

Higgs to Tau Tau Signal Strength, Cross Section, and CPV Measurements at CMS and ATLAS

Andrew Loeliger, On behalf of the CMS and ATLAS Collaborations

10/26/2020

Overview

Analysis	Years	Link to Documentation
ATLAS $H\tau\tau$ Cross Section Analysis	2015+2016	<u>Phys. Rev. D 99 072001 (2019)</u>
CMS $H\tau\tau$ STXS Stage 1.2 Cross Section Analysis	Run 2 (2016+2017+2018)	<u>HIG-19-010</u>
CMS CP Violation of $H\tau\tau$ Decay	Run 2 (2016+2017+2018)	<u>HIG-20-006</u>
ATLAS CP Violation of VBF Production using $H\tau\tau$	2015+2016	Phys. Lett. B 805 135426 (2020)

- •Why look at the di-tau Higgs decay?
 - •Highest branching ratio to leptons
 - •Direct observation of the Yukawa coupling
 - •Sensitive to VBF coupling
- •CMS Run 2 Analyses now using DeepTau:
 - •Convolutional neural network
 - •Reduced chance of τ mis-ID

Simplified Template Cross Section Framework

STXS ggH/VBF framework with merging of gen-level bins measured at CMS. <u>HIG 19-010</u>

ATLAS Higgs To Taus Signal and Cross Section

- Two Reconstruction categories:
 - VBF
 - Boosted
- VBF and boosted split into subcategories (red)
- Adjacent control regions used to constrain backgrounds (blue)

Inclusive and Stage 0 Signal Strength and Cross Section

Loeliger-University of Wisconsin-Madison

CMS STXS Measurement Strategy

- New background prediction methods (in backup)
- 5 reconstruction categories:

HIG-19-010

Signal Strengths: Stage 0

<u>HIG-19-010</u>

Signal Strengths: Stage 1.2

- Signal strengths computed for certain merging schemes of STXS bins
- Two possible merging schemes
 - **Process-based**
 - Topology-based
 - Plots in back-up

Parameter value

CMS Preliminary Process-based

137 fb⁻¹ (13 TeV)

Cross Section Measurements: Stage 1.2

9

<u>HIG-19-010</u>

10/26/2020

$\kappa_v \kappa_f$ and ggH vs. VBF.

- 10
- Both close to 1σ agreement with SM

Summary of STXS Results

- Inclusive and stage 0:
 - ATLAS and CMS not statistically limited
 - CMS sees 2x increase in sensitivity over previous measurements
 - ggH and Inclusive consistent with SM within $\sim 1\sigma$
- STXS Stage 1.2:
 - First measurement of stage 1.2 parameters
 - Good sensitivity in merged bin schemes
 - Most bins consistent with SM within $\sim 1\sigma$
- κ framework measurements consistent with SM within ~1 σ

CMS $H \rightarrow \tau \tau$ Decay CP Violation Strategy

- Main strategy targets tau decay planes:
- Tau decay plane reconstruction methods:
 - Impact parameter method
 - Neutral pion method

CMS

WISCONSIN

Example CP Bin Post-fits

CP Mixing Angle Results

- First measurement of CP Violation at the $H \rightarrow \tau \tau$ vertex
- Higgs to taus decays consistent with SM, CP even case preferred over CP odd case with 3.2σ
- Measurement is still statistics limited
- No strong dependence on the overall Higgs signal strength

VBF CP Violation Strategy

15

- Measures HVV vertex CP violation
 Categorized by single parameter: *d̃*
- Optimal Observable:

$$rac{2Re(\mathcal{M}_{SM}^{*}\mathcal{M}_{CP-odd})}{|\mathcal{M}_{SM}|^{2}}$$

• From Matrix element:

 $|\mathcal{M}_{SM}|^2 + \tilde{d} \cdot 2Re(\mathcal{M}_{SM}^*\mathcal{M}_{CP-odd}) + \tilde{d}^2|\mathcal{M}_{CP-odd}|^2$

- Calculated based on jet and higgs four momenta
- \tilde{d} determined in a shape fit to data.
- Similar CMS analysis
 - Slides in backup

