

<u>Search for LFV, rare, and</u> <u>invisible Higgs boson</u> <u>decays at CMS and ATLAS</u>

Prasanna Kumar Siddireddy University of Notre Dame

On behalf of the CMS and ATLAS collaboration

Higgs 2020 - Stony Brooks - 26 October, 2020

Overview

- $H \to Z \rho / Z \phi$ at CMS
- $H \rightarrow J/\psi \gamma$ at CMS
- $H \to J/\psi\gamma, \psi(2S)\gamma, \Upsilon(nS)\gamma$ at ATLAS
- $H \rightarrow Z\gamma$ at ATLAS
- $H \to Z\gamma/\gamma^*\gamma$ at CMS
- $H \rightarrow ee$ at ATLAS
- LFV $H \rightarrow e \mu$ at ATLAS
- LFV $H \rightarrow \mu \