

OSCAR ÉBOLI UNIVERSIDADE DE SÃO PAULO

October 29, 2020

FIBAL FIS

Higgs2020

- We have the Higgs and no clear sign of new physics
- Hypothesis: there is a large mass gap
- To look for footprints of the UV model we can use EFT

- Hypothesis: the SM gauge symmetry is realized linearly
- At "low energies" we write $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{j \ge 5} \frac{f_{j,k}}{\Lambda^{j-4}} \mathcal{O}_j^{(k)}$

STAGE

SMEFT is a consistent QFT

- SMEFT: model independent analysis (bottom-up approach)
- Linear realization of symmetry leads to correlations between anomalous couplings

- The truncation of the series is decided by the (th&exp) precision
- For the LHC: focus on dimension-six operators (lowest one)
- To ensure a systematic coverage of BSM models we need to include all operators

 $(D^{\mu}\Phi)^{\dagger}W^{a}_{\mu\nu}\sigma^{a}D^{\nu}\Phi$ gives rise to vertices HVV, VVV, VVV, WVV,

- Example: let's add an extra scalar singlet
- After running to the weak scale there are also \mathcal{O}_{HD} , $\mathcal{O}_{HQ}^{(1)}$, $\mathcal{O}_{HQ}^{(3)}$
- $\mathcal{O}_{H\square}$ constrained by EWPO

At the matching small, \mathcal{O}_H , $\mathcal{O}_{H\square}$ are generated at tree level [Warsaw basis]

We need to choose a basis of operators : Warsaw, SILH, HISZ, HIGGS Change of basis via the use of the equations of motion

$$(\partial_{\mu}B^{\mu\nu})^{2} \simeq c_{1}(\Phi^{\dagger}D_{\mu}\Phi)^{2} + \sum_{\psi}c_{\psi}(\Phi^{\dagger}D_{\mu}\Phi)^{2} + \sum_{\psi}c_{\psi}(\Phi^{\dagger}D_{$$

lead to same S matrix elements

 $(\Phi^{\dagger} D_{\mu} \Phi) \ \bar{\psi} \gamma^{\mu} \psi + \sum_{a \not a \not a'} c_{\psi,\psi'} (\bar{\psi} \gamma^{\mu} \psi) (\bar{\psi}' \gamma^{\mu} \psi')$

Warsaw basis has the minimum number of bosonic operators[Grzadkowski et al. arXiv:1008.4884

 X^3 $f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$ Q_G $f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$ $Q_{\widetilde{G}}$ $\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$ \mathbf{O}_{3W} $\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$ $Q_{\widetilde{W}}$ $X^2 \varphi^2$ $arphi^\dagger arphi \, G^A_{\mu
u} G^{A\mu
u}$ $Q_{arphi G}$ $arphi^\dagger arphi \, \widetilde{G}^A_{\mu
u} G^{A\mu
u}$ $Q_{arphi \widetilde{G}}$ $\varphi^{\dagger}\varphi W^{I}_{\mu
u}W^{I\mu
u}$ $Q_{arphi W}$ $\varphi^{\dagger} \varphi \, \widetilde{W}^{I}_{\mu
u} W^{I\mu
u}$ $Q_{arphi \widetilde{W}}$ $arphi^\dagger arphi \, B_{\mu
u} B^{\mu
u}$ $Q_{arphi B}$ $arphi^\dagger arphi \, \widetilde{B}_{\mu
u} B^{\mu
u}$ $Q_{arphi \widetilde{B}}$ $arphi^\dagger au^I arphi \, W^I_{\mu
u} B^{\mu
u}$ $Q_{arphi WB}$ $Q_{\varphi \widetilde{W}B} \qquad \varphi^{\dagger} \tau^{I} \varphi \, \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$

