

Additional neutral light Higgs bosons at ATLAS and $$\rm CMS$$

Danyer Pérez Adán

On behalf of the ATLAS and CMS collaborations

After 8 years of the discovery: is the nature of the Higgs boson completely determined?

Extended Scalar Sectors

- possibility of light states in several well-motivated models
 - \bullet light bosons (a) can couple to the 125-GeV Higgs boson (h)

The 2HDM+S Phys.Rev.D 90 (2014) 7, 075004

- o 2HDM near decoupling limit: $\alpha \rightarrow \beta \pi/2$
- add one complex scalar singlet: $S = \frac{1}{\sqrt{2}}(S_R + iS_I)$

potential light boson:
$$a = \cos \theta_a S_I + \sin \theta_a A$$
 ($\theta_a \ll 1$)

• couplings to fermions:
$$\xi_a \sim \sin \theta_a \cdot \xi_A$$

Coupling	Type-I	Type-II	Type-III	Type-IV
ξ^u_A	$\cot \beta$	$\cot \beta$	$\cot \beta$	$\cot \beta$
ξ^d_A	$-\cot\beta$	aneta	$-\cot\beta$	an eta
ξ_A^l	$-\cot\beta$	aneta	$ an \beta$	$-\cot\beta$

Probing Models with Light Bosons

- × direct searches in production mode? \Rightarrow limited by small couplings of **a** to fermions
- × indirect constraints from h cuplings? $\Rightarrow \mathcal{B}(h \to BSM)$ still relatively large

 \checkmark alternative: search for light bosons through exotic decays of h

Overview

Exotic Decay Topologies: $h \to aa(Za) \to X\bar{X}Y\bar{Y}$

- $\triangleright~$ large variety of models and scenarios with rich phenomenology
 - $\checkmark~$ multiple searches in distinct final states required to effectively probe the parameter space
 - $\checkmark\,$ ATLAS and CMS have designed an extensive program to cover multiple decay channels
- $\triangleright\,$ various strategies for experimental analyses
 - $\checkmark~$ for $m_a \ll m_h,$ the light bosons become highly boosted
 - ✓ two regimes are normally distinguished: *Resolved vs. Boosted*
 - boosted regime normally requires dedicated analysis techniques

Overview

Searches in ATLAS and CMS

 $h \rightarrow Za \rightarrow lljj$

ATLAS Recent Results

accepted by PRL

Searches in ATLAS and CM

$h \to aa \to bbbb$ ^(‡)

 $ATLAS \ (boosted)$

- \checkmark mass range: $15 < m_a < 30 \text{ GeV}$
- $\checkmark~h$ production mechanisms: ZH
- ✓ MVA (BDT) tagger developed to discriminate between boosted di-b jet (signal) and single-b jet (background)
- ✓ signal extraction: fit to binned distribution formed by 2 SR and 4 CR (regions defined according to two BDT working points and Z-mass window)
- $\checkmark\,$ background estimation: Z+Jets and $t\bar{t}$ dominate, modeled using various CRs in data

[‡] complements previous search (20 < m_a < 60 GeV) in same final state: JHEP 10 (2018) 031

Searches in ATLAS and CMS

$h \rightarrow aa \rightarrow \tau \tau \tau \tau$ CMS (boosted)

- \checkmark mass range: $4 < m_a < 15 \text{ GeV}$
- ✓ h production mechanisms: ggH (main), VBF, VH, and ttH
- $\checkmark h \rightarrow aa \rightarrow \mu\mu\tau\tau$ contribution included
- ✓ signal extraction: fit to binned 2D $m_1(\mu, trk)$ vs. $m_2(\mu, trk)$ distribution
- ✓ background estimation: QCD-multijet dominates, modeled using several CRs in data

CMS Recent Results

Phys.Lett.B 800 (2020) 135087

Searches in ATLAS and CMS

CMS Recent Results

95% CL upper limit

- Observed

Median expected

95% expected

14 16 18 20 m_a (GeV)

→ μμττ)

 $rac{\sigma_{H}}{\sigma_{SM}}B(H
ightarrow$ aa -

CMS

JHEP 08 (2020) 139

15.9 fb⁻¹(13 TeV

m, = 125 GeV

$h \to aa \to \mu\mu\tau\tau$

 $CMS \ (boosted)$

- \checkmark mass range: $3.6 < m_a < 21 \text{ GeV}$
- $\checkmark h, H(300)$ production mechanisms: ggH (main) and VBF
- ✓ special reconstruction technique to efficiently identify $a \to \tau_{\mu} \tau_{h}$
- ✓ signal extraction: fit to unbinned 2D $m(\mu, \mu) vs. m(\mu, \mu, \tau_{\mu}, \tau_{h})$ distribution
- ✓ background estimation: Z+Jets and QCD-multijet dominate, modeled using CR in data

