Search for a Higgs Boson Decaying to Two Charm Quarks at the LHC

Bjorn Burkle

(Brown University 📳)

on behalf of the CMS and ATLAS Collaborations

Higgs 2020 Conference (Virtual) October 26-29, 2020

Introduction

- Since the observation of the Higgs, measuring its properties has been a primary goal of CMS and ATLAS
- Deviations from theory are signs of BSM
 - Need coupling to be on line for *H* to be responsible for particle mass as predicted by SM
- So far, have seen remarkable agreement with SM
- Based on <u>indirect</u> Higgs measurements using model dependent assumptions, expect that $\kappa_{c < 6.2}$ [1]

Introduction

Decay Processes	BR (Theory [*])
$H \rightarrow bb$	58%
$H \rightarrow WW$	22%
$H \rightarrow gg$	8.1%
$H \to \tau \tau$	6.2%
$H \rightarrow cc$	2.9%
$H \rightarrow ZZ$	2.6%
$H o \gamma \gamma$	0.23%
$H \rightarrow Z\gamma$	0.16%
$H ightarrow \mu \mu$	0.02%

Orange entries have been observed to 5σ

- Can measure couplings directly by measuring Higgs decay rates
- Evidence of $\mu\mu$ decay recently reported at 3.0 σ by CMS and 2.0 σ by ATLAS
- Dijet Higgs decays are difficult to detect at the LHC
 - Higgs to bb observed much later than ZZ or $\gamma\gamma$
 - $BR(H \rightarrow cc) > 10 \times BR(H \rightarrow \gamma\gamma) > 100 \times BR(H \rightarrow \mu\mu)$

The Challenge

- Events with only jets are the most common events at the LHC
 - QCD dijet production have cross sections O(10⁵ pb)
 - Higgs production have cross sections O(10 pb)
- *c*-jets have broader jet energy resolution
 - Larger systematic limits analysis sensitivity
- Charm tagging is a very difficult task
 - *c*-jets kind of look like *b*-jets and kind of look like *l*-jets
 - Similarities due to properties of the intermediate mesons created by *b*-, *c*-, and light quark hadronization
 - $H \rightarrow b\overline{b}$ is 20x as likely and $H \rightarrow l$ -jets is 3x as likely

Higgs to *cc̄* Strategy

- Search carried out on targeting events where the Higgs boson is produced in association with vector boson (W or Z)
- Exploit W/Z leptonic final states to differentiate $W/Z + H(c\bar{c})$ process from common backgrounds

 Extensive use of advanced machine learning techniques to identify jets originating from c-quarks

- 2015 and 2016 data with *L* = 36.1 fb⁻¹
- Perform search in the $Z(\ell^+\ell^-)H(c\bar{c})$ final state
- Z reconstructed from sameflavor lepton pairs
 - OS requirement for muon pairs
 - $|\eta| < 2.5$ with lead (sub-leading) $p_T > 27$ (7) GeV
 - 81 GeV < $m_{\ell\ell}$ < 101 GeV

- Higgs reconstructed from 2 AK4 jets
 - $|\eta| < 2.5$ and $p_T > 20 \text{ GeV}$
 - Constructed from 2 highest p_T jets
 - In MC, events are weighted based on jet flavor tagging efficiency

- Two dedicated Boosted Decision Trees (BDTs) used for charm tagging 41% c-tagging efficiency
 - Differentiate *c* vs *l*-jets; 5% *l*-jet mistag
 - Differentiate *c* vs *b*-jets; 25% *b*-jet mistag

- BDT trained on jet kinematics and properties of charged tracks contained in jet
 - Longitudinal and transverse impact parameters of tracks
 - Properties of displaced vertex (if present)
- Variables motivated by *b* and *c*-hadron properties

- Data split into 4 categories based on *c*-tags and p_T^Z
- Simultaneous profile-likelihood fit to $m_{c\bar{c}}$ in all categories with Z+Jets normalization floating

