Online conference IGGS 2020 October 26-30

Measurement prospects for Higgs boson pair-production at the HL-LHC

Konstantinos Nikolopoulos University of Birmingham

On behalf of the ATLAS and CMS Collaborations

UNIVERSITY^{of} BIRMINGHAM

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement no 714893 (ExclusiveHiggs)

Higgs boson self-coupling

Electro-weak symmetry breaking foundation of SM

- Details have cosmological implications
- What is the source of symmetry breaking?
- Does the Higgs potential have the SM postulated shape?
- Is there a Bardeen–Cooper–Schrieffer theory for our Landau-Ginzburg model?

Higgs self-coupling probes shape of potential

Sensitive to new physics!

Trilinear and Quartic self-couplings in the SM

- Trilinear coupling probed through HH production
- Quartic coupling further suppressed

Indirect approaches to probe Higgs boson self-coupling

- Single Higgs boson production rate and differential distributions
- Sensitive to trilinear H coupling through loops
- See talk by <u>S. P. Jones</u>

HH production

Experimental state-of-the-art

Details and latest results in talks by <u>E. Brost</u> and <u>A. Bethani</u> K. Nikolopoulos / Higgs2020, 29 October 2020 / Higgs boson pair-production at the HL-LHC

Further improvements expected, including Run 3 ($\sim 350 \text{ fb}^{-1}$)

EXAMPLE Results with $\sim 35 \text{ fb}^{-1}$ corresponding to 1/4 of the available Run 2 dataset

Broad range of final states already explored

High Luminosity LHC

Extensive upgrades to accelerator complex to maximise physics reach

- 3000 fb⁻¹ at 14 TeV (ultimately 4000 fb⁻¹)
- ▶ Instantaneous luminosity: 5×10^{34} cm⁻²s⁻¹ (ultimately 7.5×10^{34} cm⁻²s⁻¹)
- Proton interactions per bunch crossing: $< \mu > \sim 140$ (ultimately $< \mu > \sim 200$)
- Broad physics program: SM, Higgs, top-quark, flavour, BSM searches
 - Study of Higgs boson self-coupling
 - Detailed measurements of Higgs boson properties
 - Searches for extended scalar sectors

Physics prospects updated for European Strategy for Particle Physics

▶ Assuming 3000 fb⁻¹

K. Nikolopoulos / Higgs2020, 29 October 2020 / Higgs boson pair-production at the HL-LHC

CERN-LPCC-2019-01

High Luminosity LHC

VBF H production at $<\mu>=200$

K. Nikolopoulos / Higgs2020, 29 October 2020 / Higgs boson pair-production at the HL-LHC

6

ATLAS and CMS HL-LHC Upgrades

BIRMINGHAM

Expected Detector Performance

- Detector performance: cornerstone for physics reach
- HH analyses span all physics objects
- Expected performance of upgraded detector
- Estimated with detailed full simulations
- \geq < μ > ~ 200 considered to obtain conservative estimates

HH prospects at HL-LHC

Final states explored:

▷ bbbb, bbττ, bbγγ, bbWW(→IvIv), bbZZ(→4I)

Channel	bbbb	bb au au	$bbWW(\ell\nu\ell\nu)$	$bb\gamma\gamma$	$bbZZ(\ell\ell\ell\ell)$
$\mathcal{B}\left[\% ight]$	33.9	7.3	1.7	0.26	0.015
Number of events	37000	8000	1830	290	17

Per experiment at 3000 fb⁻¹

Strategy 1: Extrapolation of existing results

- Account for \sqrt{s} and, partially, detector performance
- Full detail of published result
- ATLAS: bbbb, bbtt

Strategy 2: Parametric simulation

- Analysis design/optimisation
- Generator-level smearing/corrections; pile-up event overlay
- ▶ ATLAS bbyy; CMS DELPHES parametric simulation

Systematic uncertainties crucial but difficult to predict

General guidelines; harmonised between ATLAS and CMS

- Ignore MC statistical uncertainties
- Theory uncertainties reduced by 50%
- Detector-related uncertainties unchanged or revised from performance studies
- Uncertainties on methods unchanged
- K. Nikolopoulos / Higgs2020, 29 October 2020 / Higgs boson pair-production at the HL-LHC

HH→bbbb

Two analysis regimes

- "Resolved"
- ▶ "Boosted" ($m_{HH} \gtrsim 1 \text{ TeV}$) mostly sensitive to BSM

- Extrapolated "Resolved" 2016 data analysis
 - ▶ 4 jets pT>40 GeV and |η|< 2.5 (ε_b=70%)
 - ▷ σ_{HH}<13.0(20.7)xSM at 95% CL (27.5 fb⁻¹)
 - Cut-based
- Jet reco unchanged, ε_b+=8%
- Main systematic: data-driven QCD background
 - Used Run 2 uncertainties (conservative)

