As we already mentioned in section
2.3.2, the class-a differential cross sections can be divided into two pieces given in eq.(2.14).
The second piece d�(a,2),N3LO

hh is essential to cancel the remaining renormalisation scale de-
pendence in d�b,NNLO

hh . Both of them are in fact known fully differentially. For the first
piece d�(a,1),N3LO

hh (i.e. the class-a cross sections by setting Chh = Ch), we have the fully dif-

– 17 –
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HH Gluon Fusion: N3LO HTL

N3LO results for Gluon fusion in the  were recently obtainedmT → ∞

Chen, Li, Shao, Wang 19

3

momentum of the Higgs pair system is imposed to be
larger than the cuto↵ parameter pvetoT . In such a case,
there must be an additional jet in accompany with the
Higgs pair. Therefore, in order to have NNLO cross sec-
tion of class-b, we only need to calculate the NLO cor-
rections to hh plus a jet, of which the underlying Born
is represented for example by Fig.1(b) but with an ad-
ditional gluon emission. In this work, we use the Mad-

Graph5 aMC@NLO [78] framework to perform such cal-
culations. The two Wilson coe�cients are also expanded
in a series of ↵s. Since the contribution of this class is
from the interference between the amplitudes with only
one e↵ective vertex insertion and with two e↵ective ver-
tices, one has to organize these coe�cients and ampli-
tudes in an appropriate way. Thanks to the recent de-
velopment [79] to handle mixed-order scenarios, we are
able to obtain the results order-by-order in ↵s. To calcu-
late the one-loop amplitudes automatically, we prepare
the model files by using FeynRules [80], FeynArts [81]
and an in-house Mathematica program, which has been
validated in [82, 83]. The counter-terms, especially the
rational R2 terms, have been extensively checked with
the results in the literature [84, 85]. The tensor inte-
grals appearing in the one-loop amplitudes are evalu-
ated by MadLoop [78, 86] equipped with Collier [87],
while the real emission contribution is computed with
the module MadFKS [88, 89] with the FKS subtraction
method [90, 91]. We want to stress that the inclusion
of the contribution from class-b is indispensable in the
sense that it not only contributes to the same order in ↵s

but also cancels the remaining scale dependence in class-
a at N3LO (details shown in the supplemental material).
Finally, since the NLO cross sections of class-c can be
obtained with full-fledged methods, we refrain ourselves
from presenting details about them, but they have been
routinely included in our final results.

We have performed many cross checks and validations
in our calculations. All the terms except for O(↵5

s) terms
of class-a and class-b listed in Table I have been cross
checked at least by two independent calculations at the
inclusive total cross section level. Specifically, we have
reproduced the cross section of a single Higgs boson pro-
duction up to NNLO in iHixs2 by using our program.
This agreement can check our implementations of the
two-loop beam and soft functions, as well as the calcula-
tion of one-loop amplitudes with one e↵ective vertex. In
addition, we have calculated the NLO and NNLO correc-
tions to Higgs pair production in the infinite top-quark
mass limit, and found agreement with HPair2 [12, 13]
and Ref.[18], respectively. This helps to check Eq.(3)
and the calculation of one-loop amplitudes with two ef-
fective vertices. These nontrivial checks already ensure
the correctness of many components of our calculations.
For the O(↵5

s) term of class-a, we simply used iHixs2 by
employing Eq.(3). Such a program has been validated
with the Higgs pair cross sections from LO to NNLO,

which makes us convinced that the O(↵5
s) piece of class-

a is correct. For the remaining O(↵5
s) part of class-b,

we carefully checked the various pieces that are used in
our calculation. In particular, we have checked the scale
dependence of the finite part in the two-loop amplitudes
with two e↵ective vertices [74] by the renormalization
group equation that the hard function should satisfy.
The one-loop amplitude can also been extracted from the
scale-dependent part of the two-loop amplitudes, and it
has been compared against the analytical result we cal-
culated with fire [92] and to the numerical result from
MadLoop. Again, we find perfect agreements. Moreover,
we have checked the independence of the final NNLO re-
sults for class-b on the values of pvetoT over the range from
4 GeV to 20 GeV (see the supplemental material).
Results – In our numerical calculations, we take

v = 246.2 GeV and the Higgs boson mass mh =
125 GeV. The top-quark pole mass, which enters only
into the Wilson coe�cients, is mt = 173.2 GeV. We
use the PDF4LHC15 nnlo 30 PDF [93–96] provided by
LHAPDF6 [97], and the associated strong coupling ↵s.
The default central scale is chosen to be the invariant
mass of the Higgs pair divided by 2, i.e. µ0 = mhh/2,
and the scale uncertainty is evaluated through the 9-point
variation of the factorization scale µF and the renor-
malization scale µR in the form of µR,F = ⇠R,Fµ0 with
⇠R, ⇠F 2 {0.5, 1, 2}.

order

p
s

13 TeV 14 TeV 27 TeV 100 TeV

LO 13.80+31%
�22% 17.06+31%

�22% 98.22+26%
�19% 2015+19%

�15%

NLO 25.81+18%
�15% 31.89+18%

�15% 183.0+16%
�14% 3724+13%

�11%

NNLO 30.41+5.3%
�7.8% 37.55+5.2%

�7.6% 214.2+4.8%
�6.7% 4322+4.2%

�5.3%

N3LO 31.31+0.66%
�2.8% 38.65+0.65%

�2.7% 220.2+0.53%
�2.4% 4438+0.51%

�1.8%

TABLE II: The inclusive total cross sections (in unit of fb)
of Higgs boson pair production at di↵erent center-of-mass en-
ergies from LO to N3LO. The quoted relative uncertainties
are from the 9-point scale variations µR,F = ⇠R,F

mhh
2 with

⇠R, ⇠F 2 {0.5, 1, 2}. The errors due to the numerical Monte
Carlo integration are well below 1h.

We present the inclusive total cross sections (from LO
to N3LO) of the Higgs boson pair production at di↵erent
center-of-mass energies in Table II and Fig. 2. Similarly
to the single Higgs case, the QCD higher-order correc-
tions are prominent. The NLO corrections increase the
LO cross section by 87% (85%) at

p
s = 13 (100) TeV.

The NNLO corrections improve the NLO cross section
further by 18% (16%), reducing the scale uncertainty by
a factor of 2 to 3 to be below 8%. Finally, the N3LO
corrections turn out to be 3.0% (2.7%), which lies well
within the scale uncertainty band of the NNLO result.
Now, the scale uncertainty at N3LO is less than 3% (2%),
with another significant reduction of 2-3 times. For the
purpose of the comparison, the PDF parameterization
uncertainty at 13 TeV amounts to ±3.3%, which is larger

Very mild scale dependence 

Take  part of result from known 
single Higgs calculation 

2-loop box piece of  first 
computed earlier

̂σa

̂σb

Anastasiou, Duhr, Dulat, Herzog, Mistlberger 15; 
Dulat, Lazopoulos, Mistlberger 18

Banerjee, Borowka, Dhani, Gehrmann, Ravindran 18
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HH Gluon Fusion: N3LO HTL + NLO SM

Top quark mass effects (known up to NLO) have also been included

Chen, Li, Shao, Wang 19
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Figure 15. Invariant mass distributions of the Higgs boson pair under three top-quark mass
approximations at

p
s = 13, 14, 27, 100 TeV. The bands represent the scale uncertainties. The

red, green, blue and black curves are the N3LO�NLOmt , N3LOB�i�NLOmt , N3LO⌦NLOmt and
NLOmt predictions, respectively. The bottom panel shows the ratios to the NLOmt distribution.

rapidity distribution of a random Higgs boson. The latter histogram is equivalent to the
arithmetic mean of the former two histograms. Similar to the yhh distribution, the higher-
order QCD corrections only change the shape slightly. The central region has a bit larger
radiative corrections than the forward and backward regions. The difference is however
quite insignificant, which is only at 1-2 percent level. The importance of the inclusion of
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Results agree with  

result (which retains  effects in 
real radiation) but with reduced 
scale uncertainty

NNLOFTapprox
mT

Grazzini, Heinrich, SJ, Kallweit, Kerner, Lindert, 
Mazzitelli 18;  (+NNLL) de Florian, Mazzitelli 18;

p
s 13 TeV 14 TeV 27 TeV 100 TeV

NLOmt 27.56+14%
�13% 32.64+14%

�12% 126.2+12%
�10% 1119+13%

�13%

NNLO�NLOmt 32.16+5.9%
�5.9% 38.29+5.6%

�5.5% 157.3+3.0%
�4.7% 1717+5.8%

�12%

NNLOB�i�NLOmt 33.08+5.0%
�4.9% 39.16+4.9%

�5.0% 150.8+4.6%
�5.7% 1330+4.0%

�7.2%

NNLO⌦NLOmt 32.47+5.3%
�7.8% 38.42+5.2%

�7.6% 147.6+4.8%
�6.7% 1298+4.2%

�5.3%

N3LO�NLOmt 33.06+2.1%
�2.9% 39.40+1.7%

�2.8% 163.3+4.0%
�8.3% 1833+14%

�20%

N3LOB�i�NLOmt 34.17+1.9%
�4.6% 40.44+1.9%

�4.7% 155.5+2.3%
�5.0% 1372+2.8%

�5.0%

N3LO⌦NLOmt 33.43+0.66%
�2.8% 39.56+0.64%

�2.7% 151.7+0.53%
�2.4% 1333+0.51%

�1.8%

Table 4. The inclusive total cross sections (in unit of fb) of Higgs boson pair production at different
centre-of-mass energies

p
s within the considered approximations. The quoted relative uncertainties

are from the 9-point scale variations.

is degraded to NLO accuracy when mhh becomes larger than two times of the top-quark
mass where the scale cancellations are not guaranteed. For N3LO⌦NLOmt , because of the
manner of varying ⇠R, ⇠F in differential cross sections eq.(3.4), their relative scale uncertain-
ties are exactly the same as N3LO in section 2.4.3. Comparisons between NNLO⌦NLOmt

and N3LO⌦NLOmt predictions are given in figure 16. Similar to what has been found at
NNLO in ref. [54], the higher-order QCD corrections are quite small near the threshold
region mhh ' 2mh. The K factors N3LO⌦NLOmt

NLOmt

are almost constants (around 1.2) at larger
mhh. A lesson from NNLO tells us that the NNLO⌦NLOmt predictions feature different
shapes as the FT approximation. Therefore, it would be quite desirable to carry out the
latter approximation at N3LO, which is however beyond the scope of the present paper.

