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Introduction Beyond the SM Higgs Sector 1/35

I In most extensions of the SM, the Higgs sector must also be extended
I Minimal extensions known as two-Higgs-doublet models (2HDMs) predict:

I CP-even h0 and H0, CP-odd A0

I Singly-charged H+ and H−

I Four ways to couple SM fermions to two Higgs doublets (no FCNCs):

type I All quarks & leptons couple to Φ2

type II All u-type to Φ2 and all d-type & ` to Φ1

type X Both u & d types couple to Φ2, all ` to Φ1

type Y Roles of two doublets reversed wrt type II

Model d u `

I Φ2 Φ2 Φ2

II Φ1 Φ2 Φ1 MSSM

X Φ2 Φ2 Φ1

Y Φ1 Φ2 Φ2

I Higgs triplet models (HTMs) extend the sector by addition of scalar triplet(s):
I Georgi-Machacek (GM) model adds one real & one complex SU(2) triplet
I Appearance of the H± W± Z0 coupling at tree-level
I Presence of doubly-charged Higgs bosons H++ and H−−

I Observation of a charged Higgs boson an unequivocal proof of BSM physics
I Production & decay modes greatly depend on the particles masses . . .
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Introduction Experimental Signatures 2/35

Three mass categories are commonly used in H± searches:
I Light mH± < mt −mb

double-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.

(a) (b)

Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)

vahirsch@slac.stanford.edu (Valentin Hirschi), ubiali@hep.phy.cam.ac.uk (Maria Ubiali), mariusw@physik.uzh.ch
(Marius Wiesemann), zaro@lpthe.jussieu.fr (Marco Zaro)

1In the four-flavour scheme there is also an explicit bottom quark in the final state.
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Three mass categories are commonly used in H± searches:
I Light mH± < mt −mb, heavy mH± > mt

double-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.
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Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)

vahirsch@slac.stanford.edu (Valentin Hirschi), ubiali@hep.phy.cam.ac.uk (Maria Ubiali), mariusw@physik.uzh.ch
(Marius Wiesemann), zaro@lpthe.jussieu.fr (Marco Zaro)

1In the four-flavour scheme there is also an explicit bottom quark in the final state.
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single-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.
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Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)
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1In the four-flavour scheme there is also an explicit bottom quark in the final state.
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Three mass categories are commonly used in H± searches:
I Light mH± < mt −mb, heavy mH± > mt, intermediate mH± ∼ mt

double-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.
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Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.

H�

b

b̄

W+
H�

b̄

b

W+
t

b̄

b

H�
W+

t̄

t

b

b̄

h/H/A

H±

W⌥

(a) (b) (c) (d)

Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)
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1In the four-flavour scheme there is also an explicit bottom quark in the final state.
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single-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.
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Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)
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non-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.
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Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)
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neutral scalars

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.
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Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)
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1In the four-flavour scheme there is also an explicit bottom quark in the final state.
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Three mass categories are commonly used in H± searches:
I Light mH± < mt −mb, heavy mH± > mt, intermediate mH± ∼ mt

double-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.
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Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)

vahirsch@slac.stanford.edu (Valentin Hirschi), ubiali@hep.phy.cam.ac.uk (Maria Ubiali), mariusw@physik.uzh.ch
(Marius Wiesemann), zaro@lpthe.jussieu.fr (Marco Zaro)

1In the four-flavour scheme there is also an explicit bottom quark in the final state.

2

single-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.

(a) (b)

Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)

vahirsch@slac.stanford.edu (Valentin Hirschi), ubiali@hep.phy.cam.ac.uk (Maria Ubiali), mariusw@physik.uzh.ch
(Marius Wiesemann), zaro@lpthe.jussieu.fr (Marco Zaro)

1In the four-flavour scheme there is also an explicit bottom quark in the final state.
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non-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.

(a) (b)

Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)

vahirsch@slac.stanford.edu (Valentin Hirschi), ubiali@hep.phy.cam.ac.uk (Maria Ubiali), mariusw@physik.uzh.ch
(Marius Wiesemann), zaro@lpthe.jussieu.fr (Marco Zaro)

1In the four-flavour scheme there is also an explicit bottom quark in the final state.