Phys. Lett. B 805 135426 (2020)

VBF CP Violation Results

All SRs, weighted by $\ln(1 + S/B)$

- Data

UBF H

 $Z \rightarrow \tau \tau$

 $\mu = 0.73, d = -0.01$

16

- BDT used to separate VBF Signal
- $\tilde{d} = -0.013^{+0.048}_{-0.077}$, consistent with SM expectation

events /

ATLAS

All SRs

 $\sqrt{s} = 13 \,\text{TeV}, \, 36.1 \,\text{fb}^{-1}$

Phys. Lett. B 805 135426 (2020), right taken from auxiliary public figures here

Summary

- 17
- New standards of sensitivity to different areas of Higgs to Taus physics
 - CMS/ATLAS Inclusive/Stage 0 cross section measurements not limited by statistics
 - First STXS Stage 1.2 cross section measurements
 - First CP Measurement of Higgs to taus vertex, evidence of preference against CP odd case.
 - Measurement of CP violation in HVV vertex performed in VBF $H \rightarrow \tau \tau$
- In all cases, there is good agreement with SM expectations.

What's the outlook for Higgs to Taus physics going forward?A complete set of full Run 2 Analyses.

•Differential analyses

•More exclusive production modes and charge parity analyses

References

18						
	1.	"Performance of the DeepTau algorithm for the discrimination of taus against jets, electron, and muons", CMS Collaboration, Oct. 2019, CMS-DP-2019-033, https://cds.cern.ch/record/2694158				
	2.	"Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector", LHC Higgs Cross Section Working Group, doi:10.2172/1345634,10.23731/CYRM-2017-002, arXiv:1610.07922.				
	3.	"Measurement of Higgs boson production in the decay channel with a pair of τ leptons", CMS Collaboration, 2020, CMS-PAS-HIG-19-010, https://cds.cern.ch/record/2725590				
	4.	"Cross-section measurements of the Higgs boson decaying into a pair of τ -leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV", ATLAS Collaboration, Apr. 2019, arXiv:1811.08856, https://arxiv.org/abs/1811.08856				
		and				
		"Cross-section measurements of the Higgs boson decaying into a pair of τ -leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector", ATLAS Collaboration, Apr. 2019, Phys. Rev. D 99 072001, https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.072001				
	5.	"Observation of the SM scalar boson decaying to a pair of τ leptons with the CMS experiment at the LHC", CMS Collaboration, 2017, HIG-16-043, http://cds.cern.ch/record/2264522				
	6.	"Analysis of the CP structure of the Yukawa coupling between the Higgs boson and τ leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV", CMS Collaboration, 2020, CMS-PAS-HIG-20-006, http://cds.cern.ch/record/2725571				
	7.	"Constraints on anomalous HVV couplings in the production of Higgs bosons decaying to tau lepton pairs", CMS Collaboration, 2018, CMS-PAS-HIG-17-034, http://cds.cern.ch/record/2648943				
	8.	"Test of CP invariance in vector-boson fusion production of the Higgs boson in the $H \rightarrow \tau\tau$ channel in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector", ATLAS Collaboration, Jun. 2020, arXiv:2002.05315, https://arxiv.org/abs/2002.05315				
		and				
		"Test of CP invariance in vector-boson fusion production of the Higgs boson in the $H \rightarrow \tau\tau$ channel in proton-proton collisions at $\sqrt{s} = 13 \ TeV$ with the ATLAS detector", ATLAS Collaboration, Jun 2020, Phys. Lett. B 805 135426, https://www.sciencedirect.com/science/article/pii/S0370269320302306?via=ihub				
		and				
		http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-14/				
	9.	"Performance of reconstruction and identification of tau leptons in their decays to hadrons and tau neutrino in LHC Run-2", CMS Collaboration, 2016, TAU-16-002, https://cds.cern.ch/record/2196972				
	10.	"Measurement of the tau lepton reconstruction and identification performance in the ATLAS experiment using pp collisions at $\sqrt{s} = 13$ TeV", ATLAS Collaboration, May 2017, ATLAS-CONF-2017-029, https://cds.cern.ch/record/2261772				

