Top Yukawa: ttH multilepton and tt

Higgs 2020 29 October 2020

clara.ramon.alvarez@cern.ch

Introduction

Yukawa coupling is proportional to the mass of the interacting particles. Top Yukawa coupling is of special interest:

- Largest one: close to unity
- BSM physics could introduce modified couplings that alter top-Higgs interaction
- Experimentally accessible in multiple ways:

ttH multilepton

ttH Multilepton

Final state with multiple leptons (e, μ , τ _h) target:

- H → WW/ZZ/ττ
- $t\bar{t} \rightarrow \ell + jets$, dilepton

Most recent analysis:

137 fb⁻¹

CMS-PAS-HIG-19-008

79.9 fb⁻¹

ATLAS-CONF-2019-045

Analysis strategy:

In both CMS and ATLAS several stages: First Step:

- Categories based on lepton multiplicity:
 - CMS: 10 categories
 - ATLAS: 6 categories

ttH Multilepton (II)

Second Step:

Dedicated selection on each category. Common item:

- Jet and b tag multiplicity requirements
 - **CMS**: Selection **consistent with ttH** expected final state. In $2lss + 0\tau$, $2lss + 1\tau$, $3l + 0\tau$ event **selection** is **extended** to **target tH** events.
 - **ATLAS**: Baseline selction for all categories with low number of jets (LNJ): $N_{Jets} \ge 2$, $N_{b \ tag} \ge 1$. Tightened to define SR (HNJ).

ttH Multilepton (II)

Second Step:

Dedicated selection on each category. Common item:

- Jet and b tag multiplicity requirements
 - CMS: Selection consistent with $t\bar{t}H$ expected final state. In $2lss + 0\tau$, $2lss + 1\tau$, $3l + 0\tau$ event selection is extended to target tH events.

• **ATLAS**: Baseline selction for all categories with low number of jets (LNJ): $N_{Jets} \ge 2$, $N_{b \ tag} \ge 1$. Tightened to define SR (HNJ).

Third Step:

Categories based on MVA techniques:

- · CMS:
 - multiclass ANNs used in categories sensitive to ttH and tH ——
 classification based on the score of the most probable process
 - **BDTs** on categories not sensitive to tH: separate ttH+tH against the backgrounds.

ttH Multilepton (II)

Second Step:

Dedicated selection on each category. Common item:

- Jet and b tag multiplicity requirements
 - CMS: Selection consistent with $t\bar{t}H$ expected final state. In $2lss + 0\tau$, $2lss + 1\tau$, $3l + 0\tau$ event selection is extended to target tH events.
 - **ATLAS**: Baseline selction for all categories with low number of jets (LNJ): $N_{Jets} \ge 2$, $N_{b \ tag} \ge 1$. Tightened to define SR (HNJ).

Third Step:

Categories based on MVA techniques:

ATLAS:

Combinations of BDTs. For the two most sensitive:

- $2\ell ss + 0\tau$ (SR, HNJ: $\geq 4j, \geq 1bj$): Combination of **2 BDTs** (vs. $t\bar{t}V$, vs. $t\bar{t}$) in a **2D space** + categories in flavour and charge.
- $3\ell + 0\tau$: $(SR: \geq 2j, \geq 1bj)$ multi-class BDT (vs. $t\bar{t}W$, vs. $t\bar{t}$, vs. $t\bar{t}Z$, vs. VV)

ttH Multilepton: signal region (SR)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2 €ttH- BDT output

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2 €ttH+ BDT output

Background estimation is key in this analysis **Reducible backgrounds**:

- > Non prompt leptons and misidentified taus
- > Electron charge flips
- Conversions

CMS:

- Dedicated output node for ttW in 2lss.
- Control regions to constrain ttZ (31 & 41)
 Normalization determined in the signal extraction fit

Non prompt background:

 Estimated with data-driven techniques (clousure for muons)

Photon conversions:

Estimated with simulation

Irreducible backgrounds:

- ➤ ttZ, ttW
- > Less importantly, dibosons

Background estimation is key in this analysis.

Reducible backgrounds:

- Non prompt leptons and misidentified tau
- Electron charge flips
- Conversions

ATLAS: ATLAS

- 13 dedicated control regions
- Norm. of non prompt, conversions and ttW measured simultaneously in the fit to data

$2\ell ss$ $(2-3)j, \geq 1bj (LNJ)$ Subleading e 2BSubleading μ Int Conversion Material Conv.