2

neutral scalars

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.
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Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)

vahirsch@slac.stanford.edu (Valentin Hirschi), ubiali@hep.phy.cam.ac.uk (Maria Ubiali), mariusw@physik.uzh.ch
(Marius Wiesemann), zaro@lpthe.jussieu.fr (Marco Zaro)

1In the four-flavour scheme there is also an explicit bottom quark in the final state.

2

H± decay BRs model-dependent ⇒ different searches constrain different scenarios:
I In MSSM the cs decay channel is dominant at low mH± and small tanβ
I Coupling to 3rd-gen fermions is strongest in type II ⇒ Sensitive to τν and tb
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Both ATLAS and CMS have increased efforts to cover more phase space & models:
I Closed the mH± ∼ mtop window (σNLOpp→bW−bH+ in 2016) arXiv:1607.05291

I Resolved & boosted topologies to increase sensitivity at high mass & high pT
I Machine learning techniques for event & object classification (BDTs, DNNs)
Light mH± < mt −mbLight mH± < mt −mbLight mH± < mt −mb

H± →W±A0H± →W±A0H± →W±A0

leptonic
35.9 fb−1

arXiv:1905.07453

H± → csH± → csH± → cs
semileptonic
35.9 fb−1

arXiv:2005.08900

Intermediate mH± ' mtIntermediate mH± ' mtIntermediate mH± ' mt

H± → τ±ντH± → τ±ντH± → τ±ντ
leptonic & hadronic

35.9 fb−1

arXiv:1903.04560

H± → τ±ντH± → τ±ντH± → τ±ντ
leptonic & hadronic

36.1 fb−1

arXiv:1807.07915

Heavy mH± > mt −mbHeavy mH± > mt −mbHeavy mH± > mt −mb

H± → tbH± → tbH± → tb
leptonic
35.9 fb−1

arXiv:1908.09206

H± → tbH± → tbH± → tb
leptonic & hadronic

35.9 fb−1

arXiv:2001.07763

H± → tbH± → tbH± → tb
semileptonic
139 fb−1

ATLAS-CONF-2020-039

H± →W±Z0H± →W±Z0H± →W±Z0

leptonic
35.9 fb−1

arXiv:1901.04060

H± →W±Z0H± →W±Z0H± →W±Z0

semileptonic
35.9 fb−1

arXiv:1905.07445

H± →W±Z0H± →W±Z0H± →W±Z0

leptonic
36.1 fb−1

arXiv:1806.01532

H±± →W±W±H±± →W±W±H±± →W±W±

semileptonic
35.9 fb−1

arXiv:1905.07445

H±± →W±W±H±± →W±W±H±± →W±W±

leptonic
35.9 fb−1

arXiv:1709.05822

H±±H∓∓ →W±W±W∓W∓H±±H∓∓ →W±W±W∓W∓H±±H∓∓ →W±W±W∓W∓

leptonic
139 fb−1

ATLAS-CONF-2020-056

H±±H∓∓ → `+`+`−`−H±±H∓∓ → `+`+`−`−H±±H∓∓ → `+`+`−`−

leptonic
36.1 fb−1

arXiv:1710.09748

H±±H∓ →W±W±W∓Z0H±±H∓ →W±W±W∓Z0H±±H∓ →W±W±W∓Z0

leptonic
139 fb−1

ATLAS-CONF-2020-056

ATLAS Run-2ATLAS Run-2ATLAS Run-2

CMS Run-2CMS Run-2CMS Run-2

H± → τ±ντH± → τ±ντH± → τ±ντ
leptonic & hadronic

35.9 fb−1

arXiv:1903.04560

H± →W±A0H± →W±A0H± →W±A0

leptonic
35.9 fb−1

arXiv:1905.07453

H± → tbH± → tbH± → tb
leptonic
35.9 fb−1

arXiv:1908.09206

https://arxiv.org/abs/1607.05291
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CMS H± → cs semileptonic arXiv:2005.08900 4/35

In type II 2HDMs a light mH± decays predominantly to cs for low tanβ values:

