

Top Yukawa ttH and tH $\gamma\gamma$ and bb

Ian Connelly On behalf of the ATLAS and CMS Collaborations Higgs Coupling 2020 29th October 2020

Exploring the Top Yukawa coupling

- The Yukawa couplings are proportional to fermion masses
 - Leads to Top Yukawa coupling being the most "natural" : O(1)
 - But also leads to large correction terms to the Higgs mass
- Can be sensitive to BSM effects which can be explored through differential measurements (STXS) and EFT interpretations
- ttH not sensitive to sign of Y_t
- Due to interference between W and top couplings, tH is sensitive
- The CP properties of the Higgs-Top Yukawa coupling can be probed in ttH and tH production

Channel		ATLAS			CMS				
		PRL 125 (2020) 061802	139	σ	acp	PRL 125 (2020) 061801	137	σ	f _{CP}
++14	γγ	ATLAS-CONF-2020-026	139	STXS		CMS-PAS-HIG-19-015	137	STXS	
шп		ATLAS-CONF-2019-004	139	σ					
	bb	ATLAS-CONF-2020-058	139	STXS		CMS-PAS-HIG-18-030	77.4	σ	
tH		PRL 125 (2020) 061802	139	σ	α _{CP}	PRD 99 (2019) 092005	35.9	σ	Kt
	- <i>YY</i>					CMS-PAS-HIG-19-015	137	σ	
	bb					PRD 99 (2019) 092005	35.9	σ	Kt

For more details on STXS measurements by ATLAS+CMS, see D. Mungo talk

CMS ttH yy

- Measurement of $ttH(\gamma\gamma)$
 - Categorised using hadronic and leptonic top decays
 - CP measurement of Htt coupling
- Photon properties in MC such as shower shape and isolation variables are corrected with a BDT regression method to improve the photon ID BDT discriminant modelling
- Diphoton + jet selection (17,18/16):
 - Leading $p_T > 35/25$ GeV
 - Subleading $p_T > 30/20$ GeV
 - $100 \le m(\gamma \gamma) \le 180 \text{ GeV}$
 - At least one jet pT > 25 GeV
- Loose top decay categorisation
 - Lep : e (μ) pT > 10 (5) GeV
 - Had : At least 1 b-tagged jet, at least 3 jets

 BDT used to discriminate signal and background

137 fb⁻¹

niversity

CMS ttH yy

- Profiled-likelihood fit to $m(\gamma\gamma)$ distributions
- Inclusive cross-section uses 8 regions
- Expected significance : 4.7σ
- Observed significance : 6.6σ

137 fb⁻¹

- D₀₋ is built using BDT trained to discriminate between CP-even and CP-odd signals
 - Each CP region contributes three bins
- f_{CP} is measured as the absolute fraction of CP states
 - Exclude f_{CP} > 0.67 at 95%

PRL 125 061801

Pure CP-odd excluded: 3.2σ

Jniversity

of Glasgow

CMS tH ($\gamma\gamma$ + bb)

- Combination of multi-lepton (H \rightarrow WW, ZZ, $\tau\tau$) and single-lepton (H \rightarrow bb) final-states with a reinterpretation of ttH($\gamma\gamma$)
- The kappa framework is applied to examine hypotheses of -6.0 $\leq \kappa_t \leq$ 6.0, with $\kappa_V =$ 1.0
 - tH(bb) analysis expects three or four central b-tagged jets and at least one additional light jet (central or forward)
 - Missing-ET requirements suppress QCD multi-jet events

	рт	η
Muon (Electron)	27 (35)	2.4 (2.1)
Central-Jet	30	2.4
Forward-Jet	40	2.4 - 4.7

$$\sigma_{tHq} = (2.63 \kappa_t^2 + 3.58 \kappa_V^2 - 5.21 \kappa_t \kappa_V) \sigma_{tHq'}^{SM}$$

$$\sigma_{tHW} = (2.91 \kappa_t^2 + 2.31 \kappa_V^2 - 4.22 \kappa_t \kappa_V) \sigma_{tHW}^{SM}.$$

