Charged Higgs bosons at ATLAS and CMS Higgs 2020, 26-30 October 2020

Alexandros Attikis¹

on behalf of the ATLAS and CMS Collaborations

¹University of Cyprus (UCY)

Wednesday 28th October, 2020

Introduction Beyond the SM Higgs Sector

In most extensions of the SM, the Higgs sector must also be extended

- Minimal extensions known as two-Higgs-doublet models (2HDMs) predict:
 - ▶ CP-even h^0 and H^0 , CP-odd A^0
 - Singly-charged H^+ and H^-

Four ways to couple SM fermions to two Higgs doublets (no FCNCs):

type I All quarks & leptons couple to Φ_2

type II All u-type to Φ_2 and all d-type & ℓ to Φ_1

type X Both u & d types couple to Φ_2 , all ℓ to Φ_1

type Y Roles of two doublets reversed wrt type II

Higgs triplet models (HTMs) extend the sector by addition of scalar triplet(s):

- Georgi-Machacek (GM) model adds one real & one complex SU(2) triplet
- Appearance of the $H^{\pm} W^{\pm} Z^{0}$ coupling at tree-level
- ▶ Presence of doubly-charged Higgs bosons H^{++} and H^{--}
- Observation of a charged Higgs boson an <u>unequivocal</u> proof of BSM physics
- Production & decay modes greatly depend on the particles masses ...

Three mass categories are commonly used in H^\pm searches:

 \blacktriangleright Light $m_{
m H^{\pm}} < m_{
m t} - m_{
m b}$

double-resonant t

Three mass categories are commonly used in H^\pm searches:

• Light $m_{
m H^\pm} < m_{
m t} - m_{
m b}$, heavy $m_{
m H^\pm} > m_{
m t}$

double-resonant t single-resonant t \overline{t} \overline{b} \overline{b}

Three mass categories are commonly used in H^{\pm} searches:

• Light $m_{
m H^\pm} < m_{
m t} - m_{
m b}$, heavy $m_{
m H^\pm} > m_{
m t}$, intermediate $m_{
m H^\pm} \sim m_{
m t}$

Three mass categories are commonly used in H^\pm searches:

• Light $m_{
m H^\pm} < m_{
m t} - m_{
m b}$, heavy $m_{
m H^\pm} > m_{
m t}$, intermediate $m_{
m H^\pm} \sim m_{
m t}$

 ${
m H}^{\pm}$ decay BRs model-dependent \Rightarrow different searches constrain different scenarios:

- \blacktriangleright In MSSM the *cs* decay channel is dominant at low $m_{
 m H^{\pm}}$ and small tan eta
- Coupling to 3rd-gen fermions is strongest in type II \Rightarrow Sensitive to $\tau\nu$ and tb

Introduction Overview

Both ATLAS and CMS have increased efforts to cover more phase space & models:

- ► Closed the $m_{\rm H^{\pm}} \sim m_{top}$ window ($\sigma_{\rm NLO^{PP \rightarrow bW^{-}\overline{b}H^{+}}}$ in 2016) arXiv:1607.05291
- \blacktriangleright Resolved & boosted topologies to increase sensitivity at high mass & high p_{T}
- Machine learning techniques for event & object classification (BDTs, DNNs)

Introduction Overview

Both ATLAS and CMS have increased efforts to cover more phase space & models:

- ► Closed the $m_{\rm H^{\pm}} \sim m_{top}$ window ($\sigma_{\rm NLO^{PP \rightarrow bW^{-}\overline{b}H^{+}}}$ in 2016) arXiv:1607.05291
- \blacktriangleright Resolved & boosted topologies to increase sensitivity at high mass & high p_{T}
- Machine learning techniques for event & object classification (BDTs, DNNs)

CMS $H^{\pm} \rightarrow cs$ semileptonic arXiv:2005.08900

In type II 2HDMs a light $m_{\rm H^{\pm}}$ decays predominantly to cs for low tan β values:

- Require ℓ , $p_{\rm T}^{\rm miss}$, and \geq 4 jets (\geq 2 *b*-tagged)
- ▶ Top kinematic fit (KF) with m_{top} constraints
- Categorisation based on c-tagging (L,M,T)
- Discriminant is m_{jj} of 2 non-b jets