$m_{c\bar{c}}$	50 GeV < $m_{c\bar{c}}$ < 200 GeV			
<i>c</i> -tags	1 <i>c</i> -tag		2 c-tags	
p_T^Z	[75 GeV, 150 GeV)	[150 GeV,∞)	[75 GeV, 150 GeV)	[150 GeV,∞)

 p_T^Z dependent $\Delta R_{c\bar{c}}$ cut also applied to exploit smaller jet separation

observed in signal

Limits extracted from post-fit $m_{c\bar{c}}$ distribution

Obtained 95% CL observed (expected) upper limit on σ/σ_{SM} of 110 (150⁺⁸⁰₋₄₂)

CMS

CMS Analysis Strategy

- 2016 data with *L* = 35.9 fb⁻¹
- Multi-channel analysis based on V type and decay
 - 2L and 1L further split by flavor of decay products (*ee*, μμ, *ev*, μν)
- Split into two dedicated analyses based on p_T(H)
 - VH events have improved background separation at high $\ensuremath{p_{\text{T}}}$
 - 95% of signal in resolved regime

CMS – Resolved Analysis

- DeepCSV used to obtain *c* vs *l*-jets and *c* vs *b*-jets discriminants
 - DNN multi-classifier trained on track IP and secondary vertex properties
 - 28% *c*-jet efficiency at 15% *b*-jet and 4% *l*-jet mistag rate
 - Reshaping scale factors derived
- Higgs reconstructed from two AK4 jets with highest CvsL score

- CR used for background normalization produced using Tagger scores of *H* jets
 - Simultaneous normalization of 4 different backgrounds
- Background normalization derived from CvsB distribution of leading jet
 - Accurate reshaping scale factors vital for analysis

CMS – Resolved Analysis

- Dedicated BDT trained on MC for signal extraction
- Simultaneous likelihood fit made to BDT in SR and CvsB in each CR

		35.9 fb ⁻¹ (13 TeV)
£ 10 ¹¹ F − − − − − − − − − − − − − − − − −		
ັອ10 ¹⁰ ├ CMS		
ш́ _ Resolved-jet	VV+otner	
1 0 ⁸ [2L (μμ), Low V-p _τ	tt	
	Z+bb/bc	Z+b/c
Signal Region	Z+udsg	VH(H \rightarrow cc), μ =41 $-$
10 ⁶ =	VH(H→bb)	S+B uncertainty
_	— VH(H→cc̄)x100	· _
]
	*	-
Ē		
10 ²		
1-		
10^{-2} E		
	• • • • • • • • • • • • • • • • • • • •	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	0.4 0.6	0.8 1
0 0:2 0	0.0	BDT output



	OL	1L	2L	All Channels
Expected UL	$84^{+35}_{-24}$	$79^{+34}_{-23}$	$59^{+25}_{-17}$	$38^{+16}_{-11}$
Observed UL	66	120	116	75



CMS

### CMS – Boosted Analysis

Dedicated object reconstruction and ML techniques developed to identify boosted Higgs jet

- Higgs reconstructed from the highest  $p_T$  large radius AK15 jet
  - Using a single large cone jet gives improved identification of correct jet pairs
- Dedicated DNN DeepAK15 trained to classify AK15 jets and perform *cc*-tagging
- Events split into 3 regions based on  $c\bar{c}$ -tagging efficiency

	High Purity	Medium Purity	Low Purity
<i>cc</i> -tag efficiency	23%	35%	46%
<i>b</i> -tag mis-Id	9%	17%	27%
Inclusive mis-Id	1%	2.5%	5%





### CMS – Boosted Analysis



- Kinematic BDT used to produce Signal and Control regions
- Likelihood fit built from softdrop mass distribution of CRs and SRs for all purity categories

	OL	1L	2L	All Channels
Expected UL	$81^{+39}_{-24}$	$88^{+43}_{-27}$	$90^{+48}_{-29}$	$49^{+24}_{-15}$
Observed UL	74	120	76	71





CMS



### CMS – Combined Analysis

- Boosted and resolved analyses combined to make final limits
- Additional  $p_T(V)$  cut applied to ensure analyses are fully orthogonal
- Combined observed (expected) upper limit on  $\mu$  of 70 (37⁺¹⁶₋₁₁)