- 11. "Reconstruction, Energy Calibration, and Identification of Hadronically Decaying Tau Leptons in the ATLAS Experiment for Run-2 of the LHC", ATLAS Collaboration, Nov. 2015, ATL-PHYS-PUB-2015-045, https://cds.cern.ch/record/2064383
- 12. "Identification of hadronic tau lepton decays using neural networks in the ATLAS experiment", ATLAS Collaboration, Aug. 2019, ATL-PHYS-PUB-2019-033, https://cds.cern.ch/record/2688062
- 13. "An embedding technique to determine genuine ττ backgrounds from CMS data", CMS Collaboration, 2018, TAU-18-001, http://cds.cern.ch/record/2646208

10/26/2020

Loeliger-University of Wisconsin-Madison

Tau Reconstruction at CMS

- Leptonic final states, i.e. electronic and muonic final states, are reconstructed via the CMS standard Particle Flow algorithm
- Hadronic taus are reconstructed via the Hadrons-Plus-Strips (HPS) algorithm.
 - Hadronic jets form the "seed" of the reconstructed tau
 - Dynamic η - ϕ strips
- New: DeepTau algorithm for ID and Jet Discrimination
 - Convolutional Neural Network
 - $\sim 1/2(t\bar{t})-2/3(W+Jets)$ the chance of misidentifying hadronic jets as a tau compared to previous methods.

Tau Reconstruction at ATLAS

21

10/26/2020

- Hadronic taus are seeded by reconstructed jets
- Tau vertex is then chosen within $\Delta R < 0.2$ cone
 - η/ϕ is calculated with this vertex/cone
 - Energy and pt are reconstructed via MVA techniques
- To reject hadronic background, a boosted decision tree (BDT) offers efficiency working points
 - A tau ID based on neural networks has been developed for future work

Taken from <u>ATL-PHYS-PUB-2015-045</u>

ATLAS XS Categorization Requirements

22

Signal Region Definitions

		nal Region	Inclusive	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$
	VBF	High- $p_{\rm T}^{\tau\tau}$	$p_{\rm T}^{j_2} > 30 {\rm GeV}$ $ \Delta \eta_{jj} > 3$ $m_{jj} > 400 {\rm GeV}$ $\eta_{j_1} \cdot \eta_{j_2} < 0$ Central leptons	_		$p_{\rm T}^{\tau\tau} > 140 {\rm GeV}$ $\Delta R_{\tau\tau} < 1.5$
Signal Region		Tight		$m_{jj} > 800 \mathrm{GeV}$	$\begin{array}{l} m_{jj} > 500 \mathrm{GeV} \\ p_{\mathrm{T}}^{\tau\tau} > 100 \mathrm{GeV} \end{array}$	Not VBF high- $p_{\rm T}^{\tau\tau}$ $m_{jj} > (1550 - 250 \cdot \Delta \eta_{jj}) \text{GeV}$
Definitions		Loose		Not VI	3F tight	Not VBF high- $p_{\rm T}^{\tau\tau}$ and not VBF tight
	osted	$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \text{High-}p_{\text{T}}^{\tau\tau} \\ \end{array} \end{array} & \begin{array}{c} \text{Not VBF} \\ p^{\tau\tau} > 100 \text{ GeV} \end{array} \end{array}$		$\begin{array}{c} p_{\mathrm{T}}^{\tau\tau} > 140 \mathrm{GeV} \\ \Delta R_{\tau\tau} < 1.5 \end{array}$		
	Bo	Low- $p_{\rm T}^{\tau\tau}$	$p_{\rm T} > 100 {\rm GeV}$	Not boosted high- $p_{T}^{\tau\tau}$		
	Re	Region		Selection		
	$\tau_{\rm le}$	$\tau_{\rm lep} \tau_{\rm lep} \mathrm{VBF} Z \to \ell \ell \mathrm{CR}$		$\tau_{\text{lep}} \tau_{\text{lep}}$ VBF incl. selection, $80 < m_{\ell\ell} < 100$ GeV, SF		
Control Region Definitions	$\tau_{\rm le}$	$\tau_{\rm lep} \tau_{\rm lep}$ boosted $Z \to \ell \ell CR$		$\tau_{\text{lep}} \tau_{\text{lep}}$ boosted incl. selection, $80 < m_{\ell\ell} < 100 \text{GeV}$, SF		
-	$\tau_{\rm le}$	$\tau_{\rm lep}$ VBF to	τ op CR τ	$\tau_{\rm lep} \tau_{\rm lep}$ VBF incl. selection, inverted <i>b</i> -jet veto		
		$\tau_{\rm lep} \tau_{\rm lep}$ boosted top CR		$\tau_{\rm lep} \tau_{\rm lep}$ boosted incl. selection, inverted <i>b</i> -jet veto		
		$\tau_{\rm lep} \tau_{\rm had}$ VBF top CR		$\tau_{\text{lep}}\tau_{\text{had}}$ VBF incl. selection, inverted <i>b</i> -jet veto, $m_{\text{T}} > 40 \text{ GeV}$		
	$\tau_{\rm le}$	$\tau_{\rm lep} \tau_{\rm had}$ boosted top CR		$\tau_{\text{lep}} \tau_{\text{had}}$ boosted incl. selection, inverted <i>b</i> -jet veto, $m_{\text{T}} > 40 \text{ GeV}$		