CMS $H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ leptonic+hadronic arXiv:1903.04560

In type II 2HDMs a light $m_{\rm H^{\pm}}$ decays ~exclusively to $\tau \nu$, is sizeable at heavy $m_{\rm H^{\pm}}$:

- ▶ Three final states; τ_h +jets, ℓ + τ_h , ℓ +no τ_h
- Major bkg for τ_h +jets is $j \rightarrow \tau_h$ (data-driven)
- Bkg for $\ell + \tau_h$ and $\ell + no\tau_h$ is $t\bar{t}$ (simulation)
- Simultaneous binned ML fit to $m_{\rm T}(au_{
 m h}/\ell, p_{
 m T}^{
 m miss})$

post-fit m_{T} distribution for $\ell + \mathrm{no} au_{\mathrm{h}}$

post-fit $m_{\rm T}$ distribution for $\tau_{\rm h} + {\rm jets}$

CMS $H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ leptonic+hadronic arXiv:1903.04560

In type II 2HDMs a light $m_{\rm H^{\pm}}$ decays ~exclusively to $\tau \nu$, is sizeable at heavy $m_{\rm H^{\pm}}$:

- ▶ Three final states; τ_h +jets, ℓ + τ_h , ℓ +no τ_h
- Major bkg for τ_h +jets is $j \rightarrow \tau_h$ (data-driven)
- Bkg for $\ell + \tau_h$ and $\ell + no\tau_h$ is $t\bar{t}$ (simulation)
- Simultaneous binned ML fit to $m_{\rm T}(\tau_{\rm h}/\ell,p_{\rm T}^{\rm miss})$

ATLAS $H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ leptonic+hadronic arXiv:1807.07915

Search targets τ_h +jets, τ_h + e, τ_h + μ final states with MVA using BDTs:

ATLAS $H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ leptonic+hadronic arXiv:1807.07915

The BDT scores are used as discriminating variables for the fitted regions:

- Upper limit of 4.2 pb 2.5 fb
- Exclusion 5 7 times better than with 3.2 fb⁻¹
- Interpretation in hMSSM scenario:
 - ▶ All tan eta values excluded for $m_{
 m H^\pm} <$ 160 GeV
 - For tan eta = 60 $m_{
 m H^{\pm}}$ \leq 1.1 TeV is excluded

0.25% and 0.031% for $m_{\mathrm{H}^{\pm}}$ =[90,160] GeV

interpretation in hMSSM scenario

+iets signal region

S 1

BDT score, 500 to 2000 GeV

CMS $\mathrm{H^{\pm}} \rightarrow \mathrm{tb}$ hadronic arXiv:2001.07763

For the heavy $m_{\mathrm{H}^{\pm}}$, the decay into top and bottom quarks is dominant:

- Fully hadronic $\mathcal{B}(FH) \simeq 45\% \Rightarrow$ full $m_{H^{\pm}}$ recorresolved t boosted W
- Resolved t and boosted W^{\pm}/t topologies
- Major bkg are misid. b-jets & QCD multijet
- Discriminants are m_{tb} and H_T spectrums post-fit m_{tb} distribution for resolved t

post-fit H $_{\rm T}$ distribution for boosted ${
m W}^{\pm}/t$

boosted t

CMS $\mathrm{H^{\pm}} \rightarrow \mathrm{tb}$ hadronic arXiv:2001.07763

For the heavy $m_{\mathrm{H}^{\pm}}$, the decay into top and bottom quarks is dominant:

- Fully hadronic $\mathcal{B}(\mathsf{FH}) \simeq 45\% \Rightarrow \mathsf{full} \ m_{\mathrm{H}^{\pm}}$ reco
- Resolved t and boosted W^{\pm}/t topologies
- Major bkg are misid. b-jets & QCD multijet
- Discriminants are m_{tb} and H_T spectrums

upper limit of 21 pb – 7 fb

interpretation in hMSSM scenario

ATLAS $\mathrm{H^{\pm}} \rightarrow \mathrm{tb}$ semileptonic ATLAS-CONF-2020-039

Full Run 2 analysis (139 fb^{-1}) focused on single lepton channel (best significance):

