Searches for new resonances decaying to HH at CMS

Higgs2020, 26-30 Oct 2020

Lata Panwar,

Indian Institute of Science, Bangalore, India

On behalf of the CMS Collaboration

THE HIGGS BOSON

Lata Panwar, Indian Institute of Science, India

THE HIGGS BOSON

Lata Panwar, Indian Institute of Science, India

THE HIGGS BOSON

Di-Higgs Production: a step towards new physics

Higgs Physics \Rightarrow staircase for new physics

Di-Higgs production is of special interest

- non-resonant production: probe for Higgs self coupling, EFT searches (Soumya's talk)
- resonant production: Many BSM models predict resonances with higher cross-section, it is easier to

observe with direct detection searches

Di-Higgs Production: a step towards new physics

Talk focuses on Resonant di-Higgs searches

- Warped extra dimension (Spin-0 Radion and Spin-2 Graviton)
 - Explains SM hierarchy problem
- 2HDM (2 Higgs-Doublet Model) and MSSM (Minimal SuperSymmetric model)
 - Provide candidate for dark matter searches

Mass range: 260 GeV to 3 TeV

Di-Higgs production is of special interest

- non-resonant production: probe for Higgs self coupling, EFT searches (Soumya's talk)
- **resonant production:** Many BSM models predict resonances with higher cross-section, it is easier to

observe with direct detection searches

Di-Higgs decay modes

- Explore according to branching fraction (BR) and purity of the channel
 - o bbbb/bbWW⇒ large BR, high QCD/ ttbar contamination
 - bbττ ⇒ relatively lower BR, tau-tagging increases S/√B
 - bbγγ/bbZZ ⇒ small BR, good selection
 efficiency

From next slide: Overview of all resonant HH searches at CMS with 2016 dataset

Analysis strategy depends on the probed mass range.

Resolved m_x = [260, 1200] GeV

 \rightarrow 4 isolated b-tagged AK4 jets \rightarrow Study in low and medium mass region

Semi-resolved m_x= [750, 2000] GeV

→ one bb pair treated as collimated \Rightarrow 1 AK8 jet and 2 AK4 jets **Fully-merged** m_x= [750, 3000] GeV

 \rightarrow bb pairs are collimated \Rightarrow 2 AK8 jets

AK4(8) jet = jet clustered with anti- k_t algorithm with D = 0.4 (0.8)

Analysis strategy depends on the probed mass range.

Resolved m_x = [260, 1200] GeV

 \rightarrow 4 isolated b-tagged AK4 jets \rightarrow Study in low and medium mass region

Semi-resolved m_x= [750, 2000] GeV

 \rightarrow one bb pair treated as collimated \Rightarrow 1 AK8 jet and 2 AK4 jets **Fully-merged** m_x= [750, 3000] GeV

 \rightarrow bb pairs are collimated \Rightarrow 2 AK8 jets

Results are combined from both

Analysis strategy depends on the probed mass range.

Resolved m_x = [260, 1200] GeV

 \rightarrow 4 isolated b-tagged AK4 jets \rightarrow Study in low and medium mass region

Semi-resolved m_x= [750, 2000] GeV

 \rightarrow one bb pair treated as collimated \Rightarrow 1 AK8 jet and 2 AK4 jets

 \rightarrow bb pairs are collimated \Rightarrow 2 AK8 jets

 $m_x \rightarrow$

Results are combined from both

- Bump-hunt searches on m_x observable
- Multijets background is modeled using data for m_x side-bands

$X \rightarrow HH \rightarrow bbbb$ (resolved)

Lata Panwar, Indian Institute of Science, India

<u>JHEP08(2018)152</u>

$X \rightarrow HH \rightarrow bbbb$ (semi-resolved, fully-merged)

Radion 35.9 fb⁻¹ (13 TeV) Adding semi-resolved results improves sensitivity ► būbū) [fb] 10 95% CL upper limits CMS Observed 55% Spin-0 w.r.t. Fully-merged 10⁵ Median expected 68% expected 10^{4} For high masses, use only fully-merged analysis 95% expected Ξ 10^{3} Radion ($\Lambda_{\rm P}$ = 3000 GeV) Semi-resolved Semi-resolved+ Fully-merged **Fully-merged** 10^{2} fully-merged only X 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) bin Ξ 10 Events / bin -+- Data TT category 60 CMS CMS Estimated background Events / 10^{3 L} R -+ Data Background stat. uncertainty Estimated background Background stat. uncertainty Bulk graviton 800 GeV d(bb $\sigma B = 50 \text{ fb}$ Bulk graviton 1000 GeV 10 1000 1500 2000 2500 Non-resonant benchmark 2 $\sigma(pp \rightarrow X \rightarrow HH \rightarrow b\overline{b}b\overline{b}) = 10 \text{ fb}$ $\sigma B = 500 \text{ fb}$ 10 m_v [GeV] $0 \leq |\Delta \eta| < 1$ 20 Model independent UL on HH 10 10-1 production cross-section Data - Bkg. Data unc. Bkg. Data data 1000 1500 2000 1000 1500 2000 2500 3000 **NOTE:** Results for Spin-2 in the backup m_{Jji.red} [GeV] m_{jj,red} [GeV]