3.2.3 Other differential distributions

With the approximation eq.(2.15) used at N3LO in other observables, we are able to report
our predictions for fully differential distributions of the Higgs boson pair production. We
have shown 6 differential kinematic distributions at

p
s = 14 TeV in figure 17 as our

illustrative examples, while the same differential cross sections at
p
s = 13, 27, 100 TeV

can be found in appendix D. These kinematics are the rapidity of the Higgs pair (up left
panel of figure 17), the rapidity of a random Higgs boson (up right panel of figure 17), the
transverse momenta pT of the harder (middle left panel of figure 17) and the softer Higgs
(middle right panel of figure 17), the absolute rapidity difference |�y| (low left panel of
figure 17) and the azimuthal angle difference �� (low right panel of figure 17) between
the two Higgs particles. For the sake of clarity, we will only show the results of NLOmt

(black), NNLO⌦NLOmt (dark-orange) and AN3LO⌦NLOmt (blue), where we have adopted
the AN3LO calculations to approximate the N3LO differential cross sections.

The rapidity distribution of the Higgs boson pair reported in the up-left panel of fig-
ure 17 receives approximately a uniform K factor AN3LO⌦NLOmt

NLOmt

' 1.2. The shape of the
distribution is mainly driven by the partonic luminosity encoded in the PDF. The scale
uncertainty band is reduced from NNLO⌦NLOmt to AN3LO⌦NLOmt by a factor of four.

Because the rapidity distributions of the leading-pT and subleading-pT Higgs bosons
are sensitive to soft-gluon radiations, i.e. not IR safe at fixed orders, we instead show the
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Very mild scale dependence 
persists also after including top 
mass effects up to NLO 
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HH Gluon Fusion: Mass Scheme Uncertainties

With such a tiny scale uncertainty, other sources of uncertainty become relevant 
HH@NLO:  in the  and  schememT OS MS

7

choice of mt = 172.5 GeV for the top pole mass to an MS
mass of mt(mt) = 163.02 GeV. The renormalisation of the
top mass has been adjusted accordingly. Taking the maxi-
mum and minimum of the differential cross section in Q

2

at four different values of Q
2 for a variation of the MS top

mass in the range between Q/4 and Q we obtain the follow-
ing variations of the Higgs-pair cross section,

ds(gg ! HH)

dQ

���
Q=300 GeV

= 0.0312(5)+9%
�23% fb/GeV,

ds(gg ! HH)

dQ

���
Q=400 GeV

= 0.1609(4)+7%
�7% fb/GeV,

ds(gg ! HH)

dQ

���
Q=600 GeV

= 0.03204(9)+0%
�26% fb/GeV,

ds(gg ! HH)

dQ

���
Q=1200 GeV

= 0.000435(4)+0%
�30% fb/GeV,

(20)

using PDF4LHC parton densities. The top-quark scheme un-
certainty is significant over the whole range of mHH . The
prediction involving the top pole mass, that we take as our
central prediction, is the maximal prediction for high mHH

values. The uncertainties induced by the top-mass scheme
and scale choice on the total cross section at NLO will be
given in a forthcoming publication [50].

6 Conclusions

We have presented the calculation of the full NLO QCD
corrections to Higgs-boson pair production via gluon fu-
sion for the top-loop contributions. This has been performed
by numerical integrations of the involved virtual two-loop
corrections to the four-point functions, while the results of
the single-Higgs case have been translated to the three-point
contributions that involve the trilinear Higgs self-coupling.
The one-particle reducible contributions that appear for the
first time at NLO have been inferred from the explicit analyt-
ical one-loop results for H ! Zg , where the Z-boson mass
plays the role of the virtuality of the gluon in the dressed
Hgg

⇤ vertex. In order to isolate the ultraviolet, infrared and
collinear divergences, we have performed appropriate end-
point subtractions at the integrand level and described the
explicit construction of infrared subtraction terms that al-
low for a clean separation of the infrared singularities from
the regular rest. The real corrections have been obtained by
generating the full matrix elements with automatic tools. We
have constructed the infrared and collinear subtraction term
as the heavy-top limit of the real matrix elements involving
the fully massive LO sub-matrix element. Adding back the
full results in the heavy-top limit completed the full real cor-
rections. The final results we have obtained agree with pre-
vious calculations for the individual finite parts of the real
and virtual corrections. We find finite NLO mass effects that

are up to �30% for large invariant Higgs-pair masses, while
the total NLO top-mass effects modify the total cross section
by about �15%.

We have studied the theoretical uncertainties related to
variations of the renormalisation and factorisation scales and
have found agreement with the previously known results
finding uncertainties at the level of 10� 15%. A novel out-
come of our calculation is the additional uncertainty induced
by the scheme and scale dependence of the top mass that
can be significant, amounting to +9%/� 23% at mHH =
300 GeV and +0%/� 30% at mHH = 1200 GeV. The in-
duced uncertainty on the total cross section will be given in
a forthcoming publication [50].

In the future we plan to extend our calculation to beyond-
the-SM models as e.g. the 2HDM or MSSM.
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Top quark mass scheme unc:

Baglio, Campanario, Glaus, Mühlleitner, 
(+Ronca), Spira, Streicher 18, (20)

Large uncertainty obtained 
comparing  scheme with  
scheme at scale 

OS MS
mHH

Seraina Glaus KIT-NEP 2019, Karlsruhe 8.10.2019

Uncertainty due to mt: total hadronic cross section 
Take for individual Q values the maximum / minimum differential cross section and 
integrate  

23

m
HH

[GeV]

gg ! HH at NLO QCD |
p
s = 14 TeV | PDF4LHC15

d�/dm
HH

[fb/GeV]
µ
R
= µ

F
= m

HH
/2

Full NLO results in di↵erent top-mass schemes

MS scheme with m
t
(m

t
)

MS scheme with m
t
(m

HH
/4)

MS scheme with m
t
(m

HH
)

OS scheme

�(gg ! HH) = 32.78(7)+4.0%
�17%

with PDF4LHC15

Top mass uncertainty

Such mass scheme uncertainties will show up in other processes (e.g. HJ, ZH)
See talks of Daniel de Florian on Mon & Jonas Lindert on TueJones, Spira (Les Houches 19)

See talk of Seraina Glaus on Tue
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HH Gluon Fusion: Mass Scheme Uncertainties (II)

See talk of Seraina Glaus on Tue

Combination of scale ( ) and top mass scheme (  / ) studied very recently 

If we wish to take the envelope of the predictions as the uncertainty, then the two 
uncertainties should be added linearly (validated at NLO) 

Above authors advocate use of  with (NLO) mass scheme errors added

μR, μF OS MS

NNLOFTapprox

Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira 20

4 Uncertainties for di↵erent Higgs self-interactions

A variation of the trilinear Higgs coupling � modifies the interplay between the LO box
and triangle contributions that interfere destructively for the SM case. One of the basic
questions is what will happen to the uncertainties for di↵erent values of �. This can be
traced back to the approximately aligned uncertainties of the triangle and box diagrams
[8,18]. The renormalization and factorization scale uncertainties change by up to about
6% at NLO for large and small values of � [17] such that the change with respect to the
central uncertainties of the SM value of ⇠ 10–15% is of moderate size. In a similar way the
uncertainties originating from the scheme and scale choice of the top mass depend only
mildly on the trilinear coupling �. Eq. (9) shows the central NNLOFTapprox predictions for
the total cross section for various choices of � = �/�SM for

p
s = 13 TeV. The per-cent

uncertainties display the usual factorization and renormalization scale uncertainties [19].

� = �10 : �tot = 1680+3.0%
�7.7% fb,

� = �5 : �tot = 598.9+2.7%
�7.5% fb,

� = �1 : �tot = 131.9+2.5%
�6.7% fb,

� = 0 : �tot = 70.38+2.4%
�6.1% fb,

� = 1 : �tot = 31.05+2.2%
�5.0% fb,

� = 2 : �tot = 13.81+2.1%
�4.9% fb,

� = 2.4 : �tot = 13.10+2.3%
�5.1% fb,

� = 3 : �tot = 18.67+2.7%
�7.3% fb,

� = 5 : �tot = 94.82+4.9%
�8.8% fb,

� = 10 : �tot = 672.2+4.2%
�8.5% fb (9)

These predictions for the cross sections have been obtained by adopting the top pole mass
for the LO and higher-order contributions. Modifying the scheme and scale choice of the
top mass according to the SM analysis we end up with the additional uncertainties at
NLO

� = �10 : �tot = 1438(1)+10%
�6% fb,

� = �5 : �tot = 512.8(3)+10%
�7% fb,

� = �1 : �tot = 113.66(7)+8%
�9% fb,

� = 0 : �tot = 61.22(6)+6%
�12% fb,

� = 1 : �tot = 27.73(7)+4%
�18% fb,

� = 2 : �tot = 13.2(1)+1%
�23% fb,

� = 2.4 : �tot = 12.7(1)+4%
�22% fb,

� = 3 : �tot = 17.6(1)+9%
�15% fb,

� = 5 : �tot = 83.2(3)+13%
�4% fb,

� = 10 : �tot = 579(1)+12%
�4% fb (10)

6

Scale (μR, μF)

4 Uncertainties for di↵erent Higgs self-interactions

A variation of the trilinear Higgs coupling � modifies the interplay between the LO box
and triangle contributions that interfere destructively for the SM case. One of the basic
questions is what will happen to the uncertainties for di↵erent values of �. This can be
traced back to the approximately aligned uncertainties of the triangle and box diagrams
[8,18]. The renormalization and factorization scale uncertainties change by up to about
6% at NLO for large and small values of � [17] such that the change with respect to the
central uncertainties of the SM value of ⇠ 10–15% is of moderate size. In a similar way the
uncertainties originating from the scheme and scale choice of the top mass depend only
mildly on the trilinear coupling �. Eq. (9) shows the central NNLOFTapprox predictions for
the total cross section for various choices of � = �/�SM for

p
s = 13 TeV. The per-cent

uncertainties display the usual factorization and renormalization scale uncertainties [19].

� = �10 : �tot = 1680+3.0%
�7.7% fb,

� = �5 : �tot = 598.9+2.7%
�7.5% fb,

� = �1 : �tot = 131.9+2.5%
�6.7% fb,

� = 0 : �tot = 70.38+2.4%
�6.1% fb,

� = 1 : �tot = 31.05+2.2%
�5.0% fb,

� = 2 : �tot = 13.81+2.1%
�4.9% fb,

� = 2.4 : �tot = 13.10+2.3%
�5.1% fb,

� = 3 : �tot = 18.67+2.7%
�7.3% fb,

� = 5 : �tot = 94.82+4.9%
�8.8% fb,

� = 10 : �tot = 672.2+4.2%
�8.5% fb (9)

These predictions for the cross sections have been obtained by adopting the top pole mass
for the LO and higher-order contributions. Modifying the scheme and scale choice of the
top mass according to the SM analysis we end up with the additional uncertainties at
NLO

� = �10 : �tot = 1438(1)+10%
�6% fb,

� = �5 : �tot = 512.8(3)+10%
�7% fb,

� = �1 : �tot = 113.66(7)+8%
�9% fb,

� = 0 : �tot = 61.22(6)+6%
�12% fb,

� = 1 : �tot = 27.73(7)+4%
�18% fb,

� = 2 : �tot = 13.2(1)+1%
�23% fb,

� = 2.4 : �tot = 12.7(1)+4%
�22% fb,

� = 3 : �tot = 17.6(1)+9%
�15% fb,

� = 5 : �tot = 83.2(3)+13%
�4% fb,

� = 10 : �tot = 579(1)+12%
�4% fb (10)

6

NLO Mass Scheme Unc.