- Require $1\ell^{\pm} = e^{\pm}, \mu^{\pm}, \geq 5$ jets (≥ 2 *b*-tagged)
- Event classification with jet/b jet multiplicity
- Mass-parametrised NN trained with all $m_{\mathrm{H}^{\pm}}$
- ▶ Main bkg is tt+jets (data/MC corrections)
 - Orrect the jet multiplicity distribution
 - **2** Correct the H_T distribution (for each N_j)

trained all SRs using 15 variables

post-fit NN distribution for $\geq 6j \geq 4b$ SR

ATLAS $H^{\pm} \rightarrow tb$ semileptonic ATLAS-CONF-2020-039

Model-independent limits on $\sigma_{H^{\pm}} \cdot \mathcal{B}(H^{\pm} \rightarrow tb)$ using the CL_S method:

- Simultaneous binned ML fit to 4 NN outputs
 - ▶ 5j3b, 5j≥4b, ≥6j≥3b, ≥6j≥4b
- One fit for each masspoint $m_{
 m H^{\pm}}$
- lmprovement wrt 36.1 fb⁻¹ results (high $m_{\rm H^{\pm}}$)
- Systematics-limited at low m_{H±}
 upper limit of 3.6 pb 0.035 pb

 $\begin{array}{c} W^{-} \\ W^{-} \\ W^{+} \\$

interpretation in hMSSM scenario

CMS $H^{\pm} \rightarrow W^{\pm}Z^{0}$ and $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ semileptonic arXiv:1905.07445 11/35

In the GM model H^{\pm} and $H^{\pm\pm}$ are produced via VBF:

- Semileptonic WV (1 ℓ) and ZV (2 ℓ) decays
- Hadronic V reconstructed as AK8 ($\tau_{21}^V < 0.55$)
- Leptonic *W* reconstructed from solving the p_z^{ν}
- Major bkg is W+jets (WV) and Z+jets (ZV)

Signal extraction with fit to m_{ZV}

CMS $H^{\pm} \rightarrow W^{\pm}Z^{0}$ and $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ semileptonic arXiv:1905.07445 12/35

🐪 WV channel

ZV channel

35.0 fb⁻¹ (13 Te\/)

Observed

68% expected

95% expected

m(H[±]) (GeV)

2000

···· Expected

1500

CMS

. H[±]→W[±]Z→aā'll

1000

10

10

WW channel

ATLAS $H^{\pm\pm}H^{\mp(\mp)} \rightarrow W^{\pm}W^{\pm}W^{\mp}W^{\mp}(Z^0)$ ATLAS-CONF-2020-056

Search motivated by the rich scalar phenomenology in type II seesaw model:

- ▶ 6 SRs for each $m_{\mathrm{H}^{\pm}}$ hypothesis
 - $2\ell^{SC}$ ee, $\mu\mu$, $e\mu$ (SC=same-charge)
 - 3ℓ same-flavour opposite-sign ℓ pairs (0, 1 || 2)
 - 4ℓ treated globally
- SM WZ dominant (MC with norm. from data)
- ▶ Non-prompt ℓ & charge-flip *e* (data-based)
 - *b*-/*c*-hadron decays, $\pi^{\pm} \rightarrow e^{\pm}$
 - *e*-interactions $e^{\pm} \rightarrow e^{\pm} \gamma \rightarrow e^{\pm} e^{\pm} e^{\mp}$

boosted W[±]'s for low $m_{H^{\pm\pm}}$ _ significant E_{T}^{miss} in all SRs

pair production

13/35

leading lepton $p_{\rm T}$ used in 4ℓ

ATLAS $H^{\pm\pm}H^{\mp(\mp)} \rightarrow W^{\pm}W^{\pm}W^{\mp}W^{\mp}(Z^0)$ ATLAS-CONF-2020-056

Upper limits on $\sigma_{\mathsf{PP}} \cdot \mathcal{B}(\mathrm{H}^{\pm\pm}\mathrm{H}^{\mp\mp} \to \mathrm{W}^{\pm}\mathrm{W}^{\pm}\mathrm{W}^{\mp}\mathrm{W}^{\mp})$ at 95% CL:

- ▶ By combination of $2\ell^{SS}$, 3ℓ , 4ℓ channels
- A type II seesaw model with $v_t = \mathcal{O}(100)$ MeV
- Observed lower limit on $m_{\mathrm{H}^{\pm\pm}}$ is 350 GeV
- Uncertainties range from 10–30%. Sources:
 - non-prompt l (statistical)
 - theory (PS model, higher order corr., PDF)

Event yields for combination of $2\ell^{SS}$, 3ℓ , 4ℓ

pair production (PP)

14/35

 $2\ell^{SS}$, 3ℓ , 4ℓ combination

ATLAS $H^{\pm\pm}H^{\mp(\mp)} \rightarrow W^{\pm}W^{\pm}W^{\mp}W^{\mp}(Z^0)$ ATLAS-CONF-2020-056

Upper limits on $\sigma_{AP} \cdot \mathcal{B} (H^{\pm\pm}H^{\mp} \rightarrow W^{\pm}W^{\pm}W^{\mp}Z^{0})$ at 95% CL:

- By combination of $2\ell^{SS}$, 3ℓ , 4ℓ channels
- A type II seesaw model with $v_t = \mathcal{O}(100)$ MeV
- Observed lower limit on m_{H±±} is 220 GeV
- Limit in AP mode weaker than in PP mode:
 - Different BRs for channels (16% vs. 26%)
 - SRs optimised to maximise sensitivity for PP

Event yields for combination of $2\ell^{SS}$, 3ℓ , 4ℓ

 $2\ell^{SS}$, 3ℓ , 4ℓ combination

Summary & Conclusions

Presented latest results on searches for ${\rm H}^{\pm}$ and ${\rm H}^{\pm\pm}$ at ATLAS & CMS:

- No evidence for BSM physics observed
- Large regions of 2HDMs & HTMs parameter space are now excluded
- New results coming soon with full Run 2 Legacy data:
 - Almost ×4 more statistics for both experiments
 - Improved machine learning methods for event & object classification
 - More categorisation to increase sensitivity
 - New search channels with sensitivity to unexplored regions

thank you.

17/35

This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation under the projects **POST-DOC/0718/0169** and **EXCELLENCE/1918/0379**

Ευρωπαϊκή Ένωση Ευρωπαϊκά Διαρθρωτικά και Επενδυτικά Ταμεία

Additional Material Navigation

- Santander matching on page 19
- MSSM benchmark scenarios on page 20
- Single-charged Higgs boson decay on page 21
- Doubly-charged Higgs boson production on page 23
- \blacktriangleright CMS ${\rm H}^{\pm} \rightarrow {\rm tb}~$ arXiv:2001.07763 on page 24
- \blacktriangleright CMS ${\rm H}^{\pm} \rightarrow {\rm W}^{\pm} {\rm A}^0~~ {\rm arXiv:} 1905.07453$ on page 27
- ▶ CMS $H^{\pm} \rightarrow W^{\pm}Z^{0}$ arXiv:1901.04060 on page 29
- ▶ ATLAS $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ arXiv:1808.01899 on page 32
- ▶ ATLAS $H^{\pm} \rightarrow W^{\pm}Z^{0}$ arXiv:1806.01532 on page 34

Additional Material Santander matching

The predictions of 4FS and 5FS calculated at NLO can be combined using the *Santander matching* scheme arXiv:1112.3478

where σ^{4FS} and σ^{5FS} denote the respective total inclusive cross sections.

Additional Material MSSM benchmark scenarios

Scenario	$M_{ m SUSY}$	μ	M ₂	X_t^{os}	$X_t^{\overline{\text{MS}}}$	$M_{\tilde{l}_3}$
	(GeV)	(GeV)	(GeV)	(GeV)	(GeV)	(GeV)
$m_{ m h}^{ m max}$	1000	200	200	$2M_{\rm SUSY}$	$\sqrt{6}M_{\rm SUSY}$	1000
$m_{ m h}^{ m mod+}$	1000	200	200	$1.5M_{ m SUSY}$	$1.6M_{\rm SUSY}$	1000
$m_{ m h}^{ m mod-}$	1000	200	200	$-1.9M_{ m SUSY}$	$-2.2M_{\rm SUSY}$	1000
Light stop	500	350	350	$2M_{\rm SUSY}$	$2.2M_{\rm SUSY}$	1000
Light stau	1000	500	200	$1.6M_{ m SUSY}$	$1.7 M_{\rm SUSY}$	245
Light stau (Δau corr.)	1000	450	400	$1.6M_{\rm SUSY}$	$1.7 M_{\rm SUSY}$	250
au-phobic Higgs	1500	2000	200	$2.45 M_{ m SUSY}$	$2.9M_{\rm SUSY}$	500
Low- <i>M</i> _h	1500	free	200	$2.45 M_{ m SUSY}$	$2.9M_{ m SUSY}$	1000

