WBF/GF HH resonances from a phenomenological perspective

Rahool Kumar Barman Indian Association for the Cultivation of Science

based on: JHEP 1909 (2019) 068 (with A. Adhikary (IISc Bangalore), S.Banerjee (CERN) and B. Bhattacherjee (IISc))

and

Phys. Rev. D 102, 055014 (with C. Englert (Univ. of Glasgow), D. Goncalves (Oklahoma State Univ.), M. Spannowsky (IPPP Durham))

Higgs 2020

October 27, 2020

- 1 Introduction
- $\ensuremath{\textcircled{O}}$ Resonant di-Higgs searches in gluon fusion at the HL-LHC and its implications on pMSSM
- 3 Di-Higgs resonant searches in weak boson fusion

1 Introduction

- 0 Resonant di-Higgs searches in gluon fusion at the HL-LHC and its implications on pMSSM
- 3 Di-Higgs resonant searches in weak boson fusion

- The ATLAS and CMS collaborations have unambiguously confirmed the existence of a scalar boson at 125 GeV.
- Numerous studies performed to measure the coupling of the Higgs boson with the SM particles.
- Significant deviations from the SM expectation have remained mostly elusive.
- Our understanding of the fundamental nature of the electroweak symmetry breaking (EWSB) is also lacking.
- Measurement of the elusive Higgs self-coupling (λ) is essential to the understanding of the EWSB picture.
- In the SM, double Higgs and triple Higgs production are the only direct probes for λ .
- However, the experimental investigations of multi-Higgs states suffer from low statistics.

Gluon-fusion (GF) mode in SM

- Contributes to $\gtrsim 90\%$ of the total NR *hh* cross-section at the LHC.
- Destructive interference between the triangle and the box diagram leads to a small cross-section, \sim 33 fb at $\sqrt{s} = 13$ TeV.

VBF mode in SM

- Very small cross-section at 13 TeV LHC: $\sim 1.73~{\rm fb.}$
- Sensitive to both λ as well as $c_{2\nu}$.

The small cross-section makes it extremely challenging to probe di-Higgs production at the current LHC.

However, phenomenologically rich final states can emerge: hh \rightarrow 4b (33 %), 2b2W (25 %), 2b2 τ (7 %), 2b2 γ (10⁻³)

Limits from non-resonant *hh* searches

- ATLAS: 13.3 ${\rm fb}^{-1}$: 4b: \sim 29 times
- ATLAS: 36.1 fb⁻¹: $2b2\tau$: ~ 13 times

- CMS: 35.9 fb⁻¹: 2b2 γ : ~ 30 times
- CMS: 35.9 fb⁻¹: $2b2\gamma$: ~ 19 times
- An enhancement in the *hh* cross-section could make the channel noticeable.
- Various new physics scenarios can lead to such an enhancement.

Non-resonant enhancement:

- Deviations from $\lambda_{SM} \rightarrow$ can modify the GF as well as the WBF *hh* production rates.
- Deviations in $c_{2\nu} \rightarrow can$ significantly increase the WBF *hh* cross-section. ¹

Resonant enhancement:

- BSM theories consisting of new particles which can decay to $hh \rightarrow$ enhance the detectability of both GF and WBF hh modes.
- Heavy Higgs states in well-motivated BSM scenarios: MSSM, NMSSM, singlet-extensions, etc.

¹Eur.Phys.J. C 77 481 (2017)

Status of (non-) resonant di-Higgs searches

 $\sqrt{s}=13~{\rm TeV}$, $\mathcal{L}\sim 36~{\rm fb}^{-1}$

Channel	CMS (NR)	CMS (R)	ATLAS (NR)	ATLAS (R)
	(×SM)	[fb, (GeV)]	$(\times SM)$	[fb, (GeV)]
bbbb	75	1500 - 45	13	2000 - 2
		(260 - 1200)		(260 - 3000)
$b\bar{b}\gamma\gamma$	24	240 - 290	19.2	1100 - 120
		(250 - 900)		(260 - 1000)
$b\bar{b}\tau^+\tau^-$	30	3110 - 70	12.7	1780 - 100
		(250 - 900)		(260 - 1000)
$\gamma\gamma WW^*$			200	40000 - 6100
$(\gamma \gamma \ell \nu j j)$				(260 - 500)
$b\overline{b}\ell u \ell u$	79	20500 - 800	300	6000 - 170
		(300 - 900)		(500 - 3000)
WW*WW*			160	9300 - 2800
				(260 – 500)
		1		

Mass range, Upper limit, NR: non-resonant, R: resonant.