plus 4-fermion operators leading to 59 structures not taking flavor into account

	$arphi^6$ and $arphi^4 D^2$	$\psi^2 arphi^3$				
Q_arphi	$(arphi^\dagger arphi)^3$	Q_{earphi}	$(arphi^\dagger arphi) (ar{l}_p e_r arphi)$			
$Q_{arphi \Box}$	$(arphi^\dagger arphi) \Box (arphi^\dagger arphi)$	Q_{uarphi}	$(arphi^\dagger arphi) (ar q_p u_r \widetilde arphi)$			
$Q_{arphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight) ight.$	Q_{darphi}	$(arphi^\dagger arphi) (ar q_p d_r arphi)$			
	$\psi^2 X \varphi$	$\psi^2 arphi^2 D$				
Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q^{(1)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$			
Q_{eB}	$(ar{l}_p \sigma^{\mu u} e_r) arphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$(arphi^\dagger i \overleftrightarrow{D}^I_\mu arphi) (ar{l}_p au^I \gamma^\mu l_r)$			
Q_{uG}	$\left(ar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi} G^A_{\mu u} ight.$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(ar{e}_{p}\gamma^{\mu}e_{r})$			
Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{q}_p \gamma^\mu q_r)$			
Q_{uB}	$(ar{q}_p \sigma^{\mu u} u_r) \widetilde{arphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(arphi^\dagger i \overleftrightarrow{D}^I_\mu arphi) (ar{q}_p au^I \gamma^\mu q_r) \; \Big \;$			
Q_{dG}	$(ar{q}_p \sigma^{\mu u} T^A d_r) arphi G^A_{\mu u}$	$Q_{arphi u}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{u}_p \gamma^\mu u_r)$			
Q_{dW}	$(ar{q}_p \sigma^{\mu u} d_r) au^I arphi W^I_{\mu u}$	$Q_{arphi d}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{d}_p \gamma^\mu d_r)$			
Q_{dB}	$(ar{q}_p \sigma^{\mu u} d_r) arphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)(ar{u}_{p}\gamma^{\mu}d_{r})$			

► HISZ basis [Hagiwara-Ishihara-Szalapski-Zeppenfeld PRD48 (1993) 2182] trades $\mathcal{O}_{H\ell,ii}^{(1)}$, $\mathcal{O}_{H\ell,ii}^{(3)}$ by

 $\mathcal{O}_W = (D^{\mu}\Phi)^{\dagger} W^a_{\mu\nu} \sigma^a D^{\mu}$

SILH basis [1303.3876] trades fermonic operators and \mathcal{O}_{HWB} , \mathcal{O}_{HW} by

$$\mathcal{O}_W$$
 , \mathcal{O}_B , $\mathcal{O}_{2B} = -\frac{1}{2} (\partial^{\mu} B_{\mu\nu})^2$, $\mathcal{O}_{2W} = -\frac{1}{2} (D^{\mu} W^a_{\mu\nu})^2$

The HIGGS aimed at Higgs observables [LHCHXSWG-INT-2015-001]

Translators between bases: Rosetta, JHUGenLexicon, ...

$${}^{\nu}\Phi \ , \ \mathcal{O}_B = (D^{\mu}\Phi)^{\dagger}B_{\mu\nu}D^{\nu}\Phi$$

THE NEED FOR GLOBAL ANALYSES

- Taking flavor into account the number of operators might get out control!
- Without any flavor symmetry: 1350 (CP-even) and 1149 (CP-odd) = 2499
- Assuming $U(3)_L \times U(3)_\ell \times U(3)_Q \times U(3)_u \times U(3)_d$ there are 85
- Assuming $U(3)_L \times U(3)_\ell \times U(2)_Q \times U(2)_u \times U(2)_d$ there are 270
- Lesson 1: we need to introduce a hypothesis on the flavor symmetry
- Lesson 2: in any case, we need many datasets
- SMEFT has many parameters, so any measurement has blind directions
- Large number of Wilson coefficients and correlations between processes call for a global analysis

THE NEED FOR GLOBAL ANALYSES

- Taking flavor into account the number of one rators might get out control!
- Without any flavor symr
- Assuming $U(3)_L \times U(3)_\ell \times$
- Assuming $U(3)_L \times U(3)_\ell \times$
- Lesson 1: we need to in
- Lesson 2: in any case, w

Large number of Wilson coefficients and correlations between processes call for a global analysis

HIGGS

CP-odd) = 2499EWPD DIBOSON DRELL-YAN NEUTRINOS TOP JETS r symmetry **FLAVOR** lind directions **BSM**