Irreducible backgrounds:

- ➤ ttZ, ttW
- > Less importantly, dibosons

Material Conversion = Conversion can be resolved: displaced vertex is reconstructed

Internal Conversion = Conversion in hardprocess. Can't be resolved

Important background Tension with SM seen both by CMS and ATLAS:

CMS	$\sigma_{tar{t}W} / \sigma_{tar{t}W}^{SM}$	ATLAS	$\sigma_{tar{t}W}$ / $\sigma_{tar{t}W}^{SM}$
JHEP 08 (2018) 011 (ttW & ttZ, 35.9 fb ⁻¹)	$1.23^{+0.30}_{-0.28}$	Phys. Rev. D 99 (2019) 072009 (ttW ttZ, 36.1 fb ⁻¹)	1.44 ± 0.32
EPJC 80 (2020) 75 (4 tops, 137 fb ⁻¹)	1.3 ± 0.2	CERN-EP-2020-111 (4 top, 139 fb ⁻¹)	1.6 ± 0.3

Despite state-of-the-art simulation, modelling of QCD radiation is challenging

Important background Tension with SM seen both by CMS and ATLAS:

	CMS	$\sigma_{tar{t}W}$ / $\sigma_{tar{t}W}^{SM}$	AT	LAS	$\sigma_{tar{t}W}$ / $\sigma_{tar{t}W}^{SM}$
	JHEP 08 (2018) 011 (ttW & ttZ, 35.9 fb-1)	1.23+0.30	Phys. Rev. D 99 (tt̄Z, 36	1.44 ± 0.32	
	EPJC 80 (2020) 75 (4 tops, 137 fb ⁻¹)	1.3 ± 0.2	CERN-EP-2020-1	1.6 ± 0.3	
				2I LNJ	$1.56^{+0.30}_{-0.33}$
h-1 (∙	з теv) ttH multilep	1.43 ± 0.21	ttH multilep	2l HNJ	$1.26^{+0.19}_{-0.18}$
=µ̂	s (W)			3I	1.68 ^{+0.30} _{-0.28}
∎ttW ∎tŧH	(W)			Alternative fit	$1.39^{+0.17}_{-0.16}$

- $t\bar{t}W$ simulated with NLO QCD including α^3 and $\alpha^3\alpha_s$ terms
 - First LHC analysis to include these corrections at diff. level
- · Normalization determined in the signal extraction fit
- Dedicated DNN node for ttW

Important background Tension with SM seen both by CMS and ATLAS:

- Multiplicative factors to take into account QCD and EWK corrections on xsec
- 3 independent normalization factors obtained from the fit
- Additional uncertainties to cover for modelling of additional QCD radiation

Important background Tension with SM seen both by CMS and ATLAS:

CMS	$\sigma_{tar{t}W}$ / $\sigma_{tar{t}W}^{SM}$
JHEP 08 (2018) 011 (ttW & ttZ, 35.9 fb ⁻¹)	$1.23^{+0.30}_{-0.28}$
EPJC 80 (2020) 75 (4 tops, 137 fb ⁻¹)	1.3 ± 0.2
ttH multilep	1.43 ± 0.21

АТ	LAS	$\sigma_{tar{t}W}$ / $\sigma_{tar{t}W}^{SM}$
Phys. Rev. D 99 (tt̄Z, 36	2019) 072009 (tt̄W 5.1 fb ⁻¹)	1.44 ± 0.32
CERN-EP-2020-1	1.6 ± 0.3	
	2I LNJ	$1.56^{+0.30}_{-0.33}$
ttH multilep	2l HNJ	$1.26^{+0.19}_{-0.18}$
	31	$1.68^{+0.30}_{-0.28}$
	Alternative fit	$1.39^{+0.17}_{-0.16}$

Dedicated ttW control region, normalization floated in the fit Validation region:

$$N_{Jet} \ge 4$$
, $N_{b \ tag} \ge 2$
 $N_{+} - N_{-} = \text{\#Events with } (\sum \ell_{charge}) > 0$ - $\text{\#Events with } (\sum \ell_{charge}) < 0$

ttH Multilepton CMS results

 $\mu_{ttH} = 0.58^{+0.36}_{-0.33}$

Results:

Signals are extracted fitting data in all categories:

- Lumi: 137 fb⁻¹
- Above 5σ sensitivity for t̄tH
- 4.7σ observed significance for t̄tH
- Observed tH significance: 1.4σ

- Lumi: 79.9 fb⁻¹
- **3.1σ expected** significance
- **1.8σ observed** significance

CMS Preliminary

137 fb⁻¹ (13 TeV)

ttH Multilepton CMS results (II)

к framework results:

Interpretation of yields in terms of:

$$\kappa_t = \frac{y_t}{y_t^{SM}} \quad \kappa_V = \frac{g_{W/Z}}{g_{W/Z}^{SM}}$$

- Acceptance parametrized as function of κ_t/κ_V
- Modification of Higgs BR considered Likelihood scans as a function of κ_t κ_v :