arXiv:1811.08856

CMS Embedding Technique

23

10/26/2020

• Used for the prediction of genuine tau backgrounds in CMS analyses

HIG-19-010

CMS Fake Factor Technique

- Used for the prediction of Mis-ID'd τ_{had} due to hadronic jets
 - 1. Measure ratio of anti-isolated taus to isolated ones in determination regions as a function of the hadronic tau pt
 - 1. W+Jets
 - 2. QCD
 - 3. t*ī*
 - 2. Corrections in terms of the other object pt
 - 3. Correction for differences between measurement and signal region
 - 4. Measure fractions of Mis-ID'd τ_{had} in the isolated signal region with MC
 - 5. Apply to anti-isolated signal region, and subtract any genuine contributions
- Used for the precision across a large number of kinematic variables

<u>HIG-19-010</u>

CMS STXS Category Purity

25

<u>HIG-19-010</u>

Topology Scheme Signal Strengths

<u>HIG-19-010</u>

CMS *Preliminary* Topology-based 137 fb⁻¹ (13 TeV)

	• Obs.	—± 1 σ	±1ơ stat.
		th.	stat. syst. bbb
μ_{qqH} non-VBF topo.		$0.16^{+3.22}_{-3.91} \ {}^{+1.63}_{-1.86}$	+1.91 +1.00 +1.74 -1.92 -1.88 -2.13
μ _{mJJ[350-700]}		-0.04 ^{+0.54} +0.10 -0.56 -0.10	+0.48 +0.14 +0.23 -0.48 -0.15 -0.24
μ mJJ>700		$0.65^{+0.49}_{-0.38} \ {}^{+0.15}_{-0.16}$	+0.30 +0.18 +0.31 -0.29 -0.09 -0.18
μ _{qqH-2j/pT>200}		$0.57^{+0.44}_{-0.42} \ \ ^{+0.09}_{-0.09}$	+0.38 +0.11 +0.18 -0.36 -0.08 -0.18
$\mu_{ggH-2j/mJJ<350}$		0.64 ^{+1.31} +1.10 _0.99 _0.53	+0.58 +0.27 +0.33 -0.58 -0.31 -0.51
μ _{ggH/pT[200-300]}		1.09 ^{+0.88} +0.51 -0.80 -0.31	+0.58 +0.25 +0.33 -0.58 -0.29 -0.36
$\mu_{ggH/pT>300}$		1.98 ^{+1.34} +0.36 -1.08 -0.40	+0.75 +0.29 +1.00 -0.74 -0.30 -0.61
μ ggH-0j/pT<200	· · · · · · · · · · · · · · · · · · ·	$0.03^{+0.45}_{-0.50} \ {}^{+0.04}_{-0.04}$	+0.17 +0.37 +0.19 -0.17 -0.37 -0.29
μ ggH-1j/pT[0-60]		-1.53 ^{+1.32} +0.33 -1.33 -0.45	+0.72 +0.87 +0.61 -0.71 -0.84 -0.59
μ ggH-1j/pT[60-120]	-	+3.86 ^{+1.25} +0.83 _1.21 -0.61	+0.74 +0.38 +0.43 -0.74 -0.51 -0.52
μ ggH-1j/pT[120-200]		2.06 ^{+1.61} +0.94 _0.94 _0.23	+0.77 +0.75 +0.75 -0.76 -0.28 -0.41
	0	5 10 15	5 20 25