I Require `, pmiss
T , and ≥ 4 jets (≥ 2 b-tagged)

I Top kinematic fit (KF) with mtop constraints
I Categorisation based on c-tagging (L,M,T)
I Discriminant is mjj of 2 non-b jets
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CMS H± → τ±ντ leptonic+hadronic arXiv:1903.04560 5/35

In type II 2HDMs a light mH± decays ∼exclusively to τν, is sizeable at heavy mH± :

I Three final states; τh+jets, `+τh, `+noτh
I Major bkg for τh+jets is j → τh (data-driven)
I Bkg for `+τh and `+noτh is tt (simulation)
I Simultaneous binned ML fit to mT(τh/`, pmiss

T )
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CMS H± → τ±ντ leptonic+hadronic arXiv:1903.04560 5/35

In type II 2HDMs a light mH± decays ∼exclusively to τν, is sizeable at heavy mH± :

I Three final states; τh+jets, `+τh, `+noτh
I Major bkg for τh+jets is j → τh (data-driven)
I Bkg for `+τh and `+noτh is tt (simulation)
I Simultaneous binned ML fit to mT(τh/`, pmiss

T )
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ATLAS H± → τ±ντ leptonic+hadronic arXiv:1807.07915 6/35

Search targets τh+jets, τh + e, τh + µ final states with MVA using BDTs:

I Signal binned in 3 final states & 5 mH± ranges
I Each final state trained vs dominant SM tt
I Validation of SM tt modelling in eµ CR
I Other major bkg is τh-misid with j → τh fakes

I fake-factors from data (pτh
T , n-prongs)

I validated in b-tag-veto CR
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ATLAS H± → τ±ντ leptonic+hadronic arXiv:1807.07915 7/35

The BDT scores are used as discriminating variables for the fitted regions:

I Upper limit of 4.2 pb – 2.5 fb
I Exclusion 5 – 7 times better than with 3.2 fb−1

I Interpretation in hMSSM scenario:
I All tanβ values excluded for mH± < 160 GeV
I For tanβ = 60 mH± ≤ 1.1 TeV is excluded
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CMS H± → tb hadronic arXiv:2001.07763 8/35

For the heavy mH± , the decay into top and bottom quarks is dominant:

I Fully hadronic B (FH) ' 45% ⇒ full mH± reco
I Resolved t and boosted W±/t topologies
I Major bkg are misid. b-jets & QCD multijet
I Discriminants are mtb and HT spectrums
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CMS H± → tb hadronic arXiv:2001.07763 8/35

For the heavy mH± , the decay into top and bottom quarks is dominant:

I Fully hadronic B (FH) ' 45% ⇒ full mH± reco
I Resolved t and boosted W±/t topologies
I Major bkg are misid. b-jets & QCD multijet
I Discriminants are mtb and HT spectrums
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ATLAS H± → tb semileptonic ATLAS-CONF-2020-039 9/35

Full Run 2 analysis (139 fb−1) focused on single lepton channel (best significance):

I Require 1`± = e±, µ±, ≥ 5 jets (≥ 2 b-tagged)
I Event classification with jet/b jet multiplicity
I Mass-parametrised NN trained with all mH±

I Main bkg is tt+jets (data/MC corrections)
1 Correct the jet multiplicity distribution
2 Correct the HT distribution (for each Nj)
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ATLAS H± → tb semileptonic ATLAS-CONF-2020-039 10/35

Model-independent limits on σH± · B (H± → tb) using the CLS method:

I Simultaneous binned ML fit to 4 NN outputs
I 5j3b, 5j≥4b, ≥6j≥3b, ≥6j≥4b

I One fit for each masspoint mH±

I Improvement wrt 36.1 fb−1 results (high mH±)
I Systematics-limited at low mH±
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CMS H± →W±Z0 and H±± →W±W± semileptonic arXiv:1905.07445 11/35

In the GM model H± and H±± are produced via VBF:

I Semileptonic WV (1`) and ZV (2`) decays
I Hadronic V reconstructed as AK8 (τV

21 < 0.55)
I Leptonic W reconstructed from solving the pνz
I Major bkg is W+jets (WV) and Z+jets (ZV)
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CMS H± →W±Z0 and H±± →W±W± semileptonic arXiv:1905.07445 12/35

I Use WV & ZV to extract limits on
σVBF · B

(
H± →W±Z0)

I Use WW channel to extract limits on
σVBF · B (H±± →W±W±)

I Combine WV , ZV , WW for GM model limits
I Exclude sH > 0.53 for mH5 = [0.6, 2] TeV
I Theoretically inaccessible

interpretation in GM model
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ATLAS H±±H∓(∓) →W±W±W∓W∓(Z0) ATLAS-CONF-2020-056 13/35

Search motivated by the rich scalar phenomenology in type II seesaw model: NEW

I 6 SRs for each mH± hypothesis
2`SC ee, µµ, eµ (SC=same-charge)
3` same-flavour opposite-sign ` pairs (0, 1 || 2)
4` treated globally

I SM WZ dominant (MC with norm. from data)
I Non-prompt ` & charge-flip e (data-based)

I b-/c-hadron decays, π± → e±

I e-interactions e± → e±γ → e±e±e∓

pair production
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ATLAS H±±H∓(∓) →W±W±W∓W∓(Z0) ATLAS-CONF-2020-056 14/35

Upper limits on σPP · B (H±±H∓∓ →W±W±W∓W∓) at 95% CL: NEW

I By combination of 2`SS, 3`, 4` channels
I A type II seesaw model with vt= O (100) MeV
I Observed lower limit on mH±± is 350 GeV
I Uncertainties range from 10–30%. Sources:

I non-prompt ` (statistical)
I theory (PS model, higher order corr., PDF)

pair production (PP)
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Upper limits on σAP · B
(
H±±H∓ →W±W±W∓Z0) at 95% CL: NEW

I By combination of 2`SS, 3`, 4` channels
I A type II seesaw model with vt= O (100) MeV
I Observed lower limit on mH±± is 220 GeV
I Limit in AP mode weaker than in PP mode:

I Different BRs for channels (16% vs. 26%)
I SRs optimised to maximise sensitivity for PP

associated production (AP)
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Presented latest results on searches for H± and H±± at ATLAS & CMS:
I No evidence for BSM physics observed
I Large regions of 2HDMs & HTMs parameter space are now excluded
I New results coming soon with full Run 2 Legacy data:

I Almost ×4 more statistics for both experiments
I Improved machine learning methods for event & object classification
I More categorisation to increase sensitivity
I New search channels with sensitivity to unexplored regions
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thank you.
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I Santander matching on page 19
I MSSM benchmark scenarios on page 20
I Single-charged Higgs boson decay on page 21
I Doubly-charged Higgs boson production on page 23
I CMS H± → tb arXiv:2001.07763 on page 24
I CMS H± →W±A0 arXiv:1905.07453 on page 27
I CMS H± →W±Z0 arXiv:1901.04060 on page 29
I ATLAS H±± →W±W± arXiv:1808.01899 on page 32
I ATLAS H± →W±Z0 arXiv:1806.01532 on page 34
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The predictions of 4FS and 5FS calculated at NLO can be combined using the
Santander matching scheme arXiv:1112.3478:

σmatched = σ4FS + w · σ5FS
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where σ4FS and σ5FS denote the respecitve total inclusive cross sections.
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https://arxiv.org/abs/1112.3478
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG
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Different benchmark scenarios correspond to different sets of MSSM parameters:

Scenario
MSUSY µ M2 X os

t XMS
t Ml̃3

(GeV) (GeV) (GeV) (GeV) (GeV) (GeV)
mmax

h 1000 200 200 2MSUSY
√
6MSUSY 1000

mmod+
h 1000 200 200 1.5MSUSY 1.6MSUSY 1000

mmod−
h 1000 200 200 -1.9MSUSY -2.2MSUSY 1000

Light stop 500 350 350 2MSUSY 2.2MSUSY 1000
Light stau 1000 500 200 1.6MSUSY 1.7MSUSY 245
Light stau (∆τ corr.) 1000 450 400 1.6MSUSY 1.7MSUSY 250
τ -phobic Higgs 1500 2000 200 2.45MSUSY 2.9MSUSY 500
Low-Mh 1500 free 200 2.45MSUSY 2.9MSUSY 1000