The uncertainties originating from the scheme and scale choice of the top mass turn out
to develop a mild dependence on � as expected. The size of the total uncertainty band
is much less sensitive to � than the location of the band. Combining these relative
uncertainties with the previous renormalization and factorization scale uncertainties of
Eq. (9) linearly we arrive at the central values with combined uncertainties,

� = �10 : �tot = 1680+13%
�14% fb,

� = �5 : �tot = 598.9+13%
�15% fb,

� = �1 : �tot = 131.9+11%
�16% fb,

� = 0 : �tot = 70.38+8%
�18% fb,

� = 1 : �tot = 31.05+6%
�23% fb,

� = 2 : �tot = 13.81+3%
�28% fb,

� = 2.4 : �tot = 13.10+6%
�27% fb,

� = 3 : �tot = 18.67+12%
�22% fb,

� = 5 : �tot = 94.82+18%
�13% fb,

� = 10 : �tot = 672.2+16%
�13% fb (11)

These final numbers should serve as the recommended values for the total cross sections
and uncertainties at the LHC with

p
s = 13 TeV as a function of �.

5 Conclusions

We have analyzed the combination of the usual renormalization and factorization scale
uncertainties of Higgs-pair production via gluon fusion with the uncertainties originating
from the scheme and scale choice of the virtual top mass in the Yukawa coupling and
the propagators. Due to the observation that the latter relative uncertainties are nearly
independent of the renormalization and factorization scale choices, the proper combination
of the relative uncertainties is provided by a linear addition.

In a second step we derived the dependence of the uncertainties related to the top-mass
scheme and scale choice on a variation of the trilinear Higgs self-coupling �. The relative
uncertainties are again observed to develop only a small dependence on �. We combined
all the uncertainties for

p
s = 13 TeV with the ones of the present recommendation of

the LHC HXSWG, obtaining state-of-the-art predictions for Higgs pair production cross
sections at the LHC including both renormalization/factorization scale and top-quark
scale and scheme uncertainties.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1: Sample Feynman diagrams for ij ! ij with i, j 2 {g, q}. Solid, dashed and
curly lines represent quarks, Higgs bosons and gluons, respectively. The first line contains
LO and NLO contributions. NNLO contributions are shown in the second and third
lines. The contributions to the Higgs boson pair production cross section is obtained by
considering cuts which involve at least two Higgs bosons.

the contributions where exactly two Higgs bosons are cut. Note that besides the virtual
corrections to the NLO 1PR diagram (Fig. 1 (e)) also diagrams such as Fig. 1 (j) have three
closed top quark loops. At NLO the final state of the real radiation corrections contains
two Higgs bosons and an additional parton. At NNLO one has either one or two additional
partons in the final state. We refer to the former as “real-virtual” (Fig. 1 (f), (g), (h)
and (k)) and the latter as “double-real” (Fig. 1 (l)).

The real-virtual corrections can be sub-divided according to the number of closed top
quark loops which involve a coupling to one or two Higgs bosons. At NNLO this is either
two or three, as can be seen from the Feynman diagrams in Fig. 1. We will refer to
them as n

2
h
and n

3
h
contributions in the following. In this paper we consider only the

n
3
h
contribution, with three closed top quark loops. In an asymptotic expansion in large

Mt all top quark lines are part of the so-called hard subgraphs, which means that the
remaining Feynman diagrams which involve the Higgs bosons are either one- or two-loop
diagrams.

At NLO, n3
h
terms are only present in the virtual corrections, see Fig. 1(c). They serve

as an e↵ective LO contribution for the n3
h
NNLO corrections we are interested in. In this

sense, one can consider the subset of real-virtual corrections with three top quark loops
as e↵ective NLO real corrections. Thus, they share many features with the NLO real
corrections and many steps of the calculation can be performed in analogy to Ref. [7].

3

Tnh Tnh CFTnh CATnh

(Tnh)2 C2
FTnh CACFTnh C2

ATnh

CF (Tnh)2 and CA(Tnh)2 and CA(Tnh)2 (Tnh)3

CFT 2nhnl CAT 2nhnl

Figure 1: Sample Feynman diagrams contributing to gg → HH . For simplicity we show
diagrams with a triple-Higgs boson coupling only at one-loop order. A sample colour
factor is shown below each diagram. However, note that in general a diagram contributes
to more than one colour structure. Solid, dashed and curly lines denote quarks, Higgs
bosons and gluons respectively.

It is furthermore convenient to express the final result in terms of the transverse momen-
tum of one of the Higgs bosons which is given in terms of the Mandelstam variables by
(equivalent to Eq. (3))

p2T =
tu−m4

H

s
. (10)

3 Calculation details

We generate the Feynman amplitudes with the help of qgraf [33] and obtain 11, 197 and
5703 diagrams at one, two and three loops. Note that both one-particle irreducible (1PI)
and one-particle reducible (1PR) contributions have to be considered. Sample diagrams
are shown in Fig. 1 together with the corresponding colour factors expressed in terms
of the Casimir invariants of SU(Nc): CA = Nc and CF = (N2

c − 1)/(2Nc). Furthermore
we have T = 1/2 and use the labels nl and nh for closed massless and massive fermion
loops respectively. For numerical evaluation we set nl = 5 and nh = 1. In the following
subsections we provide several technical details of the calculation of the form factors.

5

Expansions beyond NLO

NNLO Virtual:

Computed 3-loop virtual piece in large-  expansion: 
Boxes up to  
Triangles up to 

mT
1/m8

T
1/m14

T

NNLO Real-Virtual (Partial):

Davies, Steinhauser 19

5-loop forward scattering amplitudes 
Calculation restricted to diagrams with 3 closed top quark loops (n3

h)

Davies, Herren, 
Mishima, Steinhauser 19 
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VBF HH: Non-factorisable contribution

Liu, Melnikov, Penin 19 
Dreyer, Karlberg, Tancredi 20

4 Frédéric A. Dreyer et al.: On the impact of non-factorisable corrections in VBF single and double Higgs production
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Fig. 5: Diagrams for Higgs pair production. (a) The T1 topology. (b) The T2 topology. (c) The B1 topology. (d) The
B2 topology.

up to NLO due to colour conservation. At NNLO this is no
longer true, as in particular two gluons in a colour singlet
state can be emitted between the two quark lines, as shown
in figure 6. As the gluons have to be in a colour singlet state,
these diagrams will be colour suppressed compared to their
factorisable counterparts. For this reason it has long been
argued that they can be neglected when considering NNLO
corrections to VBF [5].

Due to the complexity involved in computing the
two-loop non-factorisable corrections, very little has been
known about them beyond the fact that they are colour
suppressed. However, very recently [11] significant progress
was made, when it was shown that the corrections can be
estimated within the eikonal approximation [21–24]. This
calculation exploits the fact that when typical VBF cuts
are applied, the VBF cross section can be expanded in
the ratio of the leading jet transverse momentum over the
total partonic centre-of-mass

⇠ =
pt,j1
p
s
. (6)

In this kinematical configuration, the authors of Ref. [11]
conclude that the non-factorisable corrections receive a ⇡2-
enhancement connected to the presence of a Glauber phase,
which can partially compensate their colour suppression.
Indeed, it turns out that for VBF single Higgs production,
the non-factorisable corrections can contribute up to 1%
in certain regions of phase space, making them larger than
the factorisable N3LO corrections. In what follows we will
use the same approximation to estimate the impact of
non-factorisable corrections for the case of double Higgs
production as well.

In order to see how the NNLO non-factorisable cor-
rections can be estimated in the eikonal approximation
both for single and double Higgs production, let us con-
sider a generic VBF Born diagram, which we will call D,
for the production of an in principle arbitrary number of
Higgs bosons, see Fig. 3a. In what follows this diagram will
represent either the Born diagram for VBF single Higgs
production T of Fig. 4, or any of the Born diagrams for
double Higgs production T1, T2, B1 or B2 in Fig. 5.

It is important to stress here that, somewhat coun-
terintuitively, we will be considering QCD corrections on

each single diagram separately, and not on the full Born
matrix element. Since we are interested in computing the
NNLO QCD corrections to this class of processes, we imag-
ine dressing the diagram D with 1-loop or 2-loop QCD
corrections, as depicted in Fig. 6, where we provide two
representative diagrams for illustration only.

(a) (b)

Fig. 6: Generic form of non-factorisable 1-loop (a) and
2-loop (b) corrections to the production of n Higgs boson.

It turns out that, at least up to two loops in QCD, we
can limit ourselves to diagrams where the gluons are in
a colour-singlet configuration, i.e. exchanged between the
two quark lines. All other configurations do not contribute
to the cross-section due to colour conservation. Therefore,
the calculation of the one- and two-loop QCD corrections
in the eikonal approximation reduces e↵ectively to the cor-
responding calculation in QED, with the colour-averaged
e↵ective coupling

e↵s =

✓
N2

c
� 1

4N2
c

◆1/2

↵s . (7)

Following Ref. [11], let us consider the process

q(p1) + q(p2) ! q(p3) + q(p4) +X(P ) (8)

where X(P ) can represent one or multiple Higgs bosons
produced in vector-boson fusion. At leading order, we call
the momenta flowing in the two vector bosons respectively

q1 = p1 � p3 , q2 = p2 � p4 . (9)
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Fig. 13: Kinematic distributions for Higgs pair production through VBF under the cuts of sec. 3.1. (a) transverse
momentum of the hardest jet (b) transverse momentum of the second hardest jet. In red we show the non-factorisable
↵2
s
correction and in blue we show the factorisable one. Both are normalised to the NLO cross section.
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A Analytic results for one-loop integrals

In this appendix we report, for completeness, analytic
results for the one-loop functions defined in eqs. (16,17)
and in eqs. (19,21).

We recall here that we are dealing with two-dimensional
(euclidean) integrals. As it is well known, at one-loop any
n-point function with n � 3 can be reduced to bubbles
and tadpoles, such that the finite piece of every one-loop
integral close to d = 2 dimensions can always be expressed
in terms of logarithms only. We stress that, obviously,
for this reduction to be true, one needs to work with
explicitly two-dimensional kinematics. As in the main text,
we parametrise the momenta q1, q2 and q3 as

q1 = (q1x, 0) , q2 = (q2x, q2y) , q3 = (q3x, q3y) (37)

such that the usual Mandelstam invariants are not inde-
pendent and can be written as

s = (q1x + q2x)
2 + q2

2y
, t = (q1x + q3x)

2 + q2
3y

, (38)

u = (q2x + q3x)
2 + (q2y + q3y)

2 , (39)

q2
1
= q2

x
, q2

2
= q2

2x
+ q2

2y
, q2

3
= q2

3x
+ q2

3y
, (40)

q2
4
= (qx + q2x + q3x)

2 + (q2y + q3y)
2 . (41)

In what follows, we will use interchangeably either the
Mandelstam invariants or their parametrisation above,
depending on which of the two is more convenient.