35.9 fb⁻¹

PRD 99 092005

 Dilepton control region defined to constrain tt+jets events with at least three b-tagged jets

Ian Connelly \cdot Top Yukawa : tH and ttH with H($\gamma\gamma$) and H(bb)

Jniversity

CMS tH ($\gamma\gamma$ + bb)

- Signal extraction is performed with multiple MVAs
- Jet-to-Parton-Assignment-BDT
 - Three assignment hypotheses : tHq, tHW, tt+jets
 - Highest BDT score is used for jet
 assignment
- Signal-Classification-BDT
 - Uses assignment-dependent and global variables
 - Trained to separate tH from tt+jets events
- Simultaneous profiled-likelihood fit performed using SC-BDT in signal regions and FC-BDT in control region
 - Dominant uncertainties from tH scale, tt+HF normalisation (50%) and jet energy corrections

Reconstruction efficiency				
Events	tHq	tHW	tt+jets	
3 tag	58%	38%	58%	
4 tag	45%	29%	31%	

35.9 fb⁻¹

University

CMS tH ($\gamma\gamma$ + bb)

PRD 99 092005

35.9 fb⁻¹

tHq and tHW inputs are taken from the $ttH(\gamma\gamma)$ analysis where the signal diphoton mass is found to be independent of κ_t/κ_V

- Exclude at 95% :
 κ_t < -0.9, -0.5 < κ_t < 1.0, κ_t > 2.1
- Limit on tH (95%) : 25 x SM

CMS ttH+tH yy

CMS-PAS-HIG-19-015

- Combined STXS measurement of all Higgs production modes has been performed
 - ttH strategy updated to target STXS p_T bins
 - ttH channel: 4 bins, tH channel: 1 bin

- The tH sensitivity is improved through using DNN to separate ttH and tHq
- Precision improved through combination
 - Expected limit : 9 x SM
 - Limit on tH (95%) : **12 x SM**

ATLAS tH+ttH γγ

- Combined search for H→γγ in tH and ttH production modes
 - Analysis optimised for ttH sensitivity and CP measurement of Yt
- Diphoton + b-jet selection
 - γ : pT > 35 GeV, pT > 25 GeV
 - $105 \le m(\gamma\gamma) \le 160 \text{ GeV}$
 - At least one b-jet pT > 25 GeV
- Loose top decay categorisation
 - Lep : at least one lepton pT > 15 GeV
 - Had : at least two jets pT > 25 GeV
- BDT used for top-reconstruction
- BDT used for background rejection (resonant vs non-resonant) and CP discrimination

ATLAS tH+ttH γγ

PRL 125 061802

University of Glasgow

 Profiled-likelihood fit performed in diphoton mass in all 20 categories

- Expected significance : 4.4σ
- Observed significance : 5.2σ
- Limit on tH (95%) : 12 x SM
- Pure CP-odd excluded : 3.9σ
- |α| > 43° excluded at 95%

CMS ttH bb

10⁶

10⁸

10

10

10⁵

10⁴

10³

Data / Pred

Events / 0.05

• All tt final states are used with various MVA techniques

77.4 fb⁻¹

University of Glasgow

CMS-PAS-HIG-18-030 77.4 fb⁻¹

CMS ttH bb

- Dominant uncertainties : ttH and tt+HF theory
- Sensitivity driven by singlelepton channel
- Expected significance : 3.5σ
- Observed significance : 3.9σ

- Full Run-2 measurement with ttH(bb) events with at 1 or 2 leptons (e/ μ)
 - Similar analysis to 36.1 fb⁻¹ but updated strategy targeting STXS
 - Three channels with tightened selection dominated by $tt+\geq 1b$ with negligible tt+light

Ian Connelly \cdot Top Yukawa : tH and ttH with H($\gamma\gamma$) and H(bb)

University of Glasgow

New

University of Glasgow

ew

- tt+≥1b modelled with 4FS NLO generator for first time
 - Uncertainties scaled to remove acceptance effects and ensure free-floating k(tt+bb) fits normalisation of this prediction
- tt+≥1c given 100% prior uncertainty
- Focus on modelling Higgs candidate p_T with additional uncertainties
 - Data/MC uncertainty derived from inclusive single-lepton and dilepton regions to correct p_T(H) shape in the fit