Coupling	ξ^u_A	ξ^d_A	ξ^l_A
Type-II	$\cot eta$	an eta	an eta

Interpretation of Results in the 2HDM+S Context ATL-PHYS-PUB-2018-045

CMS-HIG-Summary-Results

		in ATLAS and	d CMS
Coupling	ξ^u_A	ξ^d_A	ξ^l_A
Type-III	$\cot eta$	$-\cot\beta$	aneta

Interpretation	$^{\mathrm{of}}$	Results	$_{\mathrm{in}}$	$_{\rm the}$	$_{\rm 2HDM+S}$	Context
	A	L-PHY	s-	PUI	B-2018-04	5

ATLAS

CMS-HIG-Summary-Results

CMS

Summary
Summary
\triangleright ATLAS and CMS immersed in a broad program of searches for light bosons
$\checkmark~$ no sign of additional neutral light Higgs bosons yet
$\checkmark~$ analyses span a wide mass range of the light states
$\circ~$ use of sophisticated analysis techniques to deal with boosted topologies
\checkmark new promising decay channels being exploited
$\checkmark~$ more interesting results to come with the full Run 2 dataset
\triangleright vast parameter phase-space still to be probed in many well-motivated models
$\checkmark~$ inclusion of unexplored and challenging final states might help excluding it

Summary
Summary
\triangleright ATLAS and CMS immersed in a broad program of searches for light bosons
$\checkmark~$ no sign of additional neutral light Higgs bosons yet
$\checkmark~$ analyses span a wide mass range of the light states
$\circ~$ use of sophisticated analysis techniques to deal with boosted topologies
$\checkmark~$ new promising decay channels being exploited
$\checkmark~$ more interesting results to come with the full Run 2 dataset
\triangleright vast parameter phase-space still to be probed in many well-motivated models
$\checkmark~$ inclusion of unexplored and challenging final states might help excluding it

Thanks for your attention!

The 2HDM+S

Two Simple Assumptions ...

• 2HDM is near or in the decoupling limit (h becomes very SM-like): $\alpha \rightarrow \beta - \pi/2$

• Add one complex scalar singlet $S = \frac{1}{\sqrt{2}}(S_R + iS_I)$:

 $V_{2HDM+S}(H_1, H_2, S) = V_{2HDM}(H_1, H_2) + \lambda S H_1 H_2 + \frac{\kappa}{3} S^3 + \cdots$

Light Boson Couplings

 $\checkmark a$ (the mostly-singlet-like pseudoscalar)

$$a = \cos \theta_a S_I + \sin \theta_a A \qquad (\theta_a \ll 1)$$

 \checkmark could potentially be a light boson \Rightarrow h exotic decays

 $h \rightarrow aa \rightarrow X\bar{X}Y\bar{Y}(m_a < m_h/2) \mid h \rightarrow aZ \rightarrow X\bar{X}Y\bar{Y}(m_a < m_h - m_Z)$

 \checkmark with couplings to fermions driven by: $\xi_a \sim \sin \theta_a \cdot \xi_A$

Eigenstate	Coupling	Type-I	Type-II	Type-III	Type-IV
	ξ^u_A	$\cot eta$	$\cot eta$	\coteta	$\cot \beta$
A	ξ^d_A	$-\cot\beta$	aneta	$-\cot\beta$	aneta
	ξ^l_A	$-\cot\beta$	aneta	aneta	$-\cot\beta$
anyer Pérez Adán		Light Higg	gs bosons		28.10.2020

2/12

Coupling	ξ^u_A	ξ^d_A	ξ_A^l
Type-I	$\cot eta$	$-\cot\beta$	$-\cot\beta$

ATL-PHYS-PUB-2018-045 CMS-HIG-Summary-Results

 $B(a \to X\bar{X})$ are independent of $\tan \beta$ for this model type

ATLAS

Coupling	ξ^u_A	ξ^d_A	ξ^l_A
Type-IV	$\cot \beta$	an eta	$-\cot\beta$

\mathbf{CMS}

ATL-PHYS-PUB-2018-045 CMS-HIG-Summary-Results

ATLAS

Outlook on ATLAS and CMS efforts within 2HDM+S

Model	Region	Status	Potential Channels [*] $(a \rightarrow X\bar{X})$
Type-I	-	0	-
Type-II	$\tan\beta < 1$		up-type quarks and gluons (e.g.: $a \to c \bar{c}$)
1ype-11	$\tan\beta>1$	0	-
Type-III	$\tan\beta < 1$		quarks and gluons (e.g.: $a \to c \bar{c}, s \bar{s})$
1 ype-111	$\tan\beta>1$	0	-
Type-IV	$\tan\beta < 1$	0	_
Type-IV	$\tan\beta>1$		down-type quarks and gluons (e.g.: $a \to s \bar{s})$

 \bigcirc : moderately constrained by current analyses in the entire mass range

) : weakly constrained by current analyses for very light bosons $(m_a \lesssim 15 \text{ GeV})$

^{*} only if not \bigcirc , final states that might help improve current limits

Васкир

Phys.Lett.B 782 (2018) 750-767

 \checkmark mass range: 20 < m_a < 60 GeV

 $h \rightarrow aa \rightarrow \gamma \gamma j j$

ATLAS (resolved)