In order to present the results below, we introduce a
one-loop box family of finite, two-dimensional integrals

In1,n2,n3,n4 =
1

⇡

Z
d2k

1

Dn1
1
Dn2

2
Dn3

3
Dn4

4

(42)

with
P

j
nj � 2 and

D1 = k2 + �2 , (43)

D2 = (k � q1)
2 +M2

V
, (44)

D3 = (k + q2)
2 +M2

V
, (45)

D4 = (k � q13)
2 +M2

V
. (46)

With this notation we see that

�(1)

T
(q1, q2) = I1,1,1,0 , �(1)

B1
(q1, q2, q3) = I1,1,1,1 .

It is very easy to reduce the box-integral I1,1,1,1 to trian-
gle integrals by noticing that, for strictly two-dimensional
kinematics, the four propagators Dj are not linearly inde-
pendent and one can write

1 =
1

�B

h
(2q2yq3x � (q3y(q1x + 2q2x))D1

+ q1xq2y(D4 �D2) + q1xq3yD3

i
(47)

VBF Approximation/structure function approach: 
neglect the (colour suppressed) exchange of 
particles between the quark lines 

Non-factorisable contributions recently studied 
using the eikonal approximation

Note: (As pointed out by authors) Eikonal 
approximation not trustworthy for too high pt, j

Delicate cancellations between ``box’’ 
and ``triangle’’ ( ) diagrams spoiled, 
giving rise to a large corrections

λ3
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because lengthy but fully analytic representation can be
obtained for all these functions in terms of polylogarithms.
In fact, if we limit ourselves to one-loop, the expressions are
rather compact and we report them in appendix A. Never-
theless, our results involve only integrals of logarithms and
exhibit a very high degree of symmetry, both moving from
one to two loops and going from 3- to 4-point functions.
Moreover it is straightforward to rewrite the integrals to
make them explicitly real, at the price of introducing in-
verse trigonometric functions. Finally, as a curiosity, it
turns out that performing the calculation in this way the
results can be e↵ortlessly generalised to higher-point inte-
grals, i.e. for an arbitrary number of Higgs bosons in the
final state.

With the definitions above, the non-factorisable QCD
corrections to the total amplitude for single and double
Higgs production can be written, respectively, as

MH =
X

j

M
(j)

H
, MHH =

X

j

M
(j)

HH
, (25)

where for single Higgs we have simply

M
(j)

H
= M

(j)

T
, (26)

while for double Higgs we find

M
(j)

HH
= M

(j)

T1
+M

(j)

T2
+M

(j)

B1
+M

(j)

B2
, (27)

which of course implies a much richer interference pattern.
More explicitly, we find for the cross-section for single
Higgs production

d�NNLO

H,nf
= e↵2

s
�H

nf
(q1, q2) d�

LO (28)

where d�LO is the leading-order cross section given in (1),
e↵s is the e↵ective coupling in eq. (7), and the NNLO non-
factorisable contributions only depend on the functions

f (j)

T
through

�H

nf
(q1, q2) =

h
�(1)

T
(q1, q2)

i2
� �(2)

T
(q1, q2)

=
h
f (1)

T

i2
� f (2)

T
. (29)

As an illustration, and in order to compare this case to di-
Higgs production, it is useful to compute the corrections in
the limit where all transverse scales become small compared
to the vector-boson mass, i.e. q2

1,2
⌧ M2

V
. In that limit,

all integrals become trivial and we find [11]

�H

nf
(q1, q2) = 1�

⇡2

3
. (30)

In the case of double Higgs production, the form of
the corrections is rather cumbersome but still entirely
straightforward and we prefer to avoid writing down the
formulas explicitly. On the other hand, if we consider the
same limit as above, i.e. q2

1,2
⇠ q2

3,4
⌧ M2

V
, formulas

simplify considerably. In order to present the result, we
divide the LO cross-section in three contributions as

d�LO

HH
= d�LO

TT
+ d�LO

BB
+ d�LO

TB
, (31)

where d�LO

TT
is the contributions stemming solely from

diagrams T1 and T2, �LO

BB
from B1 and B2 and �LO

TB
from

the interference of the two classes of diagrams, see Fig. 5.
With this, we find that the non-factorisable corrections at
NNLO take the suggestive form

d�NNLO

HH,nf
⇠ e↵2

s

h✓
1�

⇡2

3

◆�
d�LO

TT
+ d�LO

TB

�

+

✓
5

4
�

⇡2

3

◆
d�LO

BB

i
. (32)

Eq. (32) shows that the three contributions to the Born
cross-section for di-Higgs production can receive radia-
tive corrections which are di↵erent at the 10% level. The
cross-section for HH production at LO is the result of
delicate cancellations of more than one order of magni-
tude between the three di↵erent contributions in eq. (31),
as can be seen in table 1. These cancellations are a well
known manifestation of the role that the Higgs boson
has in restoring unitarity in the Standard Model. Since
we are working in the eikonal approximation, one could
therefore wonder whether this approximation could spoil
these cancellations and induce in this way artificially large
NNLO QCD corrections on the di-Higgs cross-section. As
a matter of fact, eq. (32) suggests that QCD corrections do
a↵ect di↵erently the various contributions to the di-Higgs
cross-section enough to modify the cancellation pattern.
Interestingly though, eq. (32) is valid in the limit of very
small transverse momenta, where one expects the eikonal
approximation to work well and the cross-section to be
insensitive to any unitarisation issues. We are therefore
lead to conclude that non-factorisable QCD corrections
do have a potentially large impact on di-Higgs production
and that this does not appear to be only a result of the
approximation considered.

Before concluding this section, it is worth noting that
at O(↵2

s
) there are both loop-induced and real emission di-

agrams that contribute to the non-factorisable corrections
discussed above. Nevertheless, it is well known that real
emission diagrams do not contribute to leading order in
the eikonal approximation, and the whole cross-section in
this limit stems from the virtual contributions only. This is
also demonstrated by the fact that IR divergences cancel
between the two-loop and the one-loop squared ampli-
tudes. We stress here that the real emission diagrams have
been computed for the single Higgs case in [25], and could
be used to compute non-factorisable corrections beyond
the leading eikonal approximation, once the full two-loop
amplitudes become available.

3 Results for single Higgs VBF production

3.1 Setup

In order to investigate the size of the various QCD cor-
rections, we study 13 TeV proton-proton collisions, in
a setup identical to Ref. [7]. We use a diagonal CKM
matrix, full Breit-Wigners for the W , Z and the narrow-
width approximation for the Higgs boson. We take the
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Figure 1: Examples of feynman diagrams contributing to the VBF Higgs pair production process
at LO (a), NNLO QCD (b) and NLO EW (c).

corrections arising from gluon exchanges limited to one quark line, the so-called factorisable
corrections shown in Fig. 1b. In this work we therefore also provide an estimate of the non-
factorisable corrections, but will show them separately from the factorisable corrections.
Unless explicitly specified, when referring to NNLO QCD corrections, we will always mean
the factorisable ones. We compute the factorisable NNLO QCD corrections using the
projection-to-Born method as detailed in Ref. [26].

• EW corrections
For the EW corrections the real radiations are made of the pp ! jjHH� channels at order
O
�
↵
5
�
. At the same order, the virtual corrections are obtained by inserting EW particles

anywhere possible in the tree-level topologies, an example of which is shown in Fig. 1c.
Note that at the order O

�
↵
5
�
, photon-induced contributions also arise. These have been

neglected in the present work as these have been shown to be rather small for similar
processes [42, 43, 38]. Note that EW corrections to single-Higgs production have been
computed for the first time in Refs. [44, 38] and are available in HAWK [45]. Later they
have also been obtained in VBFNLO [46, 47].

As mentioned previously, all LO and NLO predictions are based on the full computation, i.e.
without employing the VBF approximation. These have been obtained from the Monte Carlo
MoCaNLO, which has already been used for a variety of processes and in particular VBS ones
[48, 42, 43] at NLO EW and NLO QCD. The matrix elements are provided by Recola [49–51]
which internally uses the Collier library [52, 53] to evaluate tensor integrals.

On the other hand, the NNLO QCD corrections have been obtained from proVBFHH
v1.1.0 [26, 28] which uses the projection-to-Born method [32] to compute the fully differential
NNLO corrections in the VBF approximation. In order to correct for the mismatch between this
computation and the full computation used for the LO and NLO computations, we compute a
differential correction factor

Kfull/VBF =
d�

full

LO

d�
VBF

LO

(2)

and obtain the NNLO cross section provided below in the following way

�NNLO QCD = �
full

LO + �
full

NLO QCD +Kfull/VBF�
VBF

NNLO QCD, (3)

4

(a) (b)

(c)
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Figure 2: Differential distributions for pp ! jjHH at the LHC with centre-of-mass energy of
14TeV: (a) transverse momentum of the hardest jet (top left), (b) transverse momentum of the
second hardest jet (top right), (c) transverse momentum of the hardest Higgs boson (bottom
left), and (d) transverse momentum of the second hardest Higgs boson (bottom right). The
upper panel shows the absolute contributions at NNLO QCD and NLO EW. The bands denote
the envelope of the scale variation. The lower panel shows the corrections relative to the NLO
QCD prediction.
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�
full

LO
�
full

NLO QCD
�
VBF

NNLO QCD
�
full

NLO EW
�NNLO QCD⇥NLO EW �

NF

NNLO QCD
[fb]

0.78444(9)
+0.0825
�0.0694 �0.07110(13) �0.0115(5) �0.0476(2) 0.6684(5)

+0.002
�0.0004 0.01237(2)

+10.5%
�8.8% �9.1% �1.5% �6.1% �14.8%

+0.3%
�0.06% +1.7%

Table 1: The fiducial cross section for the process pp ! HHjj, expressed in fb and in per cent,
computed according to Eq. (4) at 14TeV and under the selection cuts given in Sec. 2. The
numbers in per cent are with respect to the LO cross section. The errors given in parenthesis are
purely statistical whereas the additional uncertainties quoted for �

full

LO
and �NNLO QCD⇥NLO EW

are the QCD scale variations. We also show �
NF

NNLO QCD
separately. The value of the correction

factor to go from the VBF approximation to the full computation is Kfull/VBF = 0.99220(11).

In Table 1, fiducial cross sections and higher-order corrections are displayed for the event
selection presented in Sec. 2. They are expressed both in femto barn and in per cent. The
numbers in per cent are with respect to the LO cross section. The numbers in parenthesis
indicate the statistical error while the additional information on �

full

LO
and �NNLO QCD⇥NLO EW

gives the scale variation estimate. Note that the total statistical uncertainty is not obtained by
adding the individual statistical uncertainties in quadrature, as these are all correlated.