Ian Connelly \cdot Top Yukawa : tH and ttH with H($\gamma\gamma$) and H(bb)

ATLAS-CONF-2020-058

ttH: cross-section (QCD scale)

tt+≥1b: NLO match. SRbin4 ljets

tt+≥1b: NLO match. SRbin3 ljets

ttH: Δ_{120} STXS theory unc.

k(tt+≥1b)

Wt: generator

-2 -1.5 -1 -0.5

0

 $(\hat{\theta} - \theta_0) / \Delta \theta$

0.5

1.5

2

8 139 fb⁻¹

New

- $tt+\geq 1c$ pulled to 0.58
- Dominant uncertainties : tt+bb and ttH modelling
- Expected significance : 3.0σ
- Observed significance : 1.3σ

Summary

- Many analyses performed by ATLAS and CMS spanning the Run-2 dataset
 - Not all analyses covered in this talk
 - Full Run-2 results starting to become available
 - New ATLAS ttH(bb) result
 - Consistent results between two
 experiments
- Consistent limits also being placed on Top Yukawa CP properties (at 95% CL)
 - ATLAS tH+ttH($\gamma\gamma$) : $|\alpha| > 43^{\circ}$ excluded
 - CMS $ttH(\gamma\gamma)$: $f_{CP} > 0.67$ excluded
 - ATLAS \rightarrow CMS : $f_{CP} \gtrless$ 0.53 excluded
- Consistent limits set on negative Y_t
 - CMS : Exclude $\kappa_t <$ -0.9, -0.5 $< \kappa_t <$ 1.0
 - ATLAS[†]: Exclude $\kappa_t < 0$ at 2.9 σ

Channel		ATLAS		CMS		
++14	γγ	5.2σ (4.4σ)	139	6.6σ (4.7σ)	137	
шп	bb	1.3σ (3.0σ) <mark>ズ</mark>	139	3.9σ (3.5σ)	77.4	
tH	γγ	8 x SM*		12 x SM		
	bb	-		25 x SM		

$$\mathcal{A}(Htt) = -\frac{m_t}{v} \bar{\psi}_t (\kappa_t + i\tilde{\kappa}_t \gamma_5) \psi_t$$
$$f_{CP}^{Htt} = \frac{|\tilde{\kappa}_t|^2}{|\kappa_t|^2 + |\tilde{\kappa}_t|^2} \operatorname{sign}(\tilde{\kappa}_t / \kappa_t)$$
$$\mathcal{L} = -\frac{m_t}{v} \{ \bar{\psi}_t \kappa_t [\cos(\alpha) + i\sin(\alpha)\gamma_5] \psi_t \} H$$

* ATLAS-CONF-2020-026 : limit from combined analysis of $H(\gamma\gamma)$, optimised for STXS † ATLAS-CONF-2020-027 : latest Higgs combination constrains negative Y_t using tH and ggF

Backup

ATLAS Combination - CONF-2020-027

Parameter	Result	
κ_Z	1.02 ± 0.06	
κ_W	1.05 ± 0.06	
κ_b	$0.98 \ ^+ \ ^{0.14}_{- \ 0.13}$	
κ_t	$0.96 \hspace{0.1 cm} \pm \hspace{0.1 cm} 0.08 \hspace{0.1 cm}$	\bigcirc
$\kappa_{ au}$	$1.06 \ {}^+ \ {}^{0.15}_{0.14}$	
κ_{μ}	$1.12 \ {}^{+}_{-} \ {}^{0.26}_{0.32}$	