Parameter value

Topology Based Cross Sections

27

<u>HIG-19-010</u>

Comparison Between Old and New CMS Results

35.9 fb⁻¹ (13 TeV)

🔶 Obs. - bkg

Bkg. unc

 $m_{\tau\tau}$ (GeV)

250

m_{rr} (GeV)

50 100 150 200 250 300

Boosted: $\tau_{h}\tau_{h}$, $\mu\tau_{h}$, $e\tau_{h}$, $e\mu$

0

150

0-jet: τ, τ,

VBF: $\tau_{h}\tau_{h}$

200

28

HIG-16-043

- 3 categories
 - 0 jet
 - VBF
 - Boosted
- $\mu = 1.06 \pm 0.25$

HIG-19-010

- 5 categories
 - 0 jet
 - VBF High Higgs Pt
 - VBF Low Higgs Pt
 - Boosted High Higgs Pt
 - Boosted Low Higgs Pt
- $\mu = 0.85^{+0.12}_{-0.11}$

Loeliger-University of Wisconsin-Madison

Comparison between ATLAS and CMS Cut Based Analysis Styles

Similarities

29

- VBF Category(ies)
 - 2 jets + quality cuts
- Boosted Category(ies):
 - Not the other categories
- Use of "fake-factor" method in semi-leptonic channel:
 - However, details differ somewhat,

Differences

- ATLAS-Only: Control Regions
- CMS-Only: Use of zero jet category
- Exact definitions and of categories:
 - CMS:
 - VBF High and Low Higgs Pt
 - Boosted Mono- and Multi- Jet
 - ATLAS:
 - VBF Tight and Loose (and High di-tau Higgs Pt)
 - Boosted High and Low di-Tau Pt
- CMS-Only: Use of second variable/dimension in categories
- Prediction of $Z \rightarrow \tau \tau$ region:
 - ATLAS: MC with validation regions
 - CMS: "Embedding" Technique
- ATLAS: Other mis-ID tau methods
 - Isolation inverted templates in fully leptonic channel
 - Same sign method for hadronic taus.

Loeliger-University of Wisconsin-Madison

Impact Parameter and π^0 Method in CP Violation

30

10/26/2020

- Impact parameter method,
 - Works via definition of vector to point of closest approach
 - This, and the reconstructed charged π vector define a (boosted) plane.
 - Used for single π^{\pm} and μ decays
- π^0 method,
 - Uses vector of neutral pion and vector of charged track to construct planes that are then boosted
 - Used for any applicable decay mode
 - Including three pronged a decay, where a neutral rho is recreated, and the opposite sign pion is treated as the " π^0 "

HIG-20-006

Rho Rho CP Analysis Final State

CMS VBF CP Violation Strategy

32

• CP Violation characterized by:

$$f_{a3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_2|^2 \sigma_3}, \phi_{a3} = \arg(\frac{a_3}{a_1})$$

- Matrix Element Likelihood Approach, "MELA"
 - Calculated based on event and decay angles
- Categorized similarly to CMS observation effort

<u>HIG-17-034</u>

CMS VBF CP Violation Results

33

• $f_{a3} \cos(\phi_{a3}) = (0.0^{+0.93}_{-0.43}) \times 10^{-3}$ consistent with SM expectation

<u>HIG-17-034</u>