One of the main messages of Table 1 is that the QCD corrections are negative as for similar
signatures such as single Higgs-production via VBF or VBS at the LHC. In addition, the higher-
order QCD corrections dramatically reduce the uncertainty associated with missing QCD higher
orders. In particular, it goes from [+10.5%,�8.8%] at LO to [+0.3%,�0.06%] at NNLO in QCD.
We note that the non-factorisable NNLO QCD corrections are the only positive corrections, and
that their contribution almost exactly cancels the factorisable NNLO QCD corrections. This is
a coincidence of the particular cuts used here.

The second important point is the size of the EW corrections. It has recently been found
(and further confirmed in Refs. [43, 62]) that large EW corrections are an intrinsic feature of
VBS at the LHC [48]. It originates from the quantum numbers of the particles involved in the
process as well as the large scale induced by the massive t-channel exchange [63]. For such
processes, the corrections reach about �15% to �20% of the LO prediction. On the other hand,
for single-Higgs production via VBF, EW corrections have been found to be around �5% [38, 44].
It is thus interesting to observe that, despite having a higher typical scale, the magnitude of the
EW corrections for double-Higgs production via VBF is very close to the single-Higgs one. In
particular, in VBS the typical scale (the invariant mass of the four leptons) is hm4`i ⇠ 390GeV
while the VBF case it is even larger with hmHHi ⇠ 610GeV. In the same way as in Ref. [48], one
can derive a leading-logarithmic approximation using Ref. [64]. Because the quantum numbers
of the Higgs boson, such as the effective EW Casimir operator (see Eq. (B.10) in Ref. [64]), are
significantly smaller than the ones of the Z or W gauge bosons, the logarithm coefficients are
reduced with respect to the VBS case. For example, the coefficient of the double logarithms,
which is directly proportional to the effective EW Casimir operator, is smaller by about a factor
two. This implies, that VBF does not feature intrinsic large EW corrections as VBS.

The QCD corrections on the other hand tend to be somewhat smaller for double-Higgs
production compared to single Higgs. This is due to the larger energy transfer in the t-channel
which leads to harder jets and a higher dijet invariant mass. This in turn means that fewer events
are lost due to QCD radiation. Overall, the state-of-the-art prediction displays a correction of
about �15% with respect to the LO prediction. Finally, the numerical value of the correction
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QCD factorisable contribution but with 
opposite sign 
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HH Gluon Fusion: EFT Results (II)

Results in non-linear EFT framework for  @ NLO (2-loop) with full  are 
now publicly available in POWHEG-BOX (See /User-Processes-V2/ggHH)
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Figure 2: Normalised Higgs boson pair invariant mass distributions, (a) for benchmark

points 1, 2 and 3 compared to the SM, (b) for benchmark points 5, 6 and 7 compared

to the SM. All curves are at full NLO. The uncertainties shown are statistical only.

attributed to the interplay with the nonzero value of ctt, as can be concluded from the

analysis in Ref. [33].

In Fig. 2b the mhh distribution for benchmark points 5, 6 and 7 is shown, normalised to

the SM cross section. Benchmark point 5 shows a narrow dip below mhh = 2mt, which

would not be present for chhh = 3.95 if all other couplings were SM-like. In fact, from

the analysis in Ref. [33] it can be inferred that the negative cgghh value in combination

with chhh = 3.95 is causing this dip in the shape.

In Fig. 3a we consider benchmark point 4 compared to the full NLO SM as well as

in the Born-improved mt ! 1 limit, matched to PYTHIA-8 in all cases. The curves

for the Born-improved HTL SM case and for benchmark point 4 are normalised to

the SM cross section. Even though the mt ! 1 approximation shows an enhanced

tail compared to the full SM, the enhancement of the tail in the case of benchmark 4

is much more pronounced. The situation is di↵erent for the p
hh

T
distribution, shown

in Fig. 3b. For this observable, the results for benchmark 4 and the Born-improved

mt ! 1 approximation are very close. This fact again shows the importance of the

full NLO corrections in order to clearly identify new physics e↵ects.

In both Fig. 3a and Fig. 3b, in order to obtain the scale uncertainty bands, the varia-

tion curves were normalised by the ratio of the central-scale prediction to the SM cross

section. Thus the bands have the same relative size as in an unnormalised plot. We also

investigated a di↵erent option to produce the scale bands for the normalised cross sec-

tion, where the scale uncertainties are not normalised by the ratio �SM/�(µ0), but rather

by �SM/�(c µ0), c 2 {0.5, 1, 2}, i.e. by their own cross section at the considered scale.

For the mhh distribution this type of normalisation makes the scale bands disappear

– 10 –

Born-virtual interference 
term parametrised with 23 
linearly independent sets of 
couplings, grids generated 
for each interference term, 
combined at run time

After a field redefinition of h to eliminate c̄H from the kinetic term one finds [41, 44]

ct = 1�
c̄H

2
� c̄u , ctt = �

c̄H + 3c̄u
4

, chhh = 1�
3

2
c̄H + c̄6 , (2.3)

cggh = 2cgghh = (16⇡2)⇥ 8c̄g . (2.4)

3 Description of the code

3.1 Structure of the code

The code is an extension of the one presented in Ref. [14] to include the possibility of

varying all five anomalous couplings rather than only the trilinear Higgs coupling. For

the virtual two-loop corrections, we have built on the results of the calculations pre-

sented in Refs. [8, 9]. These results were obtained by performing a (partial) reduction

of the two-loop amplitude to master integrals based on Reduze [45, 46] and a subse-

quent numerical evaluation of the master integrals using the program SecDec [47, 48].

This has been done with the top quark- and Higgs masses fixed to a numerical value.

Therefore these mass values should not be changed in the ggHH code.

The real radiation matrix elements were implemented using the interface between

GoSam [49, 50] and the POWHEG-BOX [32, 51]. The extra matrix elements occurring in
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which has been developed in Ref. [29], derived from the e↵ective Lagrangian in Eq. (2.1)

using FeynRules [53].
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of all five anomalous couplings as in Eq. (3.1), following Refs. [29, 39, 44].
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2
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For the Born-virtual interference term, we produce grids using 6715 points (5194 points

at
p
s = 14 TeV and 1521 points at 100 TeV) for 23 linearly independent sets of cou-

plings. This enables us to derive, for each phase-space point, the coe�cients a1, . . . , a23
by interpolation. Once the user has chosen a set of anomalous couplings, the 23 grids

– 6 –

Allows user to specify EFT 
couplings in a completely flexible 
manner 

Note: Chromo-magnetic operator 
not included here (suppressed 
depending on EFT counting)
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de Florian, Fabre, Heinrich, Mazzitelli (Les Houches 19)

HH Gluon Fusion: NNLO HTL + NLO SM with EFT

Can apply bin-by-bin reweighting 
to obtain NLO improved results 
including EFT effects 

Δσ(NNLONLO−i) = Δσ(NNLOB−i) ×
Δσ(NLOFull)
Δσ(NLOB−i)

de Florian, Fabre, Mazzitelli 17 

chhh -1 0 1 2 2.4 3 5

‡ [fb] 131.9+2.5%
≠6.7% 70.38+2.4%

≠6.1% 31.05+2.2%
≠5.0% 13.81+2.1%

≠4.9% 13.1+2.3%
≠5.1% 18.67+2.7%

≠7.3% 94.82+4.9%
≠8.8%

‡/‡SM 4.25 2.27 1 0.445 0.422 0.601 3.05

‡/‡NLO 1.13 1.13 1.12 1.11 1.12 1.15 1.16

Table IV.9: Higgs pair production total cross sections for a collider energy of 13 TeV at NNLONLO-i

(rescaled to the NNLOFTapprox total cross section in the chhh æ 1 limit) for di�erent values of the
self-coupling ⁄hhh, together with the ratio w.r.t. the SM expectation and to the NLO prediction.

defined as ‡FTapprox
NNLO /‡Full

NLO, is shown in the lower panels. Even if this constant K-factor does
not reproduce all the features of our best prediction, it is worth noting that in most of the cases
represents an improvement w.r.t. the NLO result.

Finally, we focus on the results obtained for exclusive ⁄hhh variations. The corresponding
invariant mass distributions for di�erent ⁄hhh values are presented in Fig. IV.19. In this case,
compared to the more general EFT variations presented in the previous figures, we see a milder
dependence of the corrections on the invariant mass values, and smaller deviations from the
inclusive SM K-factor.

The total cross sections obtained for the di�erent values of ⁄hhh are presented in Ta-
ble IV.9. As mentioned before, the scale uncertainties are adjusted by a normalization factor
in order to match the ones of the NNLOFTapprox SM prediction. In addition to the NNLONLO-i
uncertainties, the relative uncertainties of the NNLOB-i were also considered (again adjusted to
match NNLOFTapprox) and, in order to be conservative, the maximum between these two is the
one reported in Table IV.9.

In line with what is observed at the di�erential level, we can see that the ratio of our
NNLONLO-i results to the corresponding NLO prediction is only mildly dependent on the value
of ⁄hhh, with corrections ranging between 11% and 16% in the range of ⁄hhh under study.

5.3 Summary
We have performed a combination of the NLO results with full top-mass dependence with
the NNLO predictions obtained in the Born-improved HTL for non-SM values of the trilinear
self-coupling and, more generally, in the context of a non-linear EFT approach parameterizing
BSM e�ects. In particular, the results for the total cross sections and theoretical uncertainties at
NNLONLO-i in Table IV.9 are a key ingredient for a more consistent treatment of ⁄hhh variations
in experimental analyses.
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dependence on 
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Fig. IV.17: Higgs-pair invariant mass distribution at 13 TeV for the di�erent shape benchmarks, at
NLO with full top mass dependence (blue-dashed) and NNLO HTL NLO-improved (orange-solid), the
latter rescaled to the NNLOFTapprox total cross section in the SM limit. The lower panel shows the
di�erential K-factor, defined as the ratio to the NLO prediction, together with the inclusive SM K-factor
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Benchmark chhh ct ctt cggh cgghh

1 7.5 1.0 ≠1.0 0.0 0.0

2 1.0 1.0 0.5 ≠
1.6
3 ≠0.2

3 1.0 1.0 ≠1.5 0.0 0.8
3

4 ≠3.5 1.5 ≠3.0 0.0 0.0

5 1.0 1.0 0.0 1.6
3

1.0
3

6 2.4 1.0 0.0 0.4
3

0.2
3

7 5.0 1.0 0.0 0.4
3

0.2
3

8a 1.0 1.0 0.5 0.8
3 0.0

9 1.0 1.0 1.0 ≠0.4 ≠0.2

10 10.0 1.5 ≠1.0 0.0 0.0

11 2.4 1.0 0.0 2.0
3

1.0
3

12 15.0 1.0 1.0 0.0 0.0

SM 1.0 1.0 0.0 0.0 0.0

Table IV.8: Benchmark points used for the distributions shown below.

summing over the whole invariant mass range. The exact definition of the Born-improved
approximation can be found in Ref. [1054], and is based in replacing HTL form factors by their
full LO counterparts, including in this way partial finite top-mass e�ects.