ATLAS Combination - CONF-2020-027

Yield Summary

University of Glasgow

New

Inclusive and STXS

STXS ranking

STXS ranking

University of Glasgow

New

Higgs p_T

University of Glasgow

New

Number of jets

Background composition

University

New

University of Glasgow

Signal variables

Description		Components
$\pm 6\%$ Free-floating $\pm 100\%$		$\begin{array}{l} t\bar{t} + \text{light} \\ t\bar{t} + \geq 1b \\ t\bar{t} + \geq 1c \end{array}$
MADGRAPH5_aMC@NLO+PYTHIA PowHegBox+Herwig7 vs. PowHe Varying α_S^{ISR} (PS), $\mu_{\text{R}} \& \mu_{\text{F}}$ (ME) Varying α_S^{FSR} (PS) PowHegBox+Herwig7 vs. PowHe Shape mismodelling measured from	8 vs. PowhegBox+Pythia8 EgBox+Pythia8 in PowhegBoxRes+Pyth in PowhegBox+Pythia8 in PowhegBoxRes+Pyth in PowhegBox+Pythia8 EgBox+Pythia8 n data	All All IA8 $t\bar{t} + \ge 1b$ $t\bar{t} + \ge 1c, t\bar{t} + \text{light}$ IA8 $t\bar{t} + \ge 1b$ $t\bar{t} + \ge 1c, t\bar{t} + \text{light}$ $t\bar{t} + 1b/1B, t\bar{t} + \ge 2b$ $t\bar{t} + \ge 1b$
ertainty source $\geq 1b \mod elling$ modelling modelling gging efficiency and mis-tag kground-model statistical un- energy scale and resolution $\geq 1c \mod elling$ light modelling mosity er sources al systematic uncertainty $\geq 1b \mod ellisation$ al statistical uncertainty		$ \begin{array}{c} -0.24 \\ -0.06 \\ -0.08 \\ -0.05 \\ -0.05 \\ -0.03 \\ -0.02 \\ -0.00 \\ -0.03 \\ \hline -0.27 \\ \hline -0.05 \\ -0.19 \\ \hline -0.33 \end{array} $
	Description $\pm 6\%$ Free-floating $\pm 100\%$ MADGRAPH5_aMC@NLO+PYTHIA PowHegBox+HerwIG7 vs. PowHI Varying α_S^{ISR} (PS), $\mu_{\text{R}} \& \mu_{\text{F}}$ (ME) Varying α_S^{FSR} (PS) PowHegBox+HerwIG7 vs. PowHI Shape mismodelling measured from ertainty source $\geq 1b$ modelling modelling gging efficiency and mis-tag kground-model statistical uncertainty $\geq 1c$ modelling light modelling inosity er sources al systematic uncertainty $\geq 1b$ normalisation al statistical uncertainty al uncertainty	Description $\pm 6\%$ Free-floating $\pm 100\%$ MADGRAPH5_AMC@NLO+PYTHIA8 vs. PowHeGBOX+PYTHIA8PowHeGBOX+HERWIG7 vs. PowHeGBOX+PYTHIA8Varying α_S^{ISR} (PS)in PowHeGBOX+PYTHIA8Varying α_S^{FSR} (PS)in PowHeGBOX+PYTHIA8PowHeGBOX+HERWIG7 vs. PowHeGBOX+PYTHIA8Shape mismodelling measured from dataertainty source $\geq 1b$ modelling $\neq 0.08$ gging efficiency and mis-tag rates $\neq 0.03$ gging efficiency and mis-tag rates $\neq 0.03$ $\geq 1c$ modelling $\downarrow 0.03$ ight modelling $\downarrow 0.03$ $\geq 1c$ modelling $\downarrow 0.03$ $\geq 1b$ modelling $\downarrow 0.03$ $\downarrow 0.03$ ight modelling $\downarrow 0.03$ $\downarrow 10$ modelling $\downarrow 0.03$ $\downarrow 1b$ normalisation $\downarrow 0.03$ $\downarrow 10$ normalisation $\downarrow 0.03$

ttH(bb) ATLAS/CMS

ATLAS

Uncertainty source	$\Delta \mu$	
$t\bar{t} + \geq 1b$ modelling	+0.25	-0.24
$t\bar{t}H$ modelling	+0.14	-0.06
tW modelling	+0.08	-0.08
<i>b</i> -tagging efficiency and mis-tag rates	+0.05	-0.05
Background-model statistical uncertainty	+0.05	-0.05
Jet energy scale and resolution	+0.03	-0.03
$t\bar{t} + \geq 1c \text{ modelling}$	+0.03	-0.03
$t\bar{t} + \text{light modelling}$	+0.02	-0.02
Luminosity	+0.01	-0.00
Other sources	+0.03	-0.03
Total systematic uncertainty	+0.30	-0.27
$t\bar{t} + \geq 1b$ normalisation	+0.03	-0.05
Total statistical uncertainty	+0.20	-0.19
Total uncertainty	+0.36	-0.33