#### arXiv:1610.07922 ATL-PHYS-PUB-2018-016



#### Still room for improvement

- Increase in statistics SM prediction for  $Z(\ell^+\ell^-)H(c\bar{c})$  is 26 fb which means few expected events in this search
  - Both CMS and ATLAS have used less than half of the now available run 2 data
  - Run 3 projected to provide another 150 fb⁻¹
  - HL-LHC projected to provide 3000 fb⁻¹
    - ATLAS projects sensitivity of  $\mu_{ZH(c\bar{c})} < 6.3^{+2.5}_{-1.8}$
- Improvements in analysis techniques

Future of  $H(c\bar{c})$ 

Improvements in *c*-jet tagging





#### Conclusion

- Both CMS and ATLAS have started to conduct searches for the  $H \rightarrow c \bar{c}$  decay mode
- Make use of the VH production mode and analysis made possible by machine learning based *c*-taggers
- Observed (expected) 95% CL upper limits on signal strength at  $110 (150^{+81}_{-42})$  by ATLAS and  $70 (37^{+16}_{-11})$  by CMS



10/27/2020

#### References

Analyses can be further studied in the following papers:

- Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment: <u>10.1103/PhysRevLett.120.211802</u>
- A search for the standard model Higgs boson decaying to charm quarks: JHEP 03 (2020) 131

Other References:

- Constraining the Charm Yukawa and Higgs-quark Coupling Universality (arXiv:1503.00290)
- Evidence of Higgs boson decay to pair of muons (arXiv:2009.04363)
- A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS Detector (arXiv:2007.07830)
- Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector (arXiv:1610.07922)
- Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV (<u>10.1088/1748-0221/13/05/P05011</u>)
- The anit-k_t jet clustering algorithm (arXiv:0802.1189)
- Expected performance of the ATLAS b-tagging algorithms in Run-2 (<u>ATL-PHYS-PUB-2016-012</u>)
- Optimization of the ATLAS b-tagging performance for the 2016 LHC Run (<u>ATL-PHYS-PUB-2016-012</u>)



## Questions?

# Backup

#### Analysis Validation



# Both CMS and ATLAS performed a validation procedure by measuring $Z \rightarrow c\bar{c}$ branching ratio with same analysis strategy

#### Reperformed analysis with $ZZ(c\bar{c})$ and $WZ(c\bar{c})$ as signal

	ATLAS	CMS (resolved)	CMS (merged)
Signal Strength $\mu_{VZ(Z  ightarrow c ar{c})}$	$0.6^{+0.5}_{-0.4}$	$1.35^{+0.94}_{-0.95}$	$0.69^{+0.89}_{-0.75}$
Observed (expected) significance	1.4 (2.2)σ	1.5 (1.2)σ	0.9 (1.3)σ



## Anti $k_{T}$ Algorithm

- Aims to form jets by clustering soft particles to the closest hard particle
- Does this by clustering particles based off a distance parameter

$$d_{ij} = \min(k_t^{2p} k_t^{2p}) \frac{\Delta_{ij}^2}{R^2}$$

p = -1,  $\Delta_{ij}$  is the angular separation, R is the max jet radius





## ATLAS Triggers

	2015	2016
Single Electron	$p_T(e) > 24 \text{ GeV}$	$p_T(e) > 26 \text{ GeV}$
Single Muon	$p_T(\mu) > 20 \; { m GeV}$	$p_T(\mu) > 26 \text{ GeV}$