Of course, the results obtained by applying Eq. (IV.29) do not fully agree with the
NNLOFTapprox prediction, though this bin-by-bin reweighting was found to provide results very
close to it at NNLO [282]. Therefore, in order to provide a consistent prediction that behaves
smoothly in the SM limit, we add a normalization factor (independent of both the invariant
mass bin and the point in the EFT parameter space) to recover the correct NNLOFTapprox total
cross section. A similar procedure is performed for the scale variation (which in the present
work is based on a 3-point variation, µR = µF = ›Mhh/2 with › = 1/2, 1, 2). Our results are
for a centre-of-mass energy of

Ô
s = 13 TeV and are computed using the PDF4LHC15 [932]

parton distribution functions interfaced via LHAPDF [770], along with the corresponding value
for –s(µ), with –s(MZ) = 0.118. The masses of the Higgs boson and the top quark have been
set to mh = 125 GeV and mt = 173 GeV, respectively.

In order to show the impact of the QCD corrections, we present predictions for the bench-
mark points introduced in Ref. [1059] (though we use the redefinition of the benchmark point
number 8 presented in Ref. [1055]), see Table IV.8. The Higgs pair invariant mass distribution
for these 12 benchmarks is shown in Fig. IV.17. To assess the accuracy of the Born-improved
HTL approximation defined in Ref. [1054] and used here, we also present in Fig. IV.18 the
corresponding results at NLO.

From the distributions in Fig. IV.17 we can observe that the NNLO corrections are sizeable
and have a non-trivial dependence on the kinematics, and they can even become negative in
some invariant mass and parameter space regions. For comparison, the inclusive SM K-factor,
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corresponding results at NLO.

From the distributions in Fig. IV.17 we can observe that the NNLO corrections are sizeable
and have a non-trivial dependence on the kinematics, and they can even become negative in
some invariant mass and parameter space regions. For comparison, the inclusive SM K-factor,

126



16

Higgs Self-Coupling from Single Higgs Production

So far focused on HH production where  appears at LO 
Can also constrain this coupling from high-order effects in single Higgs production

λ3

McCullough 13

3

1 1 1

h h

h h

Z

e
�

e
+ e

+

e
�

Z

FIG. 1: NLO vertex corrections to the associated production
cross section which depend on the Higgs self-coupling. These
terms lead to a linear dependence on modifications of the self-
coupling �h.

recourse to the details of renormalization of the irrelevant
operator in Eq. (3), however proceeding to NNLO in this
case would require the counter-term to this operator.

The dominant Higgs production process at an e
+
e
�

collider at the energies considered here is Higgs associ-
ated production. At NLO the Higgs self-coupling en-
ters the associated production amplitude in two ways. It
enters quadratically via a modified Higgs wavefunction
counter-term, feeding into associated production at NLO
as a modification of the hZZ coupling. The self-coupling
also enters into the amplitude linearly through diagrams
such as Fig. 1. Depending on gauge choice there are also
diagrams with internal Goldstone lines.

The full NLO corrections to e
+
e
�

! hZ are deter-
mined using the FeynArts, FormCalc, and Loop-
Tools suite of packages [18, 19] by calculating the full
one-loop electroweak corrections to associated produc-
tion (see Refs. [20–23]) and extracting the dependence
on the self-coupling parameter. The counter-terms for all
SM-Higgs couplings are calculated automatically follow-
ing the electroweak renormalization prescription of [24].
The analytic form of the correction at a CM energy

p
S

can be extracted from the FeynArts and FormCalc
[18, 19] output in terms of the various one-loop integrals
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where

K =
µ

4�D

i⇡D/2r�
, r� =
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�(1 � 2✏)
. (6)

The two-point scalar function encountered here is defined
as

B0 = B(M2
H

, M
2
H

, M
2
H

), (7)

and the first derivative of this function as
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FIG. 2: Corrections to �(e+e� ! hZ), for a given variation
in the self-coupling, �h, as a function of the CM energy from
220 to 500 GeV.

The three-point scalar functions are

C0 = C(M2
H

, S, M
2
Z
, M

2
H

, M
2
H

, M
2
Z
), (9)

and C1, which is the scalar coe�cient of k1 in Cµ1 with
the same arguments. C00, C11, C12 are the scalar coef-
ficients of gµ,⌫ , k1k1, and k1k2 in Cµ1,µ2 . All of these
functions can be easily evaluated using the LoopTools
package [18, 19]. With these definitions the full form of
the self-coupling correction is
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(12)

and

 = C1 + C11 + C12. (13)

Eq. (10) was calculated in the R⇠ gauges, and the absence
of the ⇠ parameter demonstrates the full gauge invariance
of the result. Furthermore, although a number of UV-
divergences appear individually, the final result is UV-
finite as these divergences cancel in B0 � 4C00 and also
in .

At various CM energies the fractional corrections to
the associated production cross section, ��h

(e+
e
�

!

hZ), relative to the SM rate are found to be

�
240,350,500
�

= 1.4, 0.3,�0.2 ⇥ �h% , (14)

where only the lowest-order term in �h has been retained
as other higher-dimension operators may contribute at
O(�2

h
), and the coe�cient of this term is unknown. The

full energy dependence is shown in Fig. 2.

E.g. can constrain  below HH threshold from EW 
corrections to 

λ3
e+e− → ZH

At LHC,  appears in main Higgs production and decay channelsλ3

Gorbahn, Haisch 16, 19;  Bizon, Gorbahn, Haisch, Zanderighi 16; Degrassi, Giardino, Maltoni, 
Pagani 16; Maltoni, Pagani, Shivaji, Zhao 17; Di Vita, Grojean, Panico, Riembau, Vantalon 17
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Figure 2. Feynman diagrams with an insertion of the effective operator O6 that lead to Higgs-
boson decays into fermion (left), gluon (middle) and photon (right) pairs.

The O(�) correction to the partial decay width �(h ! V V ) arises from the diagrams shown
in Figure 1. We find
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Here the arguments of the PV loop integrals are defined as in (3.6). We have verified that
the expression (4.4) agrees numerically with the results presented in [31].

The changes in partial decay widths of the Higgs boson to gluon and photon pairs can
be written in the following way
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where ↵s = ↵s(mh), ↵ = 1/137.04, while Qu = 2/3, Qd = �1/3 and Q` = �1 denote
the electric charges of the fermions. The leading-order (LO) form factors that encode the
1-loop corrections due to SM fermion and W -boson loops read
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with ⌧X = 4m2
X

/m2
h

for X = f, W . The O(�) correction to the partial decay width of the
Higgs to gluons and photons originate from 2-loop diagrams with an insertion of O6. Two
example graphs are shown in the middle and on the right of Figure 2. The results presented
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Figure 2: Examples of one loop �HHH -dependent diagrams for the Higgs boson self-energy (a) and the single-Higgs
production in the ggF (b), VBF (c), VH (d), and tt̄H (e) modes. The self-coupling vertex is indicated by the filled
circle.

particular, �HHH contributes at NLO EW via Higgs boson self energy loop corrections and via additional
diagrams, examples of which are shown in Figure 2. Therefore, an indirect constraint on �HHH can be
extracted by comparing precise measurements of single-Higgs production and decay yields and the SM
predictions corrected for the �HHH -dependent NLO EW e�ects. A framework for a global fit to constrain
the Higgs boson trilinear coupling and the other coupling modifiers m = gm/gSMm , where gm is a coupling
of the Higgs boson to fermions or vector bosons altered by BSM physics, has been proposed in Refs. [11,
12]; the model dependent assumptions of this parameterisation are described in the same references. In
this work inclusive production cross sections, decay branching ratios and di�erential cross sections are
exploited to increase the sensitivity of the single-Higgs analyses to � and m. The di�erential information
is encoded through the simplified template cross-section (STXS) framework [34, 48]. The signal yield in a
specific decay channel and STXS bin is then proportional to:

n
signal
i, f (�, m) / µi(�, m) ⇥ µ f (�, m) ⇥ �SM,i ⇥ BRSM, f ⇥ (✏ ⇥ A)i f , (3)

where µi and µ f describe respectively the multiplicative corrections of the expected SM Higgs boson
production cross sections in an STXS bin (�SM,i) and each decay-channel branching fraction (BRSM, f ) as a
function of the values of the trilinear Higgs boson self-coupling modifier � and the LO-inspired modifiers
m. The (✏ ⇥ A)i f coe�cients take into account the analysis acceptance times e�ciency in each production
and decay mode.

The functional dependence of µi(�, m) and µ f (�, m) on � and m varies according to the production
mode, the decay channel and, in particular for the VH production mode, on the STXS bin. Therefore STXS
information of the VBF, WH and ZH production modes are exploited here to constrain � and m. For the
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Single Higgs Constraints

Limits on  from HH production (ATLAS )  
                  (95% CL) and 

λ3 bbbb, bbτ+τ−, bbγγ
σtot ≤ 6.9σSM −5.0 < κλ < 12.0 CERN-EP-2019-099

Complementary limits on  from single Higgs:  
                          Combination: 

λ3 −3.2 < κλ < 11.9
−2.3 < kλ < 10.3 ATL-PHYS-PUB-2019-009 

ATLAS-CONF-2019-049

Assuming that only  is modified single Higgs can provide very useful constraintsλ3

2.3. Impact of EFT fit 49
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Figure 2.11: HL-LHC at 13 TeV and 3 ab°1. Left: Single Higgs with only inclusive measurements
(orange) and including differential information (blue) with only ∑∏ (pale colour) or marginalising
over the nine EFT coefficients (strong colour). Right: Constraints from differential single Higgs
(blue), differential double Higgs (dashed red) and their combination (pink).

For example, a global fit using only inclusive single Higgs observables such as those presented in
Ref. [107], which is based on only nine independent measurements, and taking into account the
additional nine EFT deviations listed above, suffers from a flat direction. Therefore, ∏H 3 remains
unconstrained under these assumptions. On the other hand, its presence in the fit decreases the
accuracy in the determination of some of the other nine coefficients. In order to lift this degener-
acy, it is possible to include data from differential measurements. Indeed ±∑∏ ¥ ∑∏°1 has a non-flat
effect on single Higgs distributions.