CMS

Uncertainty source	$\Delta\hat{\mu}$
Total experimental	+0.15/-0.13
b tagging	+0.08/-0.07
jet energy scale and resolution	+0.05/-0.04
Total theory	+0.23/-0.19
signal	+0.15/-0.06
tī+hf modelling	+0.14/-0.15
QCD background prediction	+0.10/-0.08
Size of simulated samples	+0.10/-0.10
Total systematic	+0.28/-0.25
Statistical	+0.15/-0.15
Total	+0.32/-0.29

Top + Higgs

University of Glasgow

- Two production modes : tHq and tHW
 - tHq : characterised by forward q+b
 - tHW : three heavy central objects

• Rare cross-section : ~90 fb

 Can be enhanced by sign-flipped yt or BSM models (eg 2HDM)

- Two decay channels covered here: bb and $\gamma\gamma$
 - bb : dominated by tt+jets background
 - $\gamma\gamma$: clean trigger signal with mainly Higgs background

Top-Pair + Higgs

- ttH final state classified by top-pair decay modes
 - Single lepton, dilepton, all-hadronic
- Rare decay mode : ~500 fb

- Two decay channels covered here: bb and $\gamma\gamma$
 - bb : dominated by tt+jets background
 - $\gamma\gamma$: clean trigger signal and mass peak

CMS tH

Signal region
One muon (electron) with $p_{\rm T} > 27(35)$ GeV
No additional loose leptons
Three or four medium b-tagged jets
$p_{\rm T} > 30 {\rm GeV} \text{ and } \eta < 2.4$
One or more untagged jets
$p_{\rm T}$ > 30 GeV for $ \eta $ < 2.4 or
$p_{\rm T} > 40 { m GeV}$ for $ \eta \ge 2.4$
$p_{\rm T}^{\rm miss} > 35(45) {\rm GeV}$ for muons (electrons)
Control region
The length $x \to 20/20$ ($x \to 1/2$)

Two leptons: $p_{\rm T} > 20/20 \text{GeV} (\mu^{\pm}\mu^{\mp})$
or $p_{\rm T} > 20/15 {\rm GeV} ({\rm e}^{\pm}{\rm e}^{\mp}/\mu^{\pm}{\rm e}^{\mp})$
No additional loose leptons
Two medium b-tagged jets
$p_{\rm T} > 30 {\rm GeV} \text{ and } \eta < 2.4$
One or more additional loose b-tagged jets
$p_{\rm T} > 30 {\rm GeV} \text{ and } \eta < 2.4$
$p_{\rm T}^{\rm miss} > 40 { m GeV}$

Process	3 tags	4 tags	Dilepton
tt+LF	24100 ± 5800	320 ± 180	5300 ± 1000
tī+cī	8500 ± 4900	340 ± 260	2100 ± 1200
$t\bar{t}+b\bar{b}$	4100 ± 2300	780 ± 430	750 ± 440
tī+b	4000 ± 2100	180 ± 110	770 ± 430
tt+2b	2300 ± 1200	138 ± 88	400 ± 230
Single top	1980 ± 350	78 ± 26	285 ± 37
tīZ	202 ± 30	32.0 ± 6.6	54.8 ± 7.3
tĪW	90 ± 23	4.2 ± 2.8	31.4 ± 5.9
tZq	28.3 ± 5.7	2.9 ± 2.3	—
Z+jets			69 ± 32
Total background	45300 ± 8300	1880 ± 550	9700 ± 1700
tīH	268 ± 31	62.0 ± 9.9	48.9 ± 5.9
tHq (SM)	11.1 ± 3.3	1.3 ± 0.3	0.31 ± 0.08
tHW (SM)	7.6 ± 1.1	1.1 ± 0.3	1.4 ± 0.2
Total SM	45700 ± 8300	1940 ± 550	9700 ± 1700
tHq ($\kappa_{\rm V} = 1 = -\kappa_{\rm t}$)	160 ± 38	19.1 ± 5.2	3.9 ± 1.0
tHW ($\kappa_{\rm V} = 1 = -\kappa_{\rm t}$)	92 ± 12	13.7 ± 2.3	17.6 ± 2.2
Data	44311	2035	9065