Different benchmark scenarios correspond to different sets of MSSM parameters:

- ▶ hMSSM: $h^0 = H^0_{125}$, $M_{SUSY} \sim 1$ TeV, Higgs sector described by $\{\tan \beta, m_{A^0}\}$ and h^0 phenomenology by couplings to V, t, b
- ► M_h¹²⁵: Heavy superparticles⇒production & decay of MSSM Higgs bosons only slightly affected by them
- *m*_h^{max}: maximal stop mixing, gives maximal light *m*_h⁰ for fixed {tan β, *m*_A⁰}
 *m*_h^{mod}: modified *m*_h^{max}, *X*_t/*M*_{SUSY} reduced to give *m*_h⁰ = 125 GeV for larger parameter space. +/- according to sign of *X*_t/*M*_{SUSY} (*X*_t = *A*_t − μ cot β)

The H^{\pm} decay BRs in the hMSSM benchmark scenario are shown below:

Additional Material Singly-charged Higgs boson decay

The H[±] decay BRs in the M_h^{125} benchmark scenario are shown below:

Additional Material Doubly-charged Higgs boson production

23/35

The doubly-charged Higgs boson can be produced via 3 main processes:

 $H^{\pm\pm}$ decays have unique signatures which can be utilised in direct searches:

Additional Material CMS $\mathrm{H^{\pm} \rightarrow tb}$ arXiv:2001.07763

24/35

Both analyses selected fully-hadronic final states by enforcing lepton vetoes:

Resolved t

- \geq 7 AK4 jets, \geq 3 *b*-tags
- ${\small 2}~H_{\rm T}>500~GeV$

Reconstruct m_{H±} using tetrajet from:

- leading in $p_{\rm T}$ resolved top
- leading in p_T free b jet

• Search for excess in the m_{tb} spectrum

Boosted W^{\pm}/t

- ${f 0}\ \ge 1$ AK8 jets, ≥ 1 *b*-jets
- ② Jet substructure used for W^{\pm}/t tag

Boosted W^{\pm}

- ▶ τ^W₂₁ < 0.6</p>
- $\blacktriangleright \ \mathrm{m}_{\mathit{SD}}^{\mathit{W}} \in [65, 105]$
- 0 b-subjets

- Boosted t
- ▶ $au_{32}^{top} < 0.67$
- ▶ $m_{SD}^{top} \in [135, 220]$
- 0 or 1 b-subjets
- **③** Reconstruct $m_{\mathrm{H}^{\pm}}$ from AK8+AK4
 - Boosted W^{\pm} Boosted t
- \blacktriangleright W+b+b \blacktriangleright t_{0b}+b
- W+b+j t_{1b} +b
- N_j , N_b , $\Delta m_{\mathrm{H}^{\pm}}$ categorisation
- **③** Search for excess in ${
 m H}_{
 m T}$ of $\Delta m_{
 m H^{\pm}}$

Additional Material CMS $H^{\pm} \rightarrow tb$ arXiv:2001.07763

Resolved t

- Dominant QCD multijet (~ 90%)
 - Shape from **CR: Mirror** (invert τ_{21}^{W} and τ_{32}^{top})
 - ► Norm from below/above $\Delta m_{\mathrm{H}^{\pm}}$ (sidebands)
- $t\bar{t}$ with CR: Single Leptonic
 - ▶ 1ℓ with $10 < p_{\rm T} < 35$ GeV
- The CRs and SRs are simultaneously fitted to:
 - determine normalisation
 - determine shape of the bkg distributions