- ▶ 4 jets pT>45 GeV and |η|< 3.5</p>
- b-tagging: ε=70%;1% light-flavour mis-tag rate
- SM signal efficiency ~3.9%
- ▶ S/B ~ 1×10^{-4}

Final Discriminant

- ATLAS: mнн
- CMS: Boosted Decision Tree

K. Nikolopoulos / Higgs2020, 29 October 2020 / Higgs boson pair-production at the HL-LHC

HH→bbbb

BIRMINGHAM 11

HH→bbtt

HH→bbtt

HH→bbyy

3000 fb⁻¹ (14 TeV)

m" [GeV]

m_{ii} [GeV]

3000 fb⁻¹ (14 TeV)

Pseudo-data

Full backgr.

Nonresonant backg

Sig. + Full backgr

Pseudo-data

Full backgr.

Sig. + Full backgr

ATLAS and CMS parametric simulation Main backgrounds: yybb, yyjj, ttH

CMS bbyy object preselection

Photon selections

 $p_{\rm T}/m_{\gamma\gamma} > 1/3$ (leading γ), > 1/4 (subleading γ) $|\eta| < 1.44$ or $1.57 < |\eta| < 2.5$ $100 \,\mathrm{GeV} < m_{\gamma\gamma} < 180 \,\mathrm{GeV}$

Jet selections $p_{\rm T} > 25 \, {\rm GeV}$ $|\eta| < 2.5$ $\Delta R_{\gamma i} > 0.4$ $80 \,\mathrm{GeV} < m_{\mathrm{ii}} < 190 \,\mathrm{GeV}$ At least 2 b-tagged jet (loose WP) FTR-18-019

ATLAS MVA

BDT (21 variables)

CMS MVA

- BDT against ttH (12 variables)
- BDT against background (15 variables)

Final Discriminant

- ATLAS: mbbyy
- CMS: 2D-fit m_{yy} and m_{bb}
 - ▶ 6 categories (m_{HH} and purity)

CMS Phase-2 CMS Phase-2 3000 fb⁻¹ (14 TeV) 3000 fb⁻¹ (14 TeV) () 220 ge√ Simulation Preliminary Pseudo-data Simulation Preliminary Pseudo-data õ $pp \rightarrow HH \rightarrow \gamma \gamma b\overline{b}$ $pp \rightarrow HH \rightarrow \gamma \gamma b\overline{b}$ Nonresonant backgr Nonresonant backgr HP, M, < 350 GeV HP, M_{γ} < 350 GeV Full backgr. Full backgr. ອັ 160 ມ Sia. + Full backgr Sig. + Full backgr 100 m_{ii} [GeV] m_{vv} [GeV] (f) m_{ii} , low mass category (e) $m_{\gamma\gamma}$, low mass category FTR-18-019

m_{γγ} [GeV] HH→bbγγ

$HH \rightarrow bbWW(\rightarrow lvlv)$ and $HH \rightarrow bbZZ(\rightarrow 4l)$

Projections available only from CMS

■ HH→bbWW(→lvlv)

- ▷ Contributions: $H \rightarrow WW \rightarrow IvIv$ and $H \rightarrow ZZ \rightarrow IIvv$
- Neural Network discriminant (9 variables)
- ▷ σ_{HH}< 3.5 (3.3)xSM 95% CL ▷ Statistical Only in Parenthesis
- ▶ Significance 0.56 (0.59)σ
- ATLAS 139 fb⁻¹ σ_{HH}<40 SM (exp. 29⁺¹⁴₋₉xSM) at 95% CL [PLB 801 (2020) 135145]

■ HH→bbZZ(→4I)

- ▶ σ_{HH}< 6.6xSM 95% CL</p>
- Significance 0.37σ
- Effect of systematics negligible

ATLAS and CMS Combination

Significance	Statistical-only		Statistical + Systematic		
olgrinioarioc	ATLAS	CMS	ATLAS	CMS	
$HH \to b\overline{b}b\overline{b}$	1.4	1.2	0.61	0.95	
$HH \to b \overline{b} \tau \tau$	2.5	1.6	2.1	1.4	
$HH ightarrow b \overline{b} \gamma \gamma$	2.1	1.8	2.0	1.8	
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56	
$HH \to b\bar{b}ZZ(4l)$	- 0.37		-	0.37	
combined	3.5 2.8		3.0	2.6	
	Comb	ined	Combined		
	4.5	5		4.0	

CERN-LPCC-2018-04

HH observation

 \blacktriangleright Expected combined significance 4σ

Combination

Combination

PER AD ADDIA ALTA

Summary

LHC / HL-LHC Plan

- Many open questions on details of EWSB
 Higgs self-coupling within reach at HL-LHC
 - ▶ ATLAS+CMS combined give 4σ for HH observation
 - ▶ $0.52 \le \kappa_{\lambda} \le 1.5$ at 68% CL
- Many challenges ahead!
- Trigger thresholds
- Control of systematics
- Further room for improvement
- Focusing on most obvious channels
- Time to improve and invent new methods!
- Ground work (upgrades) happening now!

UNIVERSITYOF

BIRMINGHAM 19

Additional Slides

HH production

arXiv:1910.00012

BSM searches

$$\mathcal{L}_{h} = \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{1}{2} m_{h}^{2} h^{2} - \kappa_{\lambda} \lambda_{SM} v h^{3} - \frac{m_{t}}{v} (v + \kappa_{t} h + \frac{c_{2}}{v} h h) (\bar{t}_{L} t_{R} + h.c.) + \frac{1}{4} \frac{\alpha_{s}}{3\pi v} (c_{g} h - \frac{c_{2g}}{2v} h h) G^{\mu\nu} G_{\mu\nu}.$$

JHEP 04 (2016) 126

Benchmark	κ_λ	κ_t	c_2	c_g	c_{2g}
1	7.5	1.0	-1.0	0.0	0.0
2	1.0	1.0	0.5	-0.8	0.6
3	1.0	1.0	-1.5	0.0	-0.8
4	-3.5	1.5	-3.0	0.0	0.0
5	1.0	1.0	0.0	0.8	-1
6	2.4	1.0	0.0	0.2	-0.2
7	5.0	1.0	0.0	0.2	-0.2
8	15.0	1.0	0.0	-1	1
9	1.0	1.0	1.0	-0.6	0.6
10	10.0	1.5	-1.0	0.0	0.0
11	2.4	1.0	0.0	1	-1
12	15.0	1.0	1.0	0.0	0.0
SM	1.0	1.0	0.0	0.0	0.0

PTR AD AZDIA ALTA

Expected Detector Performance

- Detector performance: cornerstone for physics reach
- HH analyses span all physics objects

Expected performance of upgraded detector

Estimated with CPU-intensive detailed simulations

т-lepton reconstruction

ATLAS-PHYS-PUB-2019-005

HH→bbWW(→lvlv)

Final states currently considered only by CMS

■ HH→bbWW(→lvlv)

- Contributions: $H \rightarrow WW \rightarrow IvIv$ and $H \rightarrow ZZ \rightarrow IIvv$
- Neural Network discriminant (9 variables)
 - Statistical Only in Parenthesis
- Significance 0.56 $(0.59)\sigma$

σ_{HH}< 3.5 (3.3)xSM 95% CL

Effect of timing information

CMS-NOTE-2018-006

Systematic Uncertainties

CMS-NOTE-2018-006

Uncertainty	Working point/ component	Value
Electron ID	All WPs, $p_{\rm T} > 20 {\rm GeV}$	0.5%
	All WPs, $10 < p_{\rm T} < 20 { m GeV}$	2.5%
Photon ID		2%
Muon ID	All WPs	0.5%
Tau ID	All WPs	2.5%
Jet energy scale	Total	1–2.5%
	Absolute scale	0.1–0.2%
	Relative scale	0.1–0.5%
	PU	0–2%
	Jet flavor	0.75%
Jet energy resolution		3–5% as a function of η
b-tagging	b jets (all WPs)	1%
	c jets (all WPs)	2%
	Light jets, loose WP	5%
	Light jets, medium WP	10%
	Light jets, tight WP	15%
	Subjet b tagging	1%
	Double c tagging	
$p_{\rm T}^{\rm miss}$	Propagate jet energy	
· •	corrections uncertainties (must)	
	Propagate jet energy	
	resolution uncertainties (recommended)	
	Vary unclustered	
	energy by 10% (recommended)	
Integrated luminosity		1%

ATLAS bbtt

Eull signal masion	$\tau_{\rm lep} \tau_{\rm had} c$	$ au_{had} au_{had}$ channel	
Full signal region	(SLT)	(LTT)	
$t\bar{t}$ fake- $\tau_{had-vis}$	-	-	20400 ± 2200
tī	2218000 ± 13000	176000 ± 2300	57600 ± 2000
Single top	129200 ± 2800	8240 ± 230	4490 ± 150
Multijet fake- $\tau_{had-vis}$	-	-	33500 ± 2100
Fake- $\tau_{had-vis}$	867000 ± 13000	51100 ± 2300	-
$Z \rightarrow \tau \tau + (bb, bc, cc)$	51800 ± 2100	14600 ± 600	23800 ± 1100
Other	24300 ± 1000	1710 ± 160	2550 ± 350
SM Higgs boson	4280 ± 360	460 ± 40	900 ± 60
Total background	3295300 ± 1800	252050 ± 500	143200 ± 400
SM HH	107 ± 6	23.9 ± 1.3	81 ± 8
Last two hins	$\tau_{\text{lep}}\tau_{\text{had}}$ c	hannel	$\tau_{\rm had} \tau_{\rm had}$ channel
Last two bills	(SLT)	(LTT)	
$t\bar{t}$ fake- $\tau_{had-vis}$	-	-	146 ± 19
tī	1830 ± 40	1780 ± 30	370 ± 30
Single top	720 ± 20	420 ± 40	32.3 ± 2.8
Multijet fake- $\tau_{had-vis}$	-	-	100 ± 20
Fake- $\tau_{had-vis}$	640 ± 40	-	1210 ± 30
$Z \rightarrow \tau \tau + (bb, bc, cc)$	1290 ± 70	1150 ± 70	610 ± 60
Other	460 ± 20	180 ± 20	80 ± 10
SM Higgs boson	220 ± 10	64 ± 3	134 ± 8
Total background	5730 ± 90	4230 ± 90	1470 ± 90
SM HH	52 ± 3	16.2 ± 0.8	54 ± 5
Lasthin	$\tau_{\rm lep} \tau_{\rm had}$ channel		$ au_{\rm had} au_{\rm had}$ channel
Last bin	(SLT)	(LTT)	
$t\bar{t}$ fake- $\tau_{had-vis}$	-	-	12.9 ± 2.0
tī	235 ± 6	360 ± 30	0
Single top	283 ± 15	54 ± 3	0
Multijet fake- $\tau_{had-vis}$	-	-	33.7 ± 7.2
Fake- $\tau_{had-vis}$	300 ± 10	97 ± 9	-
$Z \rightarrow \tau \tau + (bb, bc, cc)$	340 ± 20	470 ± 40	95 ± 16
Other	105 ± 5	61 ± 7	12.2 ± 2.1
SM Higgs boson	78 ± 4	31 ± 2	55 ± 3
Total background	1343 ± 25	1069 ± 55	209 ± 17
SM HH	32.8 ± 1.6	9.8 ± 0.5	32 ± 3

ATL-PHYS-PUB-2018-053

ATLAS bbyy

	-			
Process	Events in	Events after	Events passing	Events passing BDT
	sample	pre-selection	BDT response	response &
				123 GeV < $m_{\gamma\gamma}$ < 127 GeV
$H(b\bar{b})H(\gamma\gamma), \kappa_{\lambda} = 1$	3.0×10^{2}	20	8.0	6.46
$gg \to H(\to \gamma\gamma)$	3.0×10^{5}	28	0.85	0.68
$t\bar{t}H(\rightarrow\gamma\gamma)$	4.2×10^{3}	124	1.9	1.51
$ZH(\rightarrow \gamma\gamma)$	6.7×10^{3}	26	1.33	0.93
$b\bar{b}H(\rightarrow\gamma\gamma)$	3.8×10^{3}	3.7	0.028	0.025
Single-Higgs-boson background	3.2×10^{5}	182	4.1	3.2
$b\bar{b}\gamma\gamma$	4.3×10^{5}	10100	92	1.9
$c\bar{c}\gamma\gamma$	3.4×10^{6}	630	2.7	0.06
jjγγ	4.8×10^{7}	690	4.6	0.12
$bar{b}j\gamma$	1.1×10^{9}	14000	130	1.16
$c\bar{c}j\gamma$	3.3×10^{9}	480	2.5	0.021
bĒjj	1.4×10^{12}	3600	26	0.16
$Z(\rightarrow b\bar{b})\gamma\gamma$	1.5×10^{4}	230	4.5	0.10
$t\bar{t}(\geq 1 \text{ lepton})$	1.6×10^{9}	3530	11.3	0.05
$t\bar{t}\gamma(\geq 1 \text{ lepton})$	1.5×10^{7}	5600	23	0.07
Continuum background	1.4×10^{12}	38900	297	3.7
Total background	1.4×10^{12}	39100	301	6.8

ATL-PHYS-PUB-2018-053

Table 11: Number of events passing the pre-selection criteria, the BDT response cut, and passing the additional requirement of 123 GeV $< m_{\gamma\gamma} < 127$ GeV. The number of background events was obtained by counting final-state combinations passing the selection criteria in samples that were generated using a single random seed for the smearing functions. All numbers are normalised to 3000 fb⁻¹. The totals appear inconsistent due to rounding.