 κ_t constrained to be within -0.9 < κ_t <-0.7 and 0.7 < κ_t <1.1 at 95% CL

tt dilepton

tt dilepton CMS

In tt production, top-Higgs interaction via virtual Higgs exchange:

CMS-PAS-TOP-19-008

Ref:
arxiv:2009.07123
(submited to Physical Review D)

- EW diagrams enter **noticeably** into $t\bar{t}$ production at **order** $\alpha_s^2\alpha$
- Small effect on cross section, **noticeable shape effect** on differential distributions
- Effects are bigger if Yukawa coupling is anomalously large

Analysis strategy:

Data taken by the CMS experiment at 13 TeV during Run 2 (137 fb⁻¹)

Events with two leptons are selected.

In ee and $\mu\mu$ channels $m_{\ell\ell}$ and p_T^{miss} requirements are added in order to reduce DY background.

tt dilepton CMS (II)

Electroweak corrections:

- Invariant mass $M_{t\bar{t}}$ and difference in top quark rapidity $\Delta y_{t\bar{t}}$ sensitive to $Y_t = \frac{y_t}{y_t^{SM}}$
- EWK corrections are added as weights, applying them at parton level to MC samples produced at NLO QCD \rightarrow Calculated with <u>HATHOR</u>
- These multiplicative corrections $R_{EW}(M_{t\bar{t}}, \Delta y_{t\bar{t}})$ are generated as a function of $M_{t\bar{t}}, \Delta y_{t\bar{t}}$
- $R_{EW}(M_{t\bar{t}},\Delta y_{t\bar{t}})$ is parametrized as function of Y_t and a profile likelihood scan on the Y_t is performed

tt dilepton CMS (III)

Event reconstruction:

It is possible to reconstruct dilepton-channel top quark kinematics in good approximation, but it is very sensitive to MET measurement and deviation from on—shell $_{\it b}$

It is possible to use "proxy" kinematic variables:

$$M_{bbll} = M(b + \overline{b} + l + \overline{l})$$

$$|\Delta y_{blbl}| = |y(b + \overline{l}) - y(\overline{b} + l)|$$

Depends on the pairing of objects

Pairing in 3 steps:

mass constrain
 (if both pass 1) MET constrain
 If no clear paring from ν kinematics → minimize geometrical distance between b quark and lepton

tt dilepton CMS (IV)

Effect of Yukawa on yields:

Events are categorized in bins of M_{bbll} and $|\Delta y_{blbl}|$. Each bin has a yield proportional to Y_t^2

tt dilepton CMS (V)

Results:

The profile likelihood scan yields

$$Y_t = 1.16^{+0.07}_{-0.08}(stat)^{+0.17}_{-0.27}(syst)$$

The coupling is **constrained to be** Y_t < **1.54 at 95% CL** Most important uncertainties:

- Modelling of ISR and FSR (~8% final measurement unc.)
- Weak corrections computation and application. They cover higher-order effects. (~7% final measurement unc.)

Summary

- Yukawa coupling measured with the full Run 2 dataset
- ttH+tH measurement is sensitive to negative values of Yukawa coupling and does not exclude inverted coupling scenario at 95% CL
- ttW modelling is key in ttH measurement
 - Both CMS and ATLAS working on this not only from ttH but from 4tops analysis: <u>CERN-EP-2020-111</u>
- tt̄ less sensitive than tt̄H measurement but do not depend on other parameters affected by the Yukawa coupling (BR)

CMS-PAS-HIG-19-008

ATLAS-CONF-2019-045

CMS-PAS-TOP-19-008

Back up

ttH (CMS)

Uncertainties

Source	$\Delta\mu_{ttH}/\mu_{ttH}$ [%]	$\Delta\mu_{tH}/\mu_{tH}$ [%]	$\Delta\mu_{ttW}/\mu_{ttW}$ [%]	$\Delta\mu_{ttZ}/\mu_{ttZ}$ [%]
Trigger efficiency	2.3	8.1	1.2	1.9
e, μ reconstruction and identification efficiency	2.9	7.1	1.7	3.2
$ au_{ m h}$ identification efficiency	4.6	9.1	1.7	1.3
b tagging efficiency and mistag rate	3.6	13.6	1.3	2.9
Misidentified leptons and flips	6.0	36.8	2.6	1.4
Jet energy scale and resolution	3.4	8.3	1.1	1.2
MC and sideband statistical uncertainty	7.1	27.2	2.4	2.3
Theory-related sources	4.6	18.2	2.0	4.2
Normalization of MC-estimation processes	13.3	12.3	13.9	11.3
Luminosity	2.2	4.6	1.8	3.1
Statistical uncertainty	20.9	48.0	5.9	5.8

ttH (ATLAS)