NEED FOR GLOBAL ANALYSES

Many groups are already doing it

- Corbett et al. 1207.1344 1211.4580 1304.1151 1411.5026 1505.05516
- Englert, Freitas, Mullheitner, Plehn, Rauch, Spira, Walz 1403.7191
- Ellis, Sanz, You 1404.3667 1410.7703 1803.03252
- Falkowski et al. 1411.0669 1508.00581 1609.06312
- Englert,Kogler,Schulz,Spannowsky 1511.05170
- Butter, OE, Gonzalez-Fraile, Gonzalez-Garcia, Plehn, Rauch 1604.03105
- Freitas, Lopez-Val, Plehn 1607.08251
- Krauss, Kuttimalai, Plehn 1611.00767
- Almeida et al. 1812.01009
- Biekotter, Corbett, Plehn 1812.07587
- HEPfit 1710.05402 1910.14012
- Bravo et al. 1910.03606
- TopFitter, CKMfitter, and many more

There is a global ongoing TH+EXP effort for precision

Certainly, global analyses will benefit from HL-LHC and future machines

WHAT IS NEEDED

- precise knowledge of the SM background: NLO, NNLO, .. (QCD+EW)
- there are many higher order tools available: POWHEG, MCFM, MATRIX, FEWZ, JHUGen, VBFNLO, aMC@NLO...
- precise SMEFT predictions: LO UFO for many bases
- precise SMEFT predictions: SMEFT@NLO[Degrande et al. 2008.11743] POWHEG, etc

+ distributions, control uncertainties, ...

- Theoretical uncertainties [de Florian, Lindert, Vryonidou.....LHCHXSWG]
- > TH: we need to have input parameters under control (measurements assume SM)
- Information on the validity of the approximation: unitarity, perturbativity, etc
- To the lowest order $M = M_{\rm SM} + \frac{1}{\Lambda^2} M_{\rm EFT}^{(6)} + .$
- there is no guarantee that the cross section is positive at lowest order!
- Either new hypothesis to remove the problematic phase space regions
- Or adding $\frac{1}{\Lambda^4} |M_{EFT}^{(6)}|^2$ but neglecting dimension-8 operators departing from systematic EFT or introducing a model dependence.

$$\dots \implies \sigma \simeq \frac{1}{s} \left(|M_{\rm SM}|^2 + \frac{1}{\Lambda^2} M_{\rm SM}^{\star} M_{\rm EFT}^{(6)} + \dots \right)$$

- Theoretical uncertainties [de Florian, Lindert, Vryonidou.....LHCHXSWG]
- TH: we need to have input
- Information on the validit
- To the lowest order M = I
- there is no guarantee that
- Either new hypothesis to

• Or adding $\frac{1}{\Lambda^4} |M_{EFT}^{(6)}|^2$ but neglecting dimension-8 operators departing from systematic EFT or introducing a model dependence.

easurements assume SM) ty, perturbativity, etc $+ \frac{1}{\Lambda^2} M_{\rm SM}^{\star} M_{\rm EFT}^{(6)} + \dots$ lowest order!

space regions

- Theoretical uncertainties [de Florian, Lindert, Vryonidou.....LHCHXSWG]
- > TH: we need to have input parameters under control (measurements assume SM)
- Information on the validity of the approximation: unitarity, perturbativity, etc
- To the lowest order $M = M_{\rm SM} + \frac{1}{\Lambda^2} M_{\rm EFT}^{(6)} + .$
- there is no guarantee that the cross section is positive at lowest order!
- Either new hypothesis to remove the problematic phase space regions
- Or adding $\frac{1}{\Lambda^4} |M_{EFT}^{(6)}|^2$ but neglecting dimension-8 operators departing from systematic EFT or introducing a model dependence.

$$\dots \implies \sigma \simeq \frac{1}{s} \left(|M_{\rm SM}|^2 + \frac{1}{\Lambda^2} M_{\rm SM}^{\star} M_{\rm EFT}^{(6)} + \dots \right)$$

WHAT IS NEEDED

- Information on experimental cut flows, efficiencies
- Information on backgrounds
- Information on results and corresponding correlations (becoming standard)
- Information on the likelihood

Desirable to have results at particle level, and distributions (STXS or fiducial distr.)