We summarise the global fit for the HL-LHC in Fig. 2.11. The width of the bands represent
the results obtained assuming two different uncertainty scenarios, S1 and S2, which correspond to
the projected uncertainties on the inclusive signal strengths recommended by the ATLAS and CMS
collaborations for the different production and branching ratio9. In the case of differential distri-
butions, as a first step, the projections of the uncertainties are estimated by rescaling the statistical
uncertainties bin by bin. However, this is a very conservative estimate, because it assumes the back-
ground to be flat, while this one is typically larger at lower energies. Therefore, following the CMS
analysis on t t̄ H production with H ! ∞∞ [129] as a template, we have tilted the background accord-
ingly10. In the left plot, we show the¢¬2 for single Higgs projections including differential informa-
tion (blue), both assuming only ±∑ effects (pale colour between dotted lines) and profiling over the
other nine parameters (strong colour between solid lines). Since the lines are not very separated,
we can understand that constraints are mostly dominated by statistics. In the case of orange bands,
we do not include the differential information and we show only the case in which only ±∑∏ effects
are present. As can we see form Fig. 2.11, including the nine EFT parameters, the constraints on the
trilinear coupling are weaker due to correlations. The strongest effects are due to the correlations
between ±yt and cg g , and also between ±yb and ±cz . On the other hand, the differential information
partially removes flat directions. In the right plot we compare and combine the constraints, includ-
ing differential observables (blue), with those achievable via double Higgs production, according to
Ref. [104] (red). Their combination is depicted in pink. Allowing non-negligible effects from all the
nine EFT parameters, double Higgs is leading to much stronger constraints. Nevertheless, single

9The first scenario (S1) assumes the same uncertainties as those used in the published in ATLAS and CMS Run 2
analyses [62, 63]. The second scenario (S2) features a reduction of the systematic uncertainties due to the improvements
expected to be reached at the end of HL-LHC program [173].

10With this procedure a good agreement with the CMS analysis is found, for this channel only. As a simple guess, we
use it for the rest of the uncertainties

LHCHXSWG-2019-005

Impressive results have already been obtained with current data
Warning: 

see EXP talks for 
updates
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Higgs Self-Coupling from Single Higgs Production

Desirable to have differential effects for gluon 
fusion: need 2-loop EW diagrams for pp → HJ
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Figure 1: Examples of two-loop diagrams contributing to the h ! �Z am-
plitude: (a) diagram contributing to Ft; (b) diagram contributing to FW .

factor and both amplitudes are purely real, C1 can be more easily written
as

C1 =
2 F

NLO

1PI

FLO
. (17)

where FNLO

1PI
represents the one-particle irreducible (1PI) two-loop diagrams

containing an h3 interaction.
In order to evaluate the C1 coe�cient we generated, in the UG, the two-

loop diagrams contributing to the h ! �Z amplitude using the Mathematica
package FeynArts [17]. As in the one-loop case the diagrams can be assigned
to the two categories Ft, FW , see fig. 1. The diagrams were manipulated
using the package FeynCalc [18,19], expanded in the external momenta and
reduced to scalar integrals using a private code. After the reduction to scalar
integrals we were left with the evaluation of two-loop vacuum integrals that
were computed analytically using the results of Ref. [20].

The result for C1 is automatically finite in the unitary gauge, i.e. no
renormalization is needed, since the LO result does not depend on the tri-
linear coupling. As expected the fermionic and bosonic contributions are
separately finite.

3 �3-dependent contribution in a (�†�)n theory

This section is devoted to discuss how the result obtained in the -framework
working in the UG can be recovered using a SM Lagrangian with a modified
scalar potential of the form

V NP =
NX

n=1

c2n(�
†�)n , � =

✓
�+

1p
2
(v + h+ i�2)

◆
, (18)

working in a renormalizable gauge that we choose for simplicity to be the
Feynman one (FG). In eq.(18) N can be a finite integer or infinite, and in

7

Self-coupling dependent contributions to 
 now known 

2-loop diagrams computed in a small 
external momentum expansion 

Sensitivity of  & BR to  found to 
be similar to 

h → γZ

Γ(h → γZ) λ3
h → WW
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factor and both amplitudes are purely real, C1 can be more easily written
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represents the one-particle irreducible (1PI) two-loop diagrams

containing an h3 interaction.
In order to evaluate the C1 coe�cient we generated, in the UG, the two-

loop diagrams contributing to the h ! �Z amplitude using the Mathematica
package FeynArts [17]. As in the one-loop case the diagrams can be assigned
to the two categories Ft, FW , see fig. 1. The diagrams were manipulated
using the package FeynCalc [18,19], expanded in the external momenta and
reduced to scalar integrals using a private code. After the reduction to scalar
integrals we were left with the evaluation of two-loop vacuum integrals that
were computed analytically using the results of Ref. [20].

The result for C1 is automatically finite in the unitary gauge, i.e. no
renormalization is needed, since the LO result does not depend on the tri-
linear coupling. As expected the fermionic and bosonic contributions are
separately finite.

3 �3-dependent contribution in a (�†�)n theory

This section is devoted to discuss how the result obtained in the -framework
working in the UG can be recovered using a SM Lagrangian with a modified
scalar potential of the form
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Figure 1. Examples of two-loop Feynman diagrams with an insertion of an effective trilinear Higgs
coupling (black square) that contribute to the h ! gg (left), h ! ggg (middle) and h ! qq̄g (right)
channel, respectively.

expansions of the relevant two-loop form factors in powers of the ratios ⌧ , x, y and z�
see (2.8)

�
. Considering the three Feynman diagrams shown in Figure 1, it is not difficult

to convince oneself that only two types of subgraphs contribute to such an expansion in
the case at hand. The first type of contributions arises if the complete diagram is taken
to be the subgraph and corresponds to configurations where the external momenta but
not the loop momenta are small compared to mt. In this case the asymptotic expansion
results in two-loop vacuum integrals with one mass scale that are known analytically since
some time [25]. The second type of contributions is obtained by taking only the top-quark
loop as a subgraph. Expanding this subgraph in terms of the external as well as the loop
momentum running through the Higgs triangle leaves one with one-loop massive vacuum
integrals. The corresponding co-subgraphs are one-loop self-energy diagrams that depend
on mh as well as the external momenta but not on mt. The analytic expressions for such
integrals can be found in many textbooks. Combining the two types of contributions and
including all diagrams leads to an ultraviolet finite result for the O(�) corrections to the
h ! gg, h ! ggg and h ! qq̄g form factors.

4 Analytic results

Below we present the analytic results for the O(�) corrections to the h ! gg, h ! ggg and
h ! qq̄g form factors. Our results have been obtained by the techniques described in the
preceding section.

4.1 The h ! gg form factor

The O(�) contribution to the form factor entering (2.2) can be written as follows

F = �↵s

⇡v

�

(4⇡)2

2

4
6X

p=0

⌧p

✓
Z

2
F (p)
1 + c̄6F (p)

2

◆3

5 . (4.1)

Here ↵s = g2s/(4⇡) is the strong coupling constant while

Z =
⇣
9 � 2

p
3⇡

⌘
c̄6 (c̄6 + 2) , (4.2)
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κλ - 1 = 10
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Figure 2.10: Effect of ∑∏ corrections on the pT,H spectrum in pp ! H+jet production. As indicated,
the curves correspond to different orders in the asymptotic expansion in the top-quark mass mt ,
and all show the ratio between the new-physics and the SM prediction for the choice ∑∏°1 = 10.

and following the same approach, based on the results presented in Ref. [112],

°4.7 < ∑∏ < 12.6 at 13 TeV. (2.37)

Notably, bounds in Eq. (2.37) are competitive with the currently strongest bounds from double
Higgs production measurements [62]. Very recently, the first experimental results obtained follow-
ing this strategy have been presented by ATLAS [130]. This measurement is in good agreement with
the estimate in Eq. (2.37) and is discussed in detail in Sec. 7.6.

The aforementioned limits, however, assume a very peculiar BSM scenario, in which the only
relevant effects originate from the trilinear Higgs coupling, allowing for O (1) deviations without
any effect on other Higgs couplings. In fact, these limits critically depend on other aspects [107,
127]. First, the number of additional parameters, which are related to other anomalous interactions,
and the number of independent measurements that are taken into account in the fit. Second, the
inclusion or not of the information from differential distributions. Third, the fit assumptions on
the size of the theoretical and experimental uncertainties. Also for these reasons, ATLAS and CMS
analyses with a full-fledged treatment of all the correlations and with different assumptions on the
the number of BSM parameters are essential. The first of these kind of analyses, which has been
presented in Ref. [130] and it is also discussed in Sec. 7.6, is supporting the validity of this strategy.

As shown in Ref. [127], assuming only deviations on the Yukawa coupling of the top quark (∑t )
and/or a common rescaling of the Higgs gauge interactions (∑V ), limits are mildly affected. On
the other hand, in general, a new dynamic affecting the Higgs self-coupling would leave a more
complex imprint on the other Higgs interactions and can have a strong impact on the bound on
∏H 3 [107]. Adopting the EFT framework described in Ref. [107], nine additional coefficients param-
eterise the possible deviations in single Higgs production (see Eq. (2.12) and related discussion):

±yt , ±yb , ±yø, cg g , c∞∞, ±cz , czz , cz‰, cz∞. (2.38)

For the determination of ∏H 3 , a global fit is important not only because it involves different
processes that entail a different dependence on ∏H 3 , but also because it allows to assess the robust-
ness of bounds such as those in Eqs. (2.36) and (2.37), where only ∏H 3 variations are considered.

Computed in  expansion (valid for ) 

Ratio to SM rather flat below top threshold 
Interesting to explore  effects above threshold (?)

1/m2
T pT,H < mT

λ3
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Higgs Self-Coupling from Single Higgs Production

Can also constrain  by considering the 
modification of precision EW observables  
(EW oblique corrections)  

Weaker bounds than single Higgs production: 
  (but complementary)

λ3

S, T

−14.0 ≤ κλ ≤ 17.4
Degrassi, Fedele, Giardino 17;  
Kribs, Maier, Rzehak, Spannowsky, Waite 17;
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Figure 1: Example Feynman diagrams for the (a) ZZ, (b) WW , (c) Z� and (d) �� two-

loop self-energies. The square represents a vertex where there is a contribution from the

dimension-6 operator.

Contributions to S and T involving the dimension-6 operator O6 first appear at the

two-loop level. At this order in perturbation theory, self-energy diagrams containing both

trilinear and quartic Higgs self-interactions appear, which due to their modifications from

c̄6 outlined above, are manifest as non-zero corrections to S and T . However, as we

will see later, contributions from the quartic Higgs self-interaction exactly cancel in these

observables. It is also important to note that at this order in perturbation theory, there

are no vertex or box diagrams that depend on c̄6 involving light external fermions (i.e.,

light enough that their Yukawa coupling can be neglected). Since two-loop corrections to

vertex or box diagrams involving both c̄6 and heavy external fermions do not enter the

electroweak observables, the relevant two-loop c̄6 contributions to the self-energies must be

separately gauge-invariant.

3.1 Self-energy diagrams

To evaluate the electroweak oblique parameters S and T , all two-loop self-energy diagrams

involving corrections from c̄6 need to be calculated. From the definitions of S and T , all

SM contributions are subtracted and so only terms proportional to c̄6 and c̄
2
6 can remain.

Working in the Feynman gauge, and discarding all two-loop diagrams that do not contain

a contribution from c̄6, there are 26 diagrams for ZZ, 26 for WW , 5 for Z� and 5 for ��.