Introduction

- $\ensuremath{\textcircled{O}}$ Resonant di-Higgs searches in gluon fusion at the HL-LHC and its implications on pMSSM
- 3 Di-Higgs resonant searches in weak boson fusion

Resonant *hh* production in GF mode at the HL-LHC

- The case of $H \rightarrow hh \rightarrow 2b2\gamma$ is discussed, where H is produced through the GF mode.
- The high reconstruction and identification precision of the photons at the LHC compensates for the small $h \rightarrow \gamma \gamma$ branching rate.

Backgrounds

- hh + X: SM di-Higgs production.
- h + X: Zh, $hb\bar{b}$, $t\bar{t}h$.
- Null Higgs: bbγγ, tt + ttγ (leptons may fake as γ), ccγγ + jjγγ (light jets fake as b-jets), bbjγ + ccjγ (Fake 1), bbjj (Fake 2).
- Single Higgs production: $hjj + hc\bar{c}$.

Signal generation: Pythia-6, Background generation: MG5_aMC@NLO + Pythia-6, Detector simulation: Delphes-3.4.1

Cuts

$$\begin{array}{c} 122 \ {\rm GeV} < m_{\gamma\gamma} < 128 \ {\rm GeV} \\ N_b = 2, \ N_{\gamma} = 2, \ N_\ell = 0 \\ p_{T,b} > 40 \ (30) \ {\rm GeV}, \ p_{T,\gamma} > 30 \ (30) \ {\rm GeV} \\ 0.4 < \Delta R_{\gamma\gamma} < (3.0/2.0/1.5), \ 0.4 < \Delta R_{bb} < (3.0/2.0/1.5), \\ (m_H = 275{\text{-}}350 \ {\rm GeV}/400{\text{-}}600 \ {\rm GeV}/0.8{\text{-}}1 \ {\rm TeV}) \\ \Delta R_{\gamma b} > 0.4, \ 90 \ {\rm GeV} < m_{bb} < 130 \ {\rm GeV} \end{array}$$

Applied cuts

Signal efficiency

The cuts on $m_{bb\gamma\gamma}$ and $p_{T,\gamma\gamma}$ are also optimized.

Optimized cuts along with the signal efficiency and the background yields.

Heavy Higgs mass,	Optimised cuts		After all cuts		
m_H (GeV)	$m_{b\bar{b}\gamma\gamma}$ (GeV)	$p_{T,\gamma\gamma} > (\text{GeV})$	Signal Efficiency (ϵ)	Background yield at 3000 ${ m fb}^{-1}$	
275	[235 , 275]	50	0.012	30.01	
350	[300 , 355]	100	0.024	23.33	
500	[445 , 510]	100	0.051	10.87	
600	[460 , 615]	100	0.076	18.11	
800	[560 , 830]	100	0.091	9.54	
1000	[780 , 1030]	100	0.090	2.31	

Projected upper limits

- Projected UL on $\sigma(pp \rightarrow H \rightarrow hh)$ as a function of m_H for the $b\bar{b}\gamma\gamma$ channel at the HL-LHC.
- The results from our multivariate analysis are also comparable to the cut-based analysis.

- $b\bar{b}\gamma\gamma$ is strongest upto $m_H \sim 600 \text{ GeV}.$
- Above 600 GeV, 4*b* is more constraining.
- The HL-LHC projections are roughly an order of magnitude improved than the present upper limits.
- Roughly an order of magnitude stronger than the current limits.

WBF/GF HH resonances

Implications on pMSSM

The parameter space:

$$\begin{split} 1 < &\tan\beta < 60, \ 200 \ \text{GeV} < m_A < 1 \ \text{TeV}, \ 1 \ \text{TeV} < M_3 < 10 \ \text{TeV} \\ 1 \ \text{TeV} < M_{\tilde{Q}_3, \tilde{u}_3, \tilde{d}_3} < 20 \ \text{TeV}, \ -10 \ \text{TeV} < A_{t,b} < 10 \ \text{TeV} \\ 1 \ \text{TeV} < M_{\tilde{Q}_1, \tilde{u}_1, \tilde{d}_1} < 20 \ \text{TeV}, \ M_{\tilde{Q}_2} = M_{\tilde{Q}_1}, M_{\tilde{u}_2} = M_{\tilde{u}_1}, M_{\tilde{d}_2} = M_{\tilde{d}_1} \\ A_{e,\mu,\tau,u,d,c,s} = 0, \ M_{\tilde{e}_{1_L}, \tilde{e}_{1_R}, \tilde{e}_{2_L}, \tilde{e}_{3_R}, \tilde{e}_{3_R}} = 3 \ \text{TeV}, \ 600 \ \text{GeV} < M_{1,2}, \mu < 5 \ \text{TeV} \\ \end{split}$$
(1)

- The GF channel is the dominant Higgs production mode at low values of $\tan \beta$.
- The $H \rightarrow hh$ decay mode also gains dominance in the low and intermediate tan β regime.
- The current search limits on $H \rightarrow hh$ do not impose any constraints on the parameter space.
- Constraints from $\sigma_{b\bar{b}H/A} \times Br(H/A \rightarrow \tau\tau)$ exclude the low m_A and high tan β regions.)
- We translate the HL-LHC projections onto the pMSSM parameter space.