EWPD Z pole: SM corrections are well under control

- In the Warsaw basis, there are 10 LO parameters and 32 in QCD+EW NLO [Dawson-Giardino 1909.02000; Hartmann-Shepherd-Trott 1611.09879] $\mathcal{O}_{\ell\ell} \ , \ \mathcal{O}_{HWB} \ , \ \mathcal{O}_{HD} \ , \ \mathcal{O}_{He} \ , \ \mathcal{O}_{Hu} \ , \ \mathcal{O}_{Hd} \ , \ \mathcal{O}_{HQ}^{(1)} \ , \ \mathcal{O}_{H\ell}^{(3)} \ , \ \mathcal{O}_{H\ell}^{(1)} \ , \ \mathcal{O}_{H\ell}^{(3)}$
- However, there are 2 blind/flat (LO) directions: more datasets or hypothesis [Han-Skiba hep-ph/0412166]
- EWPD Z pole + LEP 2: adding W and fermion pair productions [Berthier et al. 1606.06693]
- 20 operators contribute: 9 additional 4-fermion operators and 1 TGC (O_{3W})
- The WW production lifts the blind direction

 \leq

- - $\mathcal{O}_{\ell\ell} \ , \ \mathcal{O}_{HWB} \ , \ \mathcal{O}_{HD} \ , \ \mathcal{O}_{3W} \ , \ \mathcal{O}_{He} \ , \ \mathcal{O}_{Hu} \ , \ \mathcal{O}_{Hd} \ , \ \mathcal{O}_{HQ}^{(1)} \ , \ \mathcal{O}_{HQ}^{(3)} \ , \ \mathcal{O}_{H\ell}^{(1)} \ , \ \mathcal{O}_{H\ell}^{(3)} \$
- Neutral TGCs are generated by dimension-8 operators
- Different combinations of couplings
- SM contribution known to NNLO QCD+NLO EW (important at high p_T)
- SMEFT NLO are known but do not solve the problem $\frac{d\sigma}{dp_T} < 0$ [Baglio et al. 1708.03332]
- TGC also contribute to VBF jjZ/W production [hep-ph/0405269]
- Experimental results help performing the global fit

DIBOSON PRODUCTION: dimension-6 TGC contribute to γW^+W^- , ZW^+W^-

Higgs production: SMEFT modifies all production and decay modes

 \mathcal{O}_H , $\mathcal{O}_{H\Box}$, \mathcal{O}_{HG} , \mathcal{O}_{HW} , \mathcal{O}_{HB} , $\mathcal{O}_{\tau H}$, \mathcal{O}_{bH} , \mathcal{O}_{tH} , ...

- SM predictions: ggH (NNLO+NNLL QCD; 2-loops EW; mixed); VBF (full NLO EW+QCD; NNLO QCD); VH(NNLO QCD; NLO EW); ttH (NLO QCD); decays (N³ LO QCD)
- SMEFT corrections available to NLO QCD
- Tail of distributions enhance SMEFT effects
- Hard gluon emission allows to separate different SMEFT effects [Vryonidou, Lindert this conf.] [Buschmann 1410.5806]

 $\frac{d\sigma}{dp_T^2} \propto \begin{cases} (\kappa_g + \kappa_g + \kappa_G$

 $\mathcal{O}_{\ell\ell} \;,\; \mathcal{O}_{HWB} \;,\; \mathcal{O}_{HD} \;,\; \mathcal{O}_{He} \;,\; \mathcal{O}_{Hu} \;,\; \mathcal{O}_{Hd} \;,\; \mathcal{O}_{HQ}^{(1)} \;,\; \mathcal{O}_{HQ}^{(3)} \;,\; \mathcal{O}_{H\ell}^{(1)} \;,\; \mathcal{O}_{H\ell}^{(3)} \;$

$$(\kappa_T)^2 \quad \text{for } p_T^2 < m_t^2 \\ (\kappa_T \frac{4m_t^2}{p_T^2})^2 \quad \text{for } p_T^2 > m_t^2$$

ANATOMY

Off-shell Higgs production helps to separate different SMEFT effects Experimental fits to some SMEFT parameters help to calibrate global fits