CMS tH

 $\cos \theta^*$

 $|\eta(t)$ - $\eta(H)|$

 $\ln p_{\rm T}({\rm light\,jet})$

JA-BDT response

tHW jet assignment variable

Variable	Description	Variable	Description
Event variables	Invariant mass of three hardest jets in the event	CSV(bjet 3)	Output of the b tagging discriminant for the b-tagged jet with the third-highest b tagging value in the event
Aplanarity	Aplanarity of the event [?]	n _{jets} (tight)	Number of jets in the event passing the tight working point of the b tagging algorithm
Fox–Wolfram #1 $q(\ell)$	First Fox–Wolfram moment [?] of the event Electric charge of the lepton	$CvsL(jet p_T 3)$	Output of the charm <i>vs.</i> light-flavor tagging algorithm for the jet with the third-highest transverse momentum in the event
tī jet assignment variables		CSV(b-tagged jet 2)	Output of the b tagging discriminant for the b-tagged jet with the second-highest b tagging value in the event
$\ln m(t_{had})$	Invariant mass of the reconstructed hadronically decay- ing top quark	CvsL(jet $p_{\rm T}$ 4)	Output of the charm <i>vs.</i> light-flavor tagging algorithm for the jet with the fourth-highest transverse momentum in the event
CSV(W _{had} jet 1)	Output of the b tagging discriminant for the first jet as- signed to the hadronically decaying W boson	CvsB(jet $p_{\rm T}$ 3)	Output of the charm <i>vs.</i> bottom flavor tagging algorithm for the jet with the third-highest transverse momentum in the event
CSV(W _{had} jet 2)	Output of the b tagging discriminant for the second jet assigned to the hadronically decaying W boson	CSV(b-tagged jet 4)	Output of the b tagging discriminant for the b-tagged jet with the fourth-highest b tagging value in the event
$\Delta R(W_{had} jets)$	ΔR between the two light jets assigned to the hadronically decaying W boson	n _{jets} (loose)	Number of jets in the event passing the loose working point of the b tagging algorithm
tHq jet assignment variables			
$\ln p_{\mathrm{T}}(\mathrm{H})$	Transverse momentum of the reconstructed Higgs boson candidate		
$ \eta(ext{light-flavor jet}) $	Absolute pseudorapidity of light-flavor forward jet		FC-DD1
$\ln m(\mathrm{H})$	Invariant mass of the reconstructed Higgs boson candi- date	CI	MS Simulation 13 TeV
CSV(H jet 1)	Output of the b tagging discriminant for the first jet as- signed to the Higgs boson candidate	, <u>ti</u> su 6.10 –	Event classification
CSV(H jet 2)	Output of the b tagging discriminant for the second jet assigned to the Higgs boson candidate	liity de	tH ($\kappa_t = -1$; $\kappa_v = 1$) $t\bar{t}$
$\cos \theta(\mathbf{b_t}, \ell)$	Cosine of the angle between the b-tagged jet from the top quark decay and the lepton	robab	

Higgs boson and top quark

Best output of the tHW JA-BDT

Cosine of the angle between the light-flavor forward jet

Absolute pseudorapidity difference of reconstructed

Transverse momentum of the light-flavor forward jet

and the lepton in the top quark rest frame

Ian Connelly \cdot Top Yukawa : tH and ttH with H($\gamma\gamma$) and H(bb)