Implications on pMSSM

- Grey points \rightarrow excluded by the upper limits on $\sigma_{b\bar{b}H/A} \times Br(H/A \rightarrow \tau\tau)$ derived by ATLAS and CMS ($\mathcal{L} \sim 36 \text{ fb}^{-1}$).
- Red points: Within the projected reach of the $gg \rightarrow H \rightarrow hh \rightarrow bb\gamma\gamma$ search channel at the HL-LHC.
- Green points: Within the projected reach of $gg \rightarrow H \rightarrow t\bar{t}$.
- Blue points: Would remain allowed after the HL-LHC run.

Left panel: 2σ , Right panel: 5σ

Introduction

0 Resonant di-Higgs searches in gluon fusion at the HL-LHC and its implications on <code>pMSSM</code>

3 Di-Higgs resonant searches in weak boson fusion

Resonant hh production via WBF mode at the HL-LHC

- WBF production becomes more pertinent in scenarios with singlet-like Higgs states at $\sim O$ (TeV) where the GF and WBF productions become comparable.
- In such cases, it is expected that both the WBF and GF signals would play an important role in the discovery of new physics.

A typical example \rightarrow NMSSM with a dominantly singlet-like heavy Higgs. [Phys. Rev. D **99**, 095035]

• Searches in the $H \rightarrow t\bar{t}$ mode might impart a smaller sensitivity due to the accidental destructive interference with the QCD continuum $t\bar{t}$ production \rightarrow in such a case, $H \rightarrow hh$ could be the only phenomenologically robust search mode.

The model

The SM Higgs doublet (Φ_{SM}) is extended with an additional singlet (Φ_s) under the SM gauge group.

$$V = \mu_s^2 |\Phi_s|^2 + \lambda_s |\Phi_s|^4 + \mu_h^2 |\Phi_h|^2 + \lambda_h |\Phi_h|^4 + \eta |\Phi_s|^2 |\Phi_h|^2$$

With Φ_i defined as $(v_i + H_i)/\sqrt{2}$, the Higgs mass eigenstates can be expressed as:

$$h = \cos \theta H_{SM} + \sin \theta H_S$$
$$H = -\sin \theta H_{SM} + \cos \theta H_S.$$

h is is identified with the SM 125 GeV Higgs boson.

- Compared to SM, the signal strength of h gets modified by $\cos^2 \theta$.
- For $m_H \leq 2m_h$, $\sigma(pp \rightarrow H) = \sin^2 \theta \ \sigma(pp \rightarrow h)_{m_h=m_H}$.
- We consider the case where $m_H > 2m_h$.

(2)

The WBF channel

We focus on WBF Higgs pair production via: $pp \rightarrow Hjj \rightarrow (hh \rightarrow 4b)jj$.

- This final state benefits from the improved signal yield due to the large $h\to b\bar{b}$ branching ratio.
- This final state also suffers from a large multijet background.
- However, the characteristic VBF topology helps in efficiently discriminating the signal from the background.
- The VBF topology features two forward jets well separated by rapidity.
- These forward jets also feature a large invariant mass.
- Reduced hadronic activity in the central region.
- The lighter Higgs bosons can acquires a considerable boost.

The WBF channel

- VBF signal generation: $pp \rightarrow Hjj \rightarrow (H \rightarrow hh \rightarrow 4b) jj$, with VBFNLO.
- The dominant backgrounds are: 4b + 2j, 2b + 4j and $t\bar{t}b\bar{b}$.
- Backgrounds are generated at LO with MadGraph5_aMC@NLO; Showering and hadronization simulated with Pythia-8.
- Jets defined with anti- k_t algorithm: R = 0.4, $p_{T_j} > 30$ GeV, $|\eta_j| < 4.5$. using FastJet.
- *b*-tagging efficiency is assumed to be 70%.

The entire analysis can be sub-divided into three categories:

- **1** Basic selection.
- Identification of WBF topology.
- **3** Higgs boson reconstruction.

The WBF channel

- VBF signal generation: $pp \rightarrow Hjj \rightarrow (H \rightarrow hh \rightarrow 4b) jj$, with VBFNLO.
- The dominant backgrounds are: 4b + 2j, 2b + 4j and $t\bar{t}b\bar{b}$.
- Backgrounds are generated at LO with MadGraph5_aMC@NLO; Showering and hadronization simulated with Pythia-8.
- Jets defined with anti- k_t algorithm: R = 0.4, $p_{T_j} > 30$ GeV, $|\eta_j| < 4.5$. using FastJet.
- *b*-tagging efficiency is assumed to be 70%.