	CMS	Preli	minar	y :	35.9-13	7 fb⁻¹ (1	3 TeV)	1 _
c _u x 10	1.00	0.42	0.03	-0.02	0.37	0.29	-0.30	-0.8
с _с х 10 ⁵	0.42	1.00	-0.01	0.08	0.85	0.50	-0.54	- 0.6
c _A x 10 ⁴	0.03	-0.01	1.00	-0.32	-0.32	-0.09	-0.03	-0.4 -0.2
c _ı x 10	-0.02	0.08	-0.32	1.00	0.19	-0.15	0.23	-0
c _d x 10	0.37	0.85	-0.32	0.19	1.00	0.64	-0.60	0.2
c _{ww} – c _B) x 10 ²	0.29	0.50	-0.09	-0.15	0.64	1.00	-0.94	-0.4
c _{HW} x 10 ²	-0.30	-0.54	-0.03	0.23	-0.60	-0.94	1.00	0.8
	c, x 10	с _G х 10 ⁵	c _A x 10⁴	c _. x 10	c _d x 10	_в) х 10 ²	_{-1w} х 10 ²	1
		-	-			(c _{ww} – c	പ്	

- TT and T productions: 22 operators contribute assuming $U(2)_Q \times U(2)_u \times U(2)_d$
- SM contribution known to NNLO QCD and NLO EW [1701.04105]
- SMEFT contribution known to NLO [SMEFT@NLO]
- There are a large number of available measurements TT, TV, TTZ, TTW
- It is easy to compare measurements with parton level predictions

{14 four-fermion operators, 4 dipoles, 4 Vff}

[Similar analyses by TopFitter 1901.03164]

- Jet production allows the study of four-fermion and dipole operators Drell-Yan receives contributions from four-fermion and dipole operators \blacktriangleright HH production is a direct probe of the triple Higgs couplings (O_H)

- Low energy + flavor +

PARTIAL RESULTS FROM RUN 2

 $\mathcal{O}_{\ell\ell} \ , \ \mathcal{O}_{HWB} \ , \ \mathcal{O}_{HD} \ , \ \mathcal{O}_{He} \ , \ \mathcal{O}_{Hu} \ , \ \mathcal{O}_{Hd} \ , \ \mathcal{O}_{HO}^{(1)} \ , \ \mathcal{O}_{HQ}^{(3)} \ , \ \mathcal{O}_{Hud}^{(1)}$ \mathcal{O}_H , $\mathcal{O}_{H\Box}$, \mathcal{O}_{HG} , \mathcal{O}_{HW} , \mathcal{O}_{HB} , \mathcal{O}_B , \mathcal{O}_W , $\mathcal{O}_{\mu H}$, $\mathcal{O}_{\tau H}$, \mathcal{O}_{bH} , \mathcal{O}_{tH} , $\mathcal{O}_{\mu H}$

> 20 parameter global analysis using the HISZ

Datasets: * EWPD

* WW and WZ productions (Run 1 + partial Run 2) # Higgs (Run 1 + 2 inclusive)

20 parameter global analysis using the HISZ [Alves, Almeida, OE, Gonzalez-Garcia, 1812.01009 reloaded

PARTIAL RESULTS FROM RUN 2

Operators modifying the coupling of electroweak gauge bosons to fermions

In the quadratic approximation: small improvement in the agreement with SM

PARTIAL RESULTS FROM RUN 2

Bosonic and Yukawa operators

Good agreement with the SM and some degeneracies remain

Quadratic versus linear approximation:

- VFF couplings dominated by EWPD
- Small changes in the Higgs couplings
- TGC much less constrained in the linear analysis

Higgs dataset has large weight in TGC constraints [1304.1151]

The 95% C.L. marginalized constraints

FUTURE

LHC is entering an era of precision measurements with Run 3 and HL-LHC

- There is ongoing effort to guarantee it is success

This demands a large effort form the experimental and theoretical communities

[1905.03764]

 $\delta g_1^Z = \frac{v^2}{\Lambda^2} \frac{1}{c_W^2 - s_W^2} \left(\frac{s_w}{c_w} C_{HWB} + \frac{1}{4} C_{HD} + C_{H\ell}^{(3)} - \frac{1}{2} C_{\ell\ell} \right)$ $\kappa^{Z} = \frac{v^{2}}{\Lambda^{2}} \frac{1}{c_{W}^{2} - s_{W}^{2}} \left(2s_{W}c_{W}C_{HWB} + \frac{1}{4}C_{HD} + C_{H\ell}^{(3)} - \frac{1}{2}C_{\ell\ell} \right)$ $\delta\kappa^{\gamma} = -rac{v^2}{\Lambda^2}rac{c_W}{s_W}C_{HBW}$ $\lambda^{\gamma/Z} = \frac{3M_W v}{\Lambda 2} C_{3W}$