CMS ttH

	Total	tītH (%)	tH (%)	ggH (%)	VH (%)	VBF (%)	bbH (%)
Had1	5.8	89.1	6.8	3.3	0.8	< 0.1	0.1
Had2	4.2	82.9	6.8	8.7	1.4	0.2	0.1
Had3	11.6	78.6	7.2	10.3	3.5	0.3	0.1
Had4	13.6	65.4	7.7	19.3	6.9	0.7	0.1
Lep1	5.8	90.6	7.9	0.5	1.0	< 0.1	< 0.1
Lep2	4.9	90.0	6.7	0.4	2.9	< 0.1	< 0.1
Lep3	3.5	86.2	7.4	0.4	6.0	< 0.1	< 0.1
Lep4	5.7	78.1	8.2	1.1	12.7	< 0.1	< 0.1
Total	55.1	79.5	7.4	8.2	4.7	0.3	< 0.1

CMS ttH+tH yy

CMS-PAS-HIG-19-015

- Combined STXS measurement of all Higgs production modes has been performed
 - Minor changes are made to ttH analysis strategy with equivalent performance
 - ttH channel: 4 bins, tH channel: 1 bin
- The tH contribution is improved through using DNN to separate ttH and tHq
 - Combination improves precision on tH
 - Limit on tH (95%) : **12 x SM**

		$\sigma \mathcal{B}/(\sigma \mathcal{B})_{\rm SM}$			
Parameters	SM prediction	Obse	Observed (Expected)		
	$(m_H = 125.38 \text{ GeV})$	Best fit	Stat unc.	Syst unc.	Best fit
ttH $p_{\mathrm{T}}^{\mathrm{H}} < 60$	$0.26\substack{+0.02\\-0.03}$	$0.24^{+0.23}_{-0.20} {+0.23 \choose -0.20}$	$^{+0.23}_{-0.20} \begin{pmatrix} +0.23\\ -0.19 \end{pmatrix}$	$^{+0.03}_{-0.02} \begin{pmatrix} +0.03 \\ -0.03 \end{pmatrix}$	$0.95^{+0.90}_{-0.76} {+0.90 \choose -0.76}$
ttH 60 $< p_{\mathrm{T}}^{\mathrm{H}} < 120$	$0.40\substack{+0.04\\-0.04}$	$0.43^{+0.25}_{-0.22} {+0.26 \choose -0.23}$	$^{+0.24}_{-0.22} \left(\substack{+0.26 \\ -0.23} \right)$	$^{+0.03}_{-0.02} \left(^{+0.04}_{-0.04} ight)$	$1.07^{+0.62}_{-0.55} \left({}^{+0.65}_{-0.57} ight)$
ttH 120 $< p_{\rm T}^{\rm H} <$ 200	$0.29\substack{+0.03\\-0.04}$	$0.43^{+0.18}_{-0.16} \left(egin{smallmatrix} +0.18 \\ -0.16 \end{array} ight)$	$+0.18 \left(+0.18 \\ -0.16 \left(-0.16\right)\right)$	$+0.03 \left(+0.02 \\ -0.02 \left(-0.01\right)\right)$	$1.47^{+0.62}_{-0.55} \left(egin{smallmatrix} +0.60 \\ -0.53 \end{array} ight)$
ttH $p_{\rm T}^{\rm H} > 200$	$0.18\substack{+0.02\\-0.02}$	$0.15^{+0.15}_{-0.14} \left(\begin{smallmatrix} +0.12 \\ -0.13 \end{smallmatrix} ight)$	$+0.15 \left(+0.12 \\ -0.14 \left(-0.13\right)\right)$	$+0.03 \left(+0.02 \\ -0.02 \left(-0.01\right)\right)$	$0.80^{+0.83}_{-0.78} \left(egin{smallmatrix} +0.65 \\ -0.72 \end{array} ight)$
tH	$0.20\substack{+0.01\\-0.03}$	$1.08^{+1.03}_{-0.90} \left(egin{smallmatrix} +0.88 \ -0.20 \end{smallmatrix} ight)$	$+1.02 \left(+0.88 \\ -0.88 \left(-0.20\right)\right)$	$+0.19 \left(+0.11 \\ -0.14 \left(-0.11\right)\right)$	$5.27^{+5.07}_{-4.39} \left({}^{+4.33}_{-1.00} ight)$

ATLAS tH+ttH $\gamma\gamma$