Categories and selection

Channel	Selection criteria				
Common	$N_{\rm jets} \ge 2$ and $N_{b\text{-jets}} \ge 1$				
$2\ell SS$	Two same-charge (SS) very tight (T*) leptons, $p_{\rm T} > 20~{\rm GeV}$				
	No $\tau_{\rm had}$ candidates				
	$m(\ell^+\ell^-) > 12$ GeV for all SF pairs				
	13 categories: enriched with $t\bar{t}H$, $t\bar{t}W$, $t\bar{t}$, mat. conv., int. conv.,				
	split by lepton flavour, charge, jet and b -jet multiplicity				
3ℓ	Three loose (L) leptons with $p_{\rm T} > 10$ GeV; sum of light-lepton charges = ± 1				
	Two SS very tight (T*) leptons, $p_{\rm T} > 15~{\rm GeV}$				
	One OS (w.r.t the SS pair) loose-isolated (L*) lepton, $p_T > 10 \text{ GeV}$				
	No $ au_{ m had}$ candidates				
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOS pairs				
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$				
	7 categories: enriched with $t\bar{t}H$, $t\bar{t}W$, $t\bar{t}Z$, VV , $t\bar{t}$, mat. conv, int. conv				
4ℓ	Four loose-isolated (L*) leptons; sum of light lepton charges $= 0$				
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOS pairs				
	$m(4\ell) < 115 \text{ GeV}$ or $m(4\ell) > 130 \text{ GeV}$				
	2 categories: Zenr (Z-enriched;1 or 2 SFOS pairs) or Zdep (Z-depleted; 0 SFOS pairs)				
$1\ell 2 au_{ m had}$	One tight (T) lepton, $p_{\rm T} > 27~{\rm GeV}$				
	Two OS $\tau_{\rm had}$ candidates				
	At least one tight $\tau_{\rm had}$ candidate				
- 1000	$N_{ m jets} \geq 3$				
$2\ell \text{SS}1\tau_{ ext{had}}$	$2\ell SS$ selection, except: One medium $\tau_{\rm had}$ candidate				
	$N_{\rm jets} \ge 4$				
$3\ell 1 au_{ m had}$	3ℓ selection, except:				
	One medium τ_{had} candidate, of opposite charge to the total charge of the light leptons				
	Two SS tight (T) leptons				

Uncertainties

Uncertainty source	Δ	$\hat{\mu}$
Jet energy scale and resolution	+0.13	-0.13
$t\bar{t}(Z/\gamma^*)$ (high mass) modelling	+0.09	-0.09
$t\bar{t}W$ modelling (radiation, generator, PDF)	+0.08	-0.08
Fake $\tau_{\rm had}$ background estimate	+0.07	-0.07
$t\bar{t}W$ modelling (extrapolation)	+0.05	-0.05
$t\bar{t}H$ cross section	+0.05	-0.05
Simulation sample size	+0.05	-0.05
$t ar{t} H ext{ modelling}$	+0.04	-0.04
Other background modelling	+0.04	-0.04
Jet flavour tagging and $\tau_{\rm had}$ identification	+0.04	-0.04
Other experimental uncertainties	+0.03	-0.03
Luminosity	+0.03	-0.03
Diboson modelling	+0.01	-0.01
$t\bar{t}\gamma^*$ (low mass) modelling	+0.01	-0.01
Charge misassignment	+0.01	-0.01
Template fit (non-prompt leptons)	+0.01	-0.01
Total systematic uncertainty	+0.25	-0.22
Intrinsic statistical uncertainty	+0.23	-0.22
$t\bar{t}W$ normalisation factors	+0.10	-0.10
Non-prompt leptons normalisation factors (HF, material conversions)	+0.05	-0.05
Total statistical uncertainty	+0.26	-0.25
Total uncertainty	+0.36	-0.33

ttW modelling

Subleading EWK corrections found to be significant.

• Primarily NLO₃ term driven by ttW + 1-jet diagram with a H in the t-channel

CMS ttH:

- Samples with NLO QCD (up to 1 additional parton)
 + subleading EKW corrections (NLO₃)
- xsec with NLO₃ corrections
- Implemented at differential level

ATLAS ttH:

- Samples with 1 additional parton at NLO and up to 2 partons at LO
- xsec reweighted by factor:
 - 1.11 to cover QCD corrections (ttW+1-jet)
 - 1.09 to cover subleading EWK corrections

CMS tttt:

- Samples with 1 additional parton at NLO QCD
- xsec don not include EWK corrections

ATLAS tītī:

- Samples with 1 additional parton at NLO and up to 2 partons at LO
- xsec with QCD + leading EWK corrections