I hMSSM: h0 = H0
125, MSUSY ∼ 1 TeV, Higgs sector described by {tanβ,mA0}

and h0 phenomenology by couplings to V, t, b
I M125

h : Heavy superparticles⇒production & decay of MSSM Higgs bosons only
slightly affected by them

I mmax
h : maximal stop mixing, gives maximal light mh0 for fixed {tanβ,mA0}

I mmod
h : modified mmax

h , Xt/MSUSY reduced to give mh0 = 125 GeV for larger
parameter space. +/- according to sign of Xt/MSUSY (Xt = At − µ cotβ)
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The H± decay BRs in the hMSSM benchmark scenario are shown below:
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by Artur Gottmann

mailto:artur.akhmetshin@cern.ch
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The H± decay BRs in the M125
h benchmark scenario are shown below:
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The doubly-charged Higgs boson can be produced via 3 main processes:

pair production (PP)

q

q
γ∗/Z0

H++

H−−

associated production (AP)

q

q′
W+

H++

H−

vector boson fusion (VBF)

q q′

W+

W+

H++

q q′

H±± decays have unique signatures which can be utilised in direct searches:
type II seesaw model

H++→W+H+
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H++→l+ l+
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https://arxiv.org/abs/1903.02493
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Both analyses selected fully-hadronic final states by enforcing lepton vetoes:
Resolved t

1 ≥ 7 AK4 jets, ≥ 3 b-tags
2 HT > 500 GeV
3 2 resolved tops with BDTG ≥ 0.4

custom tagger trained in tt sample
signal

t

b

q

q

bkg

t

b

q

q

bkg

t

b

q

q

bkg

t

b

q

q

4 Reconstruct mH± using tetrajet from:
I leading in pT resolved top
I leading in pT free b jet

5 Search for excess in the mtb spectrum

Boosted W±/t
1 ≥ 1 AK8 jets, ≥ 1 b-jets
2 Jet substructure used for W±/t tag

Boosted W±

I τW21 < 0.6

I mW
SD ∈ [65, 105]

I 0 b-subjets

Boosted t
I τ top32 < 0.67

I mtop
SD ∈ [135, 220]

I 0 or 1 b-subjets

3 Reconstruct mH± from AK8+AK4

Boosted W±

I W+b+b

I W+b+j

Boosted t
I t0b+b

I t1b+b
4 Nj , Nb, ∆mH± categorisation
5 Search for excess in HT of ∆mH±
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Resolved t

I Minor Genuine-b estimated
from simulation

I Main Fake-b measured from
data by inverting top- &
b-tagging selections

NSR
i =

∑
i

NAR
i ·

(
NCR1

i
NCR2

i

)
i runs over pT and η bins

Boosted W±/t

I Dominant QCD multijet (∼ 90%)
I Shape from CR: Mirror (invert τW21 and τ top32 )
I Norm from below/above ∆mH± (sidebands)

I tt with CR: Single Leptonic
I 1` with 10 < pT < 35 GeV

I The CRs and SRs are simultaneously fitted to:
I determine normalisation
I determine shape of the bkg distributions
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Combination of H± → tb leptonic & H± → tb hadronic final states:
I Single lepton dominates entire mH± spectrum
I Dilepton sensitive at low mH± region (∼ 20% gain)
I Hadronic ∼comparable to dilepton at low mH±

I Hadronic competes with Single lepton at 3 TeV (∼ 30% gain)
Combination H± → τ±ντ + H± → tb leptonic is also shown

upper limit of 9.25 pb – 5 fb
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First LHC search for light mH± decaying to WA in any range of mH± :

I Target eµµ or µµµ with A0 → µ+µ−

I B
(
A0 → µ+µ−

)
small but high εµID and σ(pµ

T)
pµ

T

I Major bkg is tt with nonprompt leptons
I Excess search in mass windows w of mµ+µ−

t̄

t
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b
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W−

q′/ℓ−

q̄/ν
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mµ+µ− of A0 → µ+µ− candidates
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Upper limits at 95% CL on B (t→ bH+) · B
(
H± →W±A0) · B (A0 → µ+µ−