#### ATL-PHYS-PUB-2016-012 ATL-PHYS-PUB-2015-022

## ATLAS c-tag BDT

Input	Variable	Description
Vinamatias	$p_T(jet)$	Jet transverse momentum
Kinematics	$\eta(jet)$	Jet pseudo-rapidity
	$\log(P_b/P_{\text{light}})$	Likelihood ratio between the b- and light jet hypotheses
IP2D, IP3D	$\log(P_b/P_c)$	Likelihood ratio between the b- and c-jet hypotheses
	$\log(P_c/P_{\text{light}})$	Likelihood ratio between the c- and light jet hypotheses
	m(SV)	Invariant mass of tracks at the secondary vertex assuming
		pion masses
	$f_{\rm E}({\rm SV})$	Fraction of the charged jet energy in the secondary vertex
SV	$N_{\text{TrkAtVtx}}(\text{SV})$	Number of tracks used in the secondary vertex
31	$N_{2\text{TrkVtx}}(\text{SV})$	Number of two track vertex candidates
	$L_{xy}(SV)$	Transverse distance between the primary and secondary
		vertices
	$L_{xyz}(SV)$	Distance between the primary and secondary vertices
	$S_{xyz}(SV)$	Distance between the primary and secondary vertices di-
		vided by its uncertainty
	$\Delta R(\text{jet}, \text{SV})$	$\Delta R$ between the jet axis and the direction of the secondary
		vertex relative to the primary vertex
	$N_{2TrkVtx}(JF)$	Number of 2-track vertex candidates (prior to decay chain
		fit)
	m(JF)	Invariant mass of tracks from displaced vertices assuming
let Fitter		pion masses
Jet I htter	$S_{xyz}(JF)$	Significance of the average distance between the primary
		and displaced vertices
	$f_{\rm E}(\rm JF)$	Fraction of the charged jet energy in the secondary vertices
	N _{1-trk vertices} (JF)	Number of displaced vertices with one track
	$N_{\geq 2-trk vertices}(JF)$	Number of displaced vertices with more than one track
	N _{TrkAtVtx} (JF)	Number of tracks from displaced vertices with at least two
		tracks
	$\Delta R(\vec{p}_{jet}, \vec{p}_{vtx})$	$\Delta R$ between the jet axis and the vectorial sum of the mo-
		menta of all tracks attached to displaced vertices



#### ATLAS Systematics and Yields

Source	$\sigma/\sigma_{ m tot}$
Statistical	49%
Floating $Z$ + jets normalization	31%
$\mathbf{Systematic}$	87%
Flavor tagging	73%
Background modeling	47%
Lepton, jet and luminosity	28%
Signal modeling	28%
MC statistical	6%

Sample	Yield, 50 $GeV < m_{c\bar{c}} < 200 \ GeV$			
Sample	1 <i>c</i> -t	ag	2 c-tags	
	$75 \le p_{\rm T}^Z < 150  GeV$	$p_{\rm T}^Z \ge 150  GeV$	$75 \le p_{\rm T}^Z < 150  GeV$	$p_{\rm T}^Z \ge 150  GeV$
Z + jets	$69400\pm500$	$15650 \pm 180$	$5320\pm100$	$1280 \pm 40$
ZW	$750 \pm 130$	$290\pm50$	$53 \pm 13$	$20\pm5$
ZZ	$490 \pm 70$	$180\pm28$	$55 \pm 18$	$26\pm 8$
$t \bar{t}$	$2020\pm280$	$130 \pm 50$	$240 \pm 40$	$13\pm 6$
$ZH(bar{b})$	$32\pm2$	$19.5 \pm 1.5$	$4.1 \pm 0.4$	$2.7\pm0.2$
$ZH(c\bar{c})$ (SM)	$-143 \pm 170 \ (2.4)$	$-84 \pm 100 \ (1.4)$	$-30 \pm 40 \ (0.7)$	$-20 \pm 29 \ (0.5)$
Total	$72500 \pm 320$	$16180 \pm 140$	$5650\pm80$	$1320\pm40$
Data	72504	16181	5648	1320



#### CMS Triggers

OL	1L	2L
$p_T^{ m miss}$ > 170 GeV	$p_T(e) > 27  \mathrm{GeV}$	$p_T(e_1) > 23 \text{ GeV \& } p_T(e_2) > 12 \text{ GeV}$
$p_T^{\rm miss} >$ 110 GeV && ${ m H}_T^{ m miss} >$ 110 GeV	$p_T(\mu) >$ 24 GeV	$p_T(\mu_1) >$ 23 GeV && $p_T(\mu_2) >$ 12 GeV (resolved only)
		$p_T(\mu) >$ 24 GeV (merged only)



#### 10.1088/1748-0221/13/05/P05011

## AK4 Jet Tagging – Deep CSV

- Deep network which classifies jets as coming from *b*, *bb*, *c*, or *l*
- 66 Input features with jet kinematic, track, and secondary vertex information