- Minor Genuine-b estimated from simulation
- Main Fake-b measured from data by inverting top- & b-tagging selections

$$N_i^{\text{SR}} = \sum_i N_i^{\text{AR}} \cdot \left(\frac{N_i^{\text{CR1}}}{N_i^{\text{CR2}}}\right)$$

i runs over $\textit{p}_{\rm T}$ and η bins

Additional Material CMS $H^{\pm} \rightarrow tb$ arXiv:2001.07763

Combination of $H^{\pm} \rightarrow tb$ leptonic & $H^{\pm} \rightarrow tb$ hadronic final states:

- ▶ Single lepton dominates entire $m_{H^{\pm}}$ spectrum
- Dilepton sensitive at low $m_{
 m H^{\pm}}$ region (\sim 20% gain)
- ▶ Hadronic \sim comparable to dilepton at low $m_{\mathrm{H}^{\pm}}$
- Hadronic competes with Single lepton at 3 TeV (\sim 30% gain)

Combination ${\rm H}^\pm \to \tau^\pm \nu_\tau \,+\, {\rm H}^\pm \to {\rm tb}$ leptonic is also shown ,

Additional Material CMS $H^{\pm} \rightarrow W^{\pm}A^{0}$ arXiv:1905.07453

First LHC search for light $m_{\rm H^{\pm}}$ decaying to *WA* in any range of $m_{\rm H^{\pm}}$:

- ▶ Target $e\mu\mu$ or $\mu\mu\mu$ with $A^0 \rightarrow \mu^+\mu^-$
- $\mathcal{B}\left(A^{0} \to \mu^{+}\mu^{-}\right)$ small but high $\varepsilon_{\text{ID}}^{\mu}$ and $\frac{\sigma(\rho_{\text{T}}^{\mu})}{\rho_{\text{T}}^{\mu}}$
- Major bkg is $t\overline{t}$ with nonprompt leptons
- Excess search in mass windows w of $m_{\mu^+\mu^-}$

Additional Material CMS $H^{\pm} \rightarrow W^{\pm}A^{0}$ arXiv:1905.07453

Upper limits at 95% CL on $\mathcal{B}(t \to bH^+) \cdot \mathcal{B}(H^{\pm} \to W^{\pm}A^0) \cdot \mathcal{B}(A^0 \to \mu^+\mu^-)$:

28/35

Additional Material CMS $H^{\pm} \rightarrow W^{\pm}Z^{0}$ arXiv:1901.04060

Event selection with 3 lepton candidates:

- ▶ OSSF dilepton ($\ell^{\pm}\ell^{\mp}$) with $p_{\mathrm{T}} > 25$ (15) GeV and $|\mathrm{m}_{\ell^{\pm}\ell^{\mp}} m_{\mathrm{Z}^0}^{\mathsf{PDG}}| < 15$ GeV
- $\blacktriangleright~3^{\sf rd}$ isolated lepton $\ell^{'}$ with $p_{\rm T}>$ 20 GeV
- ▶ $p_{\rm T}^{\rm miss} > 30 \,\,{\rm GeV}$
- \blacktriangleright \geq 2 AK4 jets with $p_{
 m T}$ > 50 GeV, $|\eta|$ < 4.7, ${
 m m}_{j1j2}$ > 500 GeV, $\Delta\eta(j_1,j_2)$ > 2.5
- ► Shifted pseudorapidity cut $|\eta_{3\ell}^*| = |\eta_{3\ell} \frac{1}{2}(\eta_{j1} + \eta_{j2})| < 2.5$ arXiv:9605444

Additional selections for background suppression:

- ▶ 4^{th} lepton veto with $p_{\rm T} > 10$ GeV
- ▶ *b* jet veto with p_{T} > 30 GeV and $|\eta|$ < 4.7 (suppress $\mathrm{t}\mathrm{ar{t}}$)
- ▶ $m_{\ell^{\pm}\ell^{\mp}} > 4$ GeV (against collinear emission & low mass resonances)
- $\blacktriangleright~{\rm m}_{3\ell} > 100$ GeV (suppress ${\rm Z}^0$ production with FSR)

Additional Material CMS ${\rm H}^{\pm} \rightarrow {\rm W}^{\pm}{\rm Z}^{0}~~\text{arXiv:1901.04060}$

ML fit to the transverse mass to extract limits on H^{\pm} production cross section:

•
$$m_{\rm T}$$
 (WZ) = $\sqrt{(E_{\rm T}^W + E_{\rm T}^Z)^2 - (\vec{p}_T^W + \vec{p}_T^Z)^2}$

▶ W is constructed from $p_{\mathrm{T}}^{\mathsf{miss}}$ and ℓ' not associated with $\mathrm{m}_{\ell^{\pm}\ell^{\mp}}$

Background estimation:

- Prompt ℓ backgrounds (Zγ, VV, top, EW-WZjj) estimated from simulation
- QCD-WZjj normalisation from a control region
- Nonprompt l background estimated from data ("tight-to-loose method")

Additional Material CMS $H^{\pm} \rightarrow W^{\pm}Z^{0}$ arXiv:1901.04060

95% upper limits on $\sigma_{VBF} \cdot \mathcal{B} (H^{\pm} \to W^{\pm}Z^{0})$ and s_{H} using CL_S criterion:

interpretation in GM model

Theoretically inaccessible

Additional Material ATLAS $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ arXiv:1808.01899

A search motivated by the rich scalar phenomenology in type II seesaw model:

- Three final states; $2\ell^{SS}$, 3ℓ , 4ℓ
- ▶ 6 SRs for each $m_{\rm H^{\pm}}$ hypothesis $2\ell^{\rm SS}$ ee, $\mu\mu$, e μ
 - 3ℓ SFOS ℓ pairs (0, 1 || 2)
 - 4ℓ treated globally
- ▶ Major bkgs: q-misid (brem) & fake ℓ's
- Mass- & channel-dependent optimisation

PP suppressed at large $m_{\mathrm{H}\pm\pm}$

Additional Material ATLAS $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ arXiv:1808.01899

Upper limits on $\sigma_{\text{DY PP}} \cdot \mathcal{B} (H^{\pm\pm}H^{\mp\mp} \rightarrow W^{\pm}W^{\pm}W^{\mp}W^{\mp})$ at 95% CL:

- Obtained from the combination of $2\ell^{SS}$, 3ℓ , 4ℓ channels
- ▶ Observed lower limit on $m_{H^{\pm\pm}}$ is 220 GeV (linear interp. of sensitivity)
- Dominant systematic uncertainties are q-misid and fake $\ell's$
- Search sensitivity dominated by stat. uncertainty of event yields in SRs

Event yields in SRs for $m_{\rm H^{\pm\pm}}=200~{\rm GeV}$

$2\ell^{SS}$, 3ℓ , 4ℓ combination

Additional Material ATLAS $H^{\pm} \rightarrow W^{\pm}Z^{0}$ arXiv:1806.01532

In the GM model ${\rm H}^\pm$ are produced via the VBF process ${\rm pp} \to {\rm W}^\pm {\rm Z}^0 jj$:

- Search targets fully leptonic channel with 3ℓ
- ▶ 2 ℓ^{OSSF} , $|m_{\ell\ell} m_{\mathrm{Z}^0}| <$ 20 GeV
- W reco from solving the $p_{
 m z}^{
 u}$ ($m_{
 m W^{\pm}}$ constraint)
- ▶ $|\Delta \eta_{jj}| > 3.5$, $m_{jj} > 500$ GeV
- ► Bkg is SM *WZ* bkg (norm. & shape from MC) validation CR by inverting $|\Delta \eta_{jj}| \& m_{jj}$ cuts

postfit m_{WZ} distribution in SR

Additional Material ATLAS $H^{\pm} \rightarrow W^{\pm}Z^{0}$ arXiv:1806.01532

Exclusion limits on $\sigma_{VBF} \cdot \mathcal{B} \left(H^{\pm} \rightarrow W^{\pm} Z^{0} \right)$ and the GM model parameter sin θ_{H} :

- \blacktriangleright 2.9 $\sigma_{\sf local}$ (1.6 $\sigma_{\sf global}$) excess at $m_{
 m H^{\pm}} \simeq$ 450 GeV
- Dominant syst. uncert. is WZ modelling
- Sensitivity dominated by stat. uncertainty
- Frequencies Theoretical intrinsic $\Gamma_{
 m H^{\pm}} > 5\,(10)\%$ of $m_{
 m H^{\pm}}$