– 5 –

Aside: can play similar games with HH to set indirect 
limits on   from (partial) EW corrections to HHλ4

Bizon, Haisch, Rottoli 18; Borowka, Duhr, Maltoni, Pagani, 
Shivaji, Zhao 18

Important caveat: If  is modified by BSM physics we may expect other Higgs 
couplings to be affected, can have drastic effects on indirect constraints, need to 
be careful how we interpret deviations (+global EFT approach motivated)

λ3

Di Vita, Grojean, Panico, Riembau, Vantalon 17
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observables. It is also important to note that at this order in perturbation theory, there

are no vertex or box diagrams that depend on c̄6 involving light external fermions (i.e.,

light enough that their Yukawa coupling can be neglected). Since two-loop corrections to

vertex or box diagrams involving both c̄6 and heavy external fermions do not enter the

electroweak observables, the relevant two-loop c̄6 contributions to the self-energies must be

separately gauge-invariant.

3.1 Self-energy diagrams

To evaluate the electroweak oblique parameters S and T , all two-loop self-energy diagrams

involving corrections from c̄6 need to be calculated. From the definitions of S and T , all

SM contributions are subtracted and so only terms proportional to c̄6 and c̄
2
6 can remain.

Working in the Feynman gauge, and discarding all two-loop diagrams that do not contain
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Figure 2. Two-loop topologies involving c̄6 and c̄8 effects on Higgs self coupling in gg ! HH.
Except diagrams (g) and (h), all topologies are present in the SM. We have marked with a blob all
the vertices involving c̄6 and c̄8; cubic vertices are in blue while quartic ones are in red. Diagrams
(a)-(c) are non-factorisable two-loop topologies. Diagrams (d)-(h), together with the counterterm
(k), can be evaluated via the one-loop form factor V [HHH], while (i),(j) and (l) with the P [HH]

one.

to be used in phenomenological investigations as

�pheno

NLO
= �LO + ��c̄6 + ��c̄8 , (2.10)

– 6 –



Incredible progress in HH theory over the last few years 
• Gluon fusion - Full SM result: NLO 
• Gluon fusion - HTL result: N3LO (also differential) 
• Vector Boson Fusion - N3LO inclusive, NNLO differentially + NLO EW 
• Progress matched by amazing work from the experiments   

Uncertainties beyond scale variations are becoming relevant 
• Mass scheme uncertainties at the level of >10% percent @ NLO 
• Motivates studies of  dependence beyond 2-loop 

Combination with constraints from single Higgs production & EW precision 
observables can improve  determination 

Many other fascinating developments were not covered in this talk 
(e.g. prospects at future collider prospects, EFT fits, …) 

Thank you for listening

mT

λ3
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Summary

See talks of Konstantinos 
Nikolopoulos, Michele 
Selvaggi & Shankha Banerjee 
from this morning
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Heavy Top Limit (HTL):                
Effective tree-level couplings between gluons and Higgs 
Lowers number of loops by 1

HTL valid for:  

HH production for:  

HJ: high  not well described

̂s ≪ 2mT

2mH < ̂s

pT

Born improved NLO HTL:

Spira et al. (HPAIR)

mT ! 1

Heavy Top Limit

d�NLO(mT ) ⇡ d�̄NLO(mT ) ⌘
d�LO(mT )

d�LO(mT ! 1)| {z }
N

d�NLO(mT ! 1)

<latexit sha1_base64="BUiamDLxw30xrFf9AG4CPTUJO8I="></latexit>
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HH Approximations @ NLO (Schematically)

Dawson, 
Dittmaier, Spira 98

Maltoni, Vryonidou, 
Zaro 14

Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16; 
Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Zirke 16; 
Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher 18;
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HH: NNLO HTL Combined with NLO SM

Grazzini, Heinrich, SJ, Kallweit, Kerner, Lindert, 
Mazzitelli 18; (+NNLL) de Florian, Mazzitelli 18;
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Figure 2: Higgs boson pair invariant mass distribution at NNLO for the di↵erent approximations,
together with the NLO prediction, at 14TeV (left) and 100TeV (right). The lower panels show the
ratio with respect to the NLO prediction, and the filled areas indicate the NLO and NNLOFTapprox

scale uncertainties.

harder and the softer Higgs boson (pT,h1 and pT,h2, Figs. 6 and 7), and the azimuthal separation
between the two Higgs bosons (��hh, Fig. 8). For the sake of clarity, we only show the scale
uncertainty bands corresponding to the NLO and NNLOFTapprox predictions.

We start our discussion from the invariant-mass distribution of the Higgs boson pair, re-
ported in Fig. 2. We observe that the NNLOB-proj and NNLONLO-i approximations predict a
similar shape, with very small corrections at threshold, an approximately constant K-factor for
larger invariant masses, and only a small di↵erence in the normalization between them, which
increases in the 100TeV case. The NNLOFTapprox, on the other hand, presents a di↵erent shape,
in particular with larger corrections for lower invariant masses, a minimum in the size of the
corrections close to the region where the maximum of the distribution is located, and a slow
increase towards the tail. The di↵erent behavior of the NNLOFTapprox in the region close to
threshold is more evident at 100TeV, where the increase is about 30% in the first bin. Naively
we could expect that if this region is dominated by soft parton(s) recoiling against the Higgs
bosons, the Born projection and FTapprox should provide similar results. We have investigated
the origin of this di↵erence, and we find that in the region Mhh ⇠ 2Mh the cross section is actu-
ally dominated by events with relatively hard radiation recoiling against the Higgs boson pair
(for example, at

p
s = 100TeV, the average transverse momentum of the Higgs boson pair in

the first Mhh bin is pT,hh ⇠ 100GeV at NLO). In this region the exact loop amplitudes behave
rather di↵erently as compared to the amplitudes evaluated in the HEFT: As the production
threshold is approached, they go to zero faster than in the mass-dependent case, thus explain-
ing the di↵erences we find. Within the NNLOFTapprox, the corrections to the Mhh spectrum
range between 10% and 20% at 14TeV. The scale uncertainty is substantially reduced in the

10

R(ij ! HH +X) =
ABorn

Full
(ij ! HH +X)

A(0)

HEFT
(ij ! HH +X)

<latexit sha1_base64="vPS7ngapfu9yhfctconomQzjMzc="></latexit><latexit sha1_base64="vPS7ngapfu9yhfctconomQzjMzc="></latexit><latexit sha1_base64="vPS7ngapfu9yhfctconomQzjMzc="></latexit><latexit sha1_base64="vPS7ngapfu9yhfctconomQzjMzc="></latexit>

Differential NNLO HTL + NLO SM 

Top quark mass effects studied using 
3 different approximations

p
s 13 TeV 14 TeV 27 TeV 100 TeV

NLO [fb] 27.78 +13.8%
�12.8% 32.88 +13.5%

�12.5% 127.7 +11.5%
�10.4% 1147 +10.7%

�9.9%

NLOFTapprox [fb] 28.91 +15.0%
�13.4% 34.25 +14.7%

�13.2% 134.1 +12.7%
�11.1% 1220 +11.9%

�10.6%

NNLONLO�i [fb] 32.69 +5.3%
�7.7% 38.66 +5.3%

�7.7% 149.3 +4.8%
�6.7% 1337 +4.1%

�5.4%

NNLOB�proj [fb] 33.42 +1.5%
�4.8% 39.58 +1.4%

�4.7% 154.2 +0.7%
�3.8% 1406 +0.5%

�2.8%

NNLOFTapprox [fb] 31.05 +2.2%
�5.0% 36.69 +2.1%

�4.9% 139.9 +1.3%
�3.9% 1224 +0.9%

�3.2%

Mt unc. NNLOFTapprox ±2.6% ±2.7% ±3.4% ±4.6%

NNLOFTapprox/NLO 1.118 1.116 1.096 1.067

Table 1: Inclusive cross sections for Higgs boson pair production for di↵erent centre-of-mass
energies at NLO and NNLO within the three considered approximations. Scale uncertain-
ties are reported as superscript/subscript. The estimated top quark mass uncertainty of the
NNLOFTapprox predictions is also presented. The uncertainties due to the qT -subtraction and
the numerical evaluation of the virtual NLO contribution are both at the per mille level.

NNLOFTapprox, i.e. by about a factor of three. This reduction of the scale uncertainties is
stronger as we increase the collider energy, being close to a factor of five at 100TeV.

As is well known, scale uncertainties can only provide a lower limit on the true perturbative
uncertainties. In particular, from Table 1 we see that the di↵erence between the NNLO and
NLO central predictions is always larger than the NNLO scale uncertainties (although within
the NLO uncertainty bands). In any case, the strong reduction of scale uncertainties, together
with the moderate impact of NNLO corrections, suggests a significant improvement in the
perturbative convergence as we move from NLO to NNLO.

It is also worth mentioning that the three approximations have a di↵erent behaviour withp
s. For instance at 100TeV, the increase with respect to the NLO prediction for the NNLOB-proj

and NNLONLO-i approaches is 23% and 17%, respectively, values that are close to the ones for
14TeV (20% and 18%, respectively). By contrast, the NNLOFTapprox result increases the NLO
prediction by 7% at 100TeV, i.e. the correction is smaller by almost a factor of two than
at 14TeV (12%), which also means a larger separation with respect to the other two NNLO
approximations. The smaller size of the NNLO corrections in the FTapprox at higher energies
is also consistent with the observed reduction of scale uncertainties.

As was mentioned already in Section 2.2, the NNLOFTapprox result is expected to be the most
accurate one among the approximations studied in this work, and therefore it is considered to
be our best prediction. In order to estimate the remaining uncertainty associated with finite top
quark mass e↵ects at NNLO, we start by considering the accuracy of the FTapprox approximation
at NLO. At 14TeV the NLO FTapprox result (see Table 1) overestimates the full NLO total cross

8

1) NNLONLO-i 

Rescale NLO by KNNLO = NNLOHTL/NLOHTL 

2) NNLOB-proj 

Project real radiation contributions to Born 
configurations, rescale by LO/LOHTL 
3) NNLOFTapprox  
NNLO HTL correction rescaled for each 
multiplicity by:
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H* Mass Scheme Uncertainties

LH study of mass scheme dependence currently being finalised, 
attempts to highlight the issue by examining: H*, HH, HJ, ZZ

LO

NLO

σ(µt)/σ(µ0)
gg → H*

Q = 900 GeV
µ0 = Q/2

µt/Q

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

10 -1 1 10

LH Study (Spira) 20

�(gg ! H
⇤
) [pb] Q = 125 GeV Q = 900 GeV

LO 18.43
+0.8%
�1.1% 0.139

+0.0%
�36.0%

NLO 42.17
+0.4%
�0.5% 0.230

+0.0%
�22.3%
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Consider  @ :gg → H* Q = 900 GeV

Similarly to HH production,  
scheme dependence reduced by 
``only’’ factor ~2 

Note: For on-shell  
production uncertainty is tiny

mT

H(125)

Suggests that mass scheme uncertainties could be quite sizeable for 
many (loop-induced) Higgs processes with scales ≳ mT
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HJ Mass Scheme Uncertainties
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Suspicion:  is mostly not probing 
the top quark loop above threshold, 
smaller sensitivity to mass effects (?)
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