4 hidden layers with 100 nodes



CMS,

#### CMS Resolved – BDT Variables

Variable	Description	0L	1L	2L
$m(\mathrm{H})$	H mass	$\checkmark$	$\checkmark$	$\checkmark$
<i>p</i> _Т (Н)	H transverse momentum	$\checkmark$	$\checkmark$	$\checkmark$
$p_{\mathrm{T}}(\mathrm{V})$	vector boson transverse momentum	$\checkmark$	$\checkmark$	$\checkmark$
m(V)	vector boson mass	—		$\checkmark$
$m_{ m T}({ m V})$	vector boson transverse mass	—	$\checkmark$	—
$p_{\mathrm{T}}^{\mathrm{miss}}$	missing transverse momentum	$\checkmark$	$\checkmark$	
$p_{\rm T}({\rm V})/p_{\rm T}({\rm H})$	ratio between vector boson and H transverse momenta	$\checkmark$	$\checkmark$	$\checkmark$
$CvsL_{max}$	<i>CvsL</i> value of the leading <i>CvsL</i> jet	$\checkmark$	$\checkmark$	$\checkmark$
$CvsB_{max}$	<i>CvsB</i> value of the leading <i>CvsL</i> jet	$\checkmark$	$\checkmark$	$\checkmark$
$CvsL_{min}$	<i>CvsL</i> value of the subleading <i>CvsL</i> jet	$\checkmark$	$\checkmark$	$\checkmark$
$CvsB_{min}$	<i>CvsB</i> value of the subleading <i>CvsL</i> jet	$\checkmark$	$\checkmark$	$\checkmark$
$p_{\mathrm{Tmax}}$	$p_{\rm T}$ of the leading <i>CvsL</i> jet	$\checkmark$	$\checkmark$	$\checkmark$
$p_{\mathrm{Tmin}}$	$p_{\rm T}$ of the subleading <i>CvsL</i> jet	$\checkmark$	$\checkmark$	$\checkmark$
$\Delta \phi(\mathrm{V,H})$	azimuthal angle between vector boson and H	$\checkmark$	$\checkmark$	$\checkmark$
$\Delta R(\mathbf{j}_1,\mathbf{j}_2)$	$\Delta R$ between leading and subleading <i>CvsL</i> jets	—	$\checkmark$	$\checkmark$
$\Delta \phi(\mathbf{j}_1, \mathbf{j}_2)$	azimuthal angle between leading and subleading CvsL jets	$\checkmark$	$\checkmark$	—
$\Delta \eta(\dot{j_1}, \dot{j_2})$	difference in pseudorapidity between leading and subleading <i>CvsL</i> jets	$\checkmark$	$\checkmark$	$\checkmark$
$\Delta \phi(\ell_1,\ell_2)$	azimuthal angle between leading and subleading $p_{\rm T}$ leptons	—	—	$\checkmark$
$\Delta\eta(\ell_1,\ell_2)$	difference in pseudorapidity between leading and subleading $p_{\mathrm{T}}$ leptons			$\checkmark$
$\Delta \phi(\ell_1, \mathbf{j}_1)$	azimuthal angle between leading $p_{\rm T}$ lepton and leading <i>CvsL</i> jet		$\checkmark$	
$\Delta \phi(\ell_2, \mathbf{j}_1)$	azimuthal angle between subleading $p_{\rm T}$ lepton and leading <i>CvsL</i> jet			$\checkmark$
$\Delta \phi(\ell_2, \mathbf{j}_2)$	azimuthal angle between subleading $p_{\rm T}$ lepton and subleading <i>CvsL</i> jet			$\checkmark$
$\Delta \phi(\ell_1, p_{\mathrm{T}}^{\mathrm{miss}})$	azimuthal angle between leading $p_{\rm T}$ lepton and missing transverse momentum	—	$\checkmark$	
$N_{small-R}^{aj}$	number of small- <i>R</i> jets minus the number of FSR jets	$\checkmark$	$\checkmark$	$\checkmark$
$N_5^{soft}$	multiplicity of soft track-based jets with $p_{\rm T} > 5 {\rm GeV}$	$\checkmark$	$\checkmark$	$\checkmark$



#### AK15 Jet Tagging – DeepAK15



#### **Particles**

- Up to 100 PF candidates
- Sorted in descending  $\boldsymbol{p}_{T}$  order
- Uses basic kinematic variables, PUPPI weights, and track properties (quality, covariance, displacement, etc.)