)
:

I Based event yields in w from eµµ & µµµ

I Upper limit between 0.63 – 2.9%
I Sensitivity dominated by stat. uncertainty
I Limit difference smaller than uncertainties
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Event selection with 3 lepton candidates:
I OSSF dilepton (`±`∓) with pT > 25 (15) GeV and |m`±`∓ −mPDG

Z0 | < 15 GeV
I 3rd isolated lepton `′ with pT > 20 GeV
I pmiss

T > 30 GeV
I ≥ 2 AK4 jets with pT > 50 GeV, |η| < 4.7, mj1j2 > 500 GeV, ∆η(j1, j2) > 2.5
I Shifted pseudorapidity cut |η∗3`| = |η3` − 1

2 (ηj1 + ηj2)| < 2.5 arXiv:9605444

Signal
q

q

q0

q0

W±

Z

H±

EW bkg
q

q

q0

q0

W±

Z

QCD bkg
q

q̄

g

g

W±

Z

Additional selections for background suppression:
I 4thlepton veto with pT > 10 GeV
I b jet veto with pT > 30 GeV and |η| < 4.7 (suppress tt)
I m`±`∓ > 4 GeV (against collinear emission & low mass resonances)
I m3` > 100 GeV (suppress Z0 production with FSR)

https://arxiv.org/abs/9605444
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ML fit to the transverse mass to extract limits on H± production cross section:
I mT (WZ) =

√(
EW

T + EZ
T
)2 − (~pW

T + ~pZ
T
)2

I W is constructed from pmiss
T and `′ not associated with m`±`∓

Background estimation:
I Prompt ` backgrounds (Zγ, VV,

top, EW-WZjj) estimated from
simulation

I QCD-WZjj normalisation from a
control region

I Nonprompt ` background estimated
from data ("tight-to-loose method")

Tue Dec 18 23:38:08 2018
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95% upper limits on σVBF · B
(
H± →W±Z0) and sH using CLS criterion:

model-independent limits
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I Assuming intrinsic ΓH± is narrow I Upper limit of 0.52 pb – 0.44 fb on sH

I Assuming B
(
H± →W±Z0) = 1

I Theoretically inaccessible
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A search motivated by the rich scalar phenomenology in type II seesaw model:

I Three final states; 2`SS, 3`, 4`
I 6 SRs for each mH± hypothesis

2`SS ee, µµ, eµ
3` SFOS ` pairs (0, 1 || 2)
4` treated globally

I Major bkgs: q-misid (brem) & fake `’s
I Mass- & channel-dependent optimisation

PP suppressed at large mH±±

q

q
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boosted W±’s for low mH±±
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Upper limits on σDY PP · B (H±±H∓∓ →W±W±W∓W∓) at 95% CL:
I Obtained from the combination of 2`SS, 3`, 4` channels
I Observed lower limit on mH±± is 220 GeV (linear interp. of sensitivity)
I Dominant systematic uncertainties are q-misid and fake `′s
I Search sensitivity dominated by stat. uncertainty of event yields in SRs

Event yields in SRs for mH±± = 200 GeV
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In the GM model H± are produced via the VBF process pp→W±Z0jj :

I Search targets fully leptonic channel with 3`
I 2`OSSF, |m`` −mZ0 | < 20 GeV
I W reco from solving the pνz (mW± constraint)
I |∆ηjj | > 3.5, mjj > 500 GeV
I Bkg is SM WZ bkg (norm. & shape from MC)

q q
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W±q q′
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Exclusion limits on σVBF · B
(
H± →W±Z0) and the GM model parameter sin θH :

I 2.9σlocal (1.6σglobal) excess at mH± ' 450 GeV
I Dominant syst. uncert. is WZ modelling
I Sensitivity dominated by stat. uncertainty
I Theoretical intrinsic ΓH± > 5 (10)% of mH±
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