- \checkmark h production mechanisms: ggH and VBF (main)
- ✓ five overlapping $m(\gamma, \gamma)$ regions are defined
- \checkmark signal extraction: binned fit to SR and CRs (4 bins)
- ✓ background estimation: QCD multijet dominates, modeled with data-driven ABCD method

$m_{\gamma\gamma}$ regime	Definition	Range of m_a values	$x_{\rm R}~[{\rm GeV}]$
1	$17.5 \text{ GeV} < m_{\gamma\gamma} < 27.5 \text{ GeV}$	$20 \text{ GeV} \le m_a \le 25 \text{ GeV}$	12
2	$22.5 \text{ GeV} < m_{\gamma\gamma} < 37.5 \text{ GeV}$	$25 \text{ GeV} \le m_a \le 35 \text{ GeV}$	12
3	$32.5 \text{ GeV} < m_{\gamma\gamma} < 47.5 \text{ GeV}$	$35 \text{ GeV} \le m_a \le 45 \text{ GeV}$	16
4	$42.5 \text{ GeV} < m_{\gamma\gamma} < 57.5 \text{ GeV}$	$45 \text{ GeV} \le m_a \le 55 \text{ GeV}$	20
5	$52.5~{\rm GeV} < m_{\gamma\gamma} < 65.0~{\rm GeV}$	$55 \text{ GeV} \le m_a \le 60 \text{ GeV}$	24

$h ightarrow aa ightarrow bb \mu \mu$ $ATLAS \ (resolved)$

- \checkmark mass range: $20 < m_a < 60 \text{ GeV}$
- \checkmark h production mechanisms: ggH and VBF
- ✓ a kinematic fit $(m(\mu, \mu) \simeq m(b, b))$ is employed to improve the resolution of $m(\mu, \mu, b, b)$
- ✓ signal extraction: binned fit to the $m(\mu, \mu)$ distribution
- ✓ background estimation: Z+Jets and $t\bar{t}$ dominate, modeled with a combination of simulation and data

$h \rightarrow aa \rightarrow bbbb$ ATLAS (resolved)

- ✓ mass range: $20 < m_a < 60 \text{ GeV}$
- \checkmark h production mechanisms: VH
- $\checkmark\,$ several categories are defined for both single- and di-lepton channels
- $\checkmark\,$ signal extraction: binned fit to BDT distribution for each category
- $\checkmark\,$ background estimation: Z+Jets and $t\bar{t}$ dominate, modeled with a combination of simulation and data

JHEP 10 (2018) 031

$h \rightarrow aa \rightarrow \mu \mu \mu \mu$ CMS (boosted)

- ✓ mass range: $0.25 < m_a < 3.55$ GeV
- $\checkmark~h$ production mechanisms: ggH
- \checkmark events are selected if $m_1(\mu,\mu) \simeq m_2(\mu,\mu)$
- ✓ signal extraction: unbinned fit to the 2D $m_1(\mu, \mu)$ vs. $m_2(\mu, \mu)$ distribution
- $\checkmark\,$ background estimation: QCD multijet $(b\bar{b})$ dominates, modeled using CRs in data

Phys.Lett.B 796 (2019) 131-154

JHEP 1811 (2018) 018

$h \rightarrow aa \rightarrow \mu\mu\tau\tau$ _{CMS (resolved)}

- ✓ mass range: $15.0 < m_a < 62.5$ GeV
- $\checkmark~h$ production mechanisms: ggH and VBF
- $\checkmark h \rightarrow aa \rightarrow \tau \tau \tau \tau$ contribution included
- ✓ signal extraction: unbinned fit to the $m(\mu, \mu)$ distribution
- ✓ background estimation: Z+Jets and WZ+Jets dominate, modeled using CRs in data

h ightarrow aa ightarrow bb au au

- ✓ mass range: $15.0 < m_a < 60$ GeV
- $\checkmark~h$ production mechanisms: ggH, VBF and VH
- \checkmark three different $\tau \tau$ decay channels: $e\mu$, $e\tau_h$ and $\mu \tau_h$
- ✓ signal extraction: binned fit to the $m_{vis}(\tau, \tau)$ distribution
- $\checkmark\,$ background estimation: $t\bar{t},$ Z/W+Jets, and QCD multijet dominate, modeled using combination of simulation and data

Light Higgs bosons

Phys.Lett.B 785 (2018) 462-488

 $h \rightarrow aa \rightarrow bb\mu\mu$ CMS (resolved)

Phys.Lett.B 795 (2019) 398-423

- \checkmark mass range: 20.0 < m_a < 62.5 GeV
- \checkmark h production mechanisms: ggH and VBF
- \checkmark categorization (3 cats.) according to the b tagging discriminator for one jet
- ✓ signal extraction: unbinned fit to the $m(\mu, \mu)$ distribution
- $\checkmark\,$ background estimation: Z+Jets and $t\bar{t}$ dominate, modeled using CR in data