#### Secondary Vertices

- Up to 5 SVs (inside jet cone)
- Sorted in descending S_{IP2D} order
- Uses SV kinematics and properties (quality, displacement, etc)



## CMS Boosted – BDT Variables

Variable	Description	0L	1L	2L
$p_{\rm T}({\rm V})$	vector boson transverse momentum	$\checkmark$	$\checkmark$	$\checkmark$
<i>р</i> _Т (Н)	H transverse momentum	$\checkmark$	$\checkmark$	$\checkmark$
$ \eta(\mathrm{H}) $	absolute value of the H pseudorapidity	$\checkmark$		
$\Delta \phi(\mathrm{V,H})$	azimuthal angle between vector boson and H	$\checkmark$	$\checkmark$	$\checkmark$
$p_{\mathrm{T}}^{\mathrm{miss}}$	missing transverse momentum		$\checkmark$	
$\Delta \eta(\mathrm{H},\ell)$	difference in pseudorapidity between H and the lepton		$\checkmark$	
$\Delta \eta(\mathrm{H,V})$	difference in pseudorapidity between H and vector boson			$\checkmark$
$\Delta \eta(\mathrm{H,j})$	min. difference in pseudorapidity between H and small- <i>R</i> jets	$\checkmark$	$\checkmark$	$\checkmark$
$\Delta \eta(\ell, \mathbf{j})$	min. difference in pseudorapidity between the lepton and small- <i>R</i> jets		$\checkmark$	
$\Delta \eta(V, j)$	min. difference in pseudorapidity between vector boson and small- <i>R</i> jets			$\checkmark$
$\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, {\rm j})$	azimuthal angle between $\vec{p}_{T}^{\text{miss}}$ and closest small- <i>R</i> jet	$\checkmark$		
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	azimuthal angle between $\vec{p}_{T}^{\text{miss}}$ and lepton		$\checkmark$	
m _T	transverse mass of lepton $\vec{p}_{\rm T}$ + $\vec{p}_{\rm T}^{\rm miss}$		$\checkmark$	
$N^{aj}_{small-R}$	number of additional small- <i>R</i> jets	$\checkmark$	$\checkmark$	$\checkmark$



#### CMS – Uncertainties

Uncertainty source	$\Delta \mu \mid \mu = 37$			
Statistical	+17.3	-17.1		
Background normalisations	+10.1	-10.2		
Experimental	+7.6	-8.2		
Charm tagging efficiencies	+5.6	-4.8		
Simulation modeling	+4.2	-5.1		
Jet energy scale and resolution	+2.4	-2.8		
Lepton identification efficiencies	+0.4	-1.8		
Luminosity	+1.6	-1.7		
Statistics of the simulated samples	+0.5	-1.9		
Theory	+6.5	-4.6		
Signal	+5.0	-2.5		
Backgrounds	+4.3	-3.9		
Total	+20.0	-19.5		



### CMS Upper Limits (w/ overlap)

	Resolved-jet (inclusive)			Merged-jet (inclusive)				
	0L	1L	2L	All channels	0L	1L	2L	All channels
Expected UL Observed UL	$84^{+35}_{-24}_{-24}$	$79^{+34}_{-23}$ 120	$59^{+25}_{-17}$ 116	$38^{+16}_{-11}$ 75	$81^{+39}_{-24}_{74}$	$88^{+43}_{-27}$ 120	$90^{+48}_{-29}$ 76	$49^{+24}_{-15}\\71$



#### HL-LHC Prospects



Fig. 120: Projections for measuring charm Yukawa modifications from an inclusive  $H \rightarrow c\bar{c}$  search at  $\sqrt{s} = 14$  TeV using two different *c*-taggers (left and right panel) [616]. In red the 95% CL region employing an integrated luminosity of 2 × 300 fb⁻¹ and in blue the region employing 2 × 3000 fb⁻¹.





Higgs Physics at the HL-LHC and HE-LHC, ch7.3.1