Lata Panwar, Indian Institute of Science, India

3000

<u>Phys Lett B 788 (2019) 7</u>

$X \rightarrow HH \rightarrow bb\gamma\gamma$

- 2 photons and 2 b-tagged AK4 jets
- MVA based Categorization in low and medium mass regions
- **2D-signal extraction method** \Rightarrow fit on m_{jj} and m_{yy} in a \tilde{M}_{x} window
- Background modeling \Rightarrow data-driven method

NOTE: $\tilde{M}_{\chi} = m_{HH}^{-} (m_{jj}^{+} + m_{\gamma}^{-}) + 250$ Results for Spin-2 in the backup

Lata Panwar, Indian Institute of Science, India

Phys. Lett. B 778 (2018) 101

$X {\rightarrow} HH {\rightarrow} bb\tau\tau$

- Low (resolved bb) and high (merged bb) mass analyses
- 3 channels: $(\tau_h, \tau_{e/\mu}/\tau_h)$ along with 2 b-tagged AK4 jets (high mass: 1 b-tagged AK8 jet)
- Main backgrounds: ttbar (MC), multijets (data)
- Limit extraction using fit on m_x observable

Lata Panwar, Indian Institute of Science, India

JHEP01(2018)054

X→HH→bbllvv

- Events from W(Iv)W(Iv) and Z(II) Z(vv) final state along with bb final states
 - two isolated and opposite sign leptons along with 2 b-tagged AK4 jets

bbWW

- 3 channels: µµ, ee, µe/eµ
- Parametric DNN to scan different m_x values.
- DY from data-driven method
- final discriminant: DNN output in different mass bins

<u>JHEP01(2018)054</u>

X→HH→bbllvv

- Events from W(Iv)W(Iv) and Z(II) Z(vv) final state along with bb final states
 - two isolated and opposite sign leptons along with 2 b-tagged AK4 jets

bbWW

- 3 channels: μμ, ee, μe/eμ
- Parametric DNN to scan different m_x values.
- DY from data-driven method
- final discriminant: DNN output in different mass bins

bbZZ

- 2 channels: μμ, ee
- Main background : DY and ttbar
- Low and medium mass region BDT discriminant to increase S/√B

NOTE: bbZZ analysis is also used in combination with $X \rightarrow HH \rightarrow bbZZ \rightarrow bbllqq$ analysis (upcoming slide)

Additional constraints are used in the analyses to have statistical independence for combined results

<u>JHEP01(2018)054</u>

X→HH→bbllvv

Results are combination of both bbWW and bbZZ analyses keeping the orthogonality

reference

$X \rightarrow HH$ Combination results

- Results are from combination of bbbb, $bbll\nu\nu$, $bb\tau\tau$, $bb\gamma\gamma$ final states
- No deviation is observed from standard model background expectation
- Next 2 slides:other resonant HH search at CMS⇒ not part of combination

$\underbrace{\text{IHEP10(2019)125}}_{\text{IHEP10(2019)125}} X \longrightarrow HH \longrightarrow bbW*W \longrightarrow (bblvqq')$

- bb pair: subject b-tagging to tag as H-jet (AK8 jet)
 ttbar main and gg': jet substructure to tag as W-jet (AK8 jet)
 - one isolated lepton near a W-jet

ttbar main background

<u>Phys. Rev. D 102, 032003</u> X \rightarrow HH \rightarrow bbZZ \rightarrow (bbllqq)

- same flavour and opposite sign isolated leptons.
- b-tagging helps to tag b-jet pair; jet pair is selected to have mass (IIjj)~m_H
- BDT discriminant to suppress background contribution
- Limit extraction: fit on BDT distribution (bbllqq) & hh pseudo transverse mass (bbllvv)

Lata Panwar, Indian Institute of Science, India

Summary and Conclusion

- Resonant di-Higgs production is important for new physics searches
- At CMS, we study these signatures in various final states based upon its branching fraction and purity
 - Machine learning tools and object identification algorithms are used to enhance the analysis sensitivity
 - Results are consistent with the SM background expectations.
 - Provided stringent bounds set on large part of BSM parameters space using resonant HH searches with 2016 data
- We look forward to have more results using full Runll data. Stay tuned!

Thanks for your attention!

Resolved

Semi-resolved + fully merged

$X \rightarrow HH \rightarrow bb\tau\tau$

 m_x with kinematic fit, used for limit extraction, resolved and semi resolved

$X \rightarrow HH \rightarrow bbll \nu \nu$

- Events can come from W(lv)W(lv) and Z(ll) Z(vv) final state along with bb final states
- Required to have two isolated and opposite sign leptons along with 2 b-tagged jets

bbWW

- 3 channels: μμ, ee, μe/eμ
- Constraint not to select m₁₁ from Z-decay ⇒ m₁₁ < m₂ - 15 GeV
- Parametric DNN is used to scan over different m_x values.
- DY from data-driven method, other background contribution from MC
- DNN output is used as final discriminant in different mass bins

bbZZ

- 2 channels: μμ, ee
- Completely orthogonal to bbWW analysis by keeping constraint of m₁₁ > 76 GeV
- MET selection thus $m_{ij} + MET + m_{ij} \sim m_X$
- Main background : DY and ttbar
- Cut on BDT discriminant to increase S/VB
 - BDT training is performed in two mass regions: [250, 450] and [500, 900] GeV

$X \rightarrow HH \rightarrow bbll \nu \nu$

$X \rightarrow HH \rightarrow bbWW^* \rightarrow bblvqq'$

component of the combined four-vector (bbll)

$X \rightarrow HH \rightarrow bbZZ^* \rightarrow bbllqq$