The entire analysis can be sub-divided into three categories:

1 Basic selection.

- $N_j \ge 6$, $N_{b-jets} = 4$.
- Veto leptons with $p_t > 12 \text{ GeV}$ and $|\eta| < 2.5$.
- Invariant mass of the 4 *b*-jets, $m_{4b} > 350$ GeV.

The WBF topology

The WBF topology is identified through:

- Two light-flavored highest rapidity *jets* falling in different hemispheres: $\eta_{j_1}\eta_{j_2} < 0$.
- Large rapidity separation: $|\eta_{j_1} \eta_{j_2}| > 4.2$.

The WBF signal is also characterized by a large $m_{j_1j_2}$:

• We also demand: $m_{j_1j_2} > 1$ TeV.

The WBF topology

- The WBF signal displays suppressed *jet* emissions in the central region.
- However, the bulk of the QCD background is centred around the central region.
- Furthermore, the more massive the resonance, the further forward the tagging *jets*.

Therefore, we also impose:

$$\left|\eta_{j3} - \frac{\eta_{j1} + \eta_{j2}}{2}\right| > 2.5$$

Higgs reconstruction

Higgs boson reconstruction

- The *b-jet* pairs with invariant mass closest to 125 GeV is identified with h_1 (the other pair with h_2).
- **2** The signal region is defined to be within the circular region:

$$\sqrt{\left(rac{m_{h1} - 125 \; {
m GeV}}{20 \; {
m GeV}}
ight)^2 + \left(rac{m_{h2} - 125 \; {
m GeV}}{20 \; {
m GeV}}
ight)^2} < 1$$
 (3)

- The stacked *m*_{4b} distribution is shown.
- The solid red line represents the individual WBF component.
- The dashed red line represents the VBF GF component.
- The reconstructed Higgs boson's four-momentum has been scaled with $m_h/m_{1(2)}$.

- Dominant contribution to the signal arises from the WBF component.
- The VBF GF signal also contributes non-negligibly.
- Larger $m_H \rightarrow$ relatively larger contribution from WBF.

Cross-section (in fb) at $\sqrt{s} = 13 \text{ TeV}$

	Basic selections	VBF topology	Double Higgs reconstruction
WBF $m_H = 500$ GeV	$2.6 imes 10^{-1}$	$1.3 imes 10^{-1}$	$5.0 imes 10^{-2}$
GF $m_H = 500$ GeV	$2.2 imes10^{-1}$	$7.1 imes10^{-2}$	$2.8 imes10^{-2}$
WBF $m_H = 1$ TeV	$9.4 imes10^{-2}$	$5.4 imes10^{-2}$	$3.2 imes 10^{-2}$
${\sf GF}\ m_H=1\ {\sf TeV}$	$2.2 imes10^{-2}$	$8.3 imes10^{-3}$	$4.7 imes10^{-3}$
4 <i>b</i>	250	47	1.2
2 <i>b</i> 2j	$4.9 imes10^{-1}$	$1.0 imes10^{-1}$	-
tītbb	90	3.7	$3.0 imes10^{-3}$

The 95% C.L. sensitivity to $\sin \theta$ as a function of m_H , for $\sqrt{s} = 13$ GeV LHC at $\mathcal{L} = 3000$ fb⁻¹.

- Red-dashed: WBF signal only
- Red-solid: WBF + GF signals.
- **Black**: GF signal only, derived from the CMS $pp \rightarrow H \rightarrow hh \rightarrow 4b$ study [JHEP08 (2018) 152] through scaling with the integrated luminosity.

- The VBF GF component contributes non-negligibly in the low mass regime, 500 GeV $\lesssim m_H \lesssim 900$ GeV.
- The WBF search displays stronger limits in the high $m_H \gtrsim 900 \text{ GeV}$ regime.

Implications on the singlet-extension scenario

The VBF and GF limits are interpreted on the singlet-extension model discussed earlier.

Blue points: projected reach from GF signal.

Orange color: projected reach of $pp \rightarrow hhjj$ signal.

- The VBF provides significant sensitivity at higher masses where the GF projection becomes insensitive.
- We also observe regions in $br(H \rightarrow hh)$ where the VBF provides new sensitivity that cannot be accesses by the GF projection.

WBF/GF HH resonances

Higgs 2020

- Given that the weak boson fusion production cross-section becomes comparable to the GF cross-section for SM-like production around 1 TeV, the WBF channel is a phenomenologically important channel even at small mixing angles.
- The weak boson fusion provides a unique opportunity to probe new physics scenarios through its distinct phenomenological features.
- In scenarios with isospin singlet-mixing, the $H \rightarrow hh$ modes might provide phenomenologically robust signals compared to the more obvious decays into top quarks or massive weak bosons.
- The VBF GF channel remains phenomenologically important and should be rightfully included along with the WBF channel in the signal component.

Thank you.