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Is the LHC a high- or a low- energy machine?

I High energy scattering: V << T , Feynman diagrams,
Madgraph, etc.

I Low energy respect to new physics (strongly interacting?
V ∼ T requires resummation)
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Expand partial wave amplitudes

TI (s, t, u) = 16ηπ
∞∑
J=0

(2J + 1)tIJ(s)PJ(cos θs)

tIJ(s) ' t0︸︷︷︸
O(s)

+ t1︸︷︷︸
O(s2)

+ . . .

(typical HEFT expansion)
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Perturbative vs exact (elastic) unitarity

Im tIJ(s) = σ(s)|tIJ(s)|2

I Exact in IAM
I Only order by order in EFT

Im t1(s) = σ(s)|t0(s)|2
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Why would anyone care?

I EFT reliable only near threshold



Prediction of resonances from HEFT

LHC bounds on HEFT coeffs =⇒ bounds on new physics scale



Much used in hadron physics to obtain resonances

(This is an IAM prediction from threshold data, not a fit)



Use its dispersive derivation: 2010.13709

I Causality =⇒ analiticity
I Large circumference

convergence G ∝ e−s

(1912.08747)
I Can apply Cauchy’s theorem

0 4m2
π

C

× ×

to the function t20 (s
′)/t(s ′)(s − s ′)s ′3.



Master formula is a dispersion relation for G (s) ≡ t20 (s)

t(s)

G (s) = G (0) + G ′(0)s +
1
2
G ′′(0)s2 + PC (G )+

+
s3

π

∫
RC

ds ′
ImG (s ′)

s ′3(s ′ − s)
+

+
s3

π

∫
LC

ds ′
ImG (s ′)

s ′3(s ′ − s)



Dispersion relation: approximations

Gives t ' t20/(t0 − t1) = tIAM .



Sources of uncertainty

I Neglected pole contributions of t−1:
subthreshold Adler zeroes and CDD zeroes of t.

I Inelasticities due to KK (hh in HEFT), 4π, etc.

I O(p4) truncation of subtraction constants.

I Left cut approximation Im G ' −Im t1 .



Adler zeroes of t near threshold

t0 + t1 = a+ bs + cs2

vanishes near s = −a/b



Adler zeroes of t near threshold

Tiny uncertainty in resonance region because at/below threshold
these poles are nearly cancelled.

Uncertainty Behavior Displacement
√
s = mρ improvable?

Adler zeroes of t (mπ/mρ)
4 10−3 − 10−4 Yes: mIAM

0712.2763
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CDD poles (zeroes of t in resonance region)

("New" physics)



CDD poles (zeroes of t in resonance region)

Can affect a resonance calculation dramatically

Need to

1. Check for CDD pole appearance: t0(sC ) + Ret1(sC ) = 0
2. If present, modify

tIAM =
t20

t0 − t1
→ t20

t0 − t1+
s

s−sc Re(t1)
.
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CDD poles (zeroes of t in resonance region)

Uncertainty Behavior Displacement mρ improvable?
Adler zeroes of t (mπ/mρ)

4 10−3 − 10−4 Yes: mIAM
CDD poles at M0 M2

R/M
2
0 0–O(1) Yes



Inelastic 2-body channels



Inelastic 2-body channels

I Hadrons: ππ → ππ couples to KK

Im
1
tππ
→ −σππ

(
1+

σKK̄

σππ

|tππ→KK̄ |2

|tππ→ππ|2
)

suppressed by phase-space σKK̄
σππ

and low inelasticity in tππ→KK̄

I In HEFT only inelasticity in ωω − hh (actually zero in SM)
I We can use the coupled channel IAM directly or to estimate

uncertainty in elastic IAM
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Inelastic 2-body channels

Uncertainty Behavior Displacement mρ improvable?
Adler zeroes of t (mπ/mρ)

4 10−3 − 10−4 Yes: mIAM
CDD poles at M0 M2

R/M
2
0 0–O(1) Yes

Inelastic 2-body (
√
s/(4πfπ))4 10−3 Yes



Inelastic 4-body channels

I Difference with SMEFT: here, in ChPT or HEFT, additional
particles *not* suppressed by the chiral counting.
But phase space helps.



Inelastic 4-body channels

√
s [TeV]
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Inelastic 4-body channels

In hadron physics,
(with elastic and 4-π inelastic amplitudes taken as similar )

Uncertainty Behavior Displacement mρ improvable?
Adler zeroes of t (mπ/mρ)

4 10−3 − 10−4 Yes: mIAM
CDD poles at M0 M2

R/M
2
0 0–O(1) Yes

Inelastic 2-body (
√
s/(4πfπ))4 10−3 Yes

Inelastic 4-body (
√
s/(4πfπ))4 10−4 No



O(p4) truncation

Estimate based on size of
NNLO counterterms
( =⇒ subtraction constants)
from Resonance Effective Field
Theory



O(p4) truncation

Uncertainty Behavior Displacement mρ improvable?
Adler zeroes of t (mπ/mρ)

4 10−3 − 10−4 Yes: mIAM
CDD poles at M0 M2

R/M
2
0 0–O(1) Yes

Inelastic 2-body (
√
s/(4πfπ))4 10−3 Yes

Inelastic 4-body (
√
s/(4πfπ))4 10−4 No

O(p4) truncation (
√
s/(4πfπ))4 10−2 Yes

G (s) =
t20
t
' t0 − t1 − t2 +

t21
t0



Approximate left cut

Need to check∫
LC

ds ′
ImG + Im t1

s ′3(s ′ − s)
.

i.e., failure of IAM’s

Im G = −Im t1

over the left cut



Approximate left cut

Split interval in 3:

I Low-|s| (ChPT/HEFT X) |s|
1
2 < 470MeV.

I Intermediate-|s|: Match to ChPT + natural-size counterterm.
Currently studying LC parameterizations from GKPY eqns.

I High -|s|: Sugawara-Kanazawa relates it to right cut: Regge
asymptotics there. Far from RC anyway.



Approximate left cut

Uncertainty Behavior Displacement mρ improvable?
Adler zeroes of t (mπ/mρ)

4 10−3 − 10−4 Yes
CDD poles at M0 M2

R/M
2
0 0–O(1) Yes

Inelastic 2-body (
√
s/(4πfπ))4 10−3 Yes

Inelastic 4...-body (
√
s/(4πfπ))4 10−4 No

O(p4) truncation (
√
s/(4πfπ))4 10−2 Yes

Left Cut (
√
s/(4πfπ))4 0.17 Perhaps



Conclusion: if you know your EFT...

I It often fails little above threshold s ' 4m2 + ε

I Inverse Amplitude Method extends it to
first resonance or 4πF or new: first zero (CDD-IAM)

I We have laid out (2010.13709 [hep-ph])
its systematic theory uncertainties

I To make it more useful for BSM searches
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Thank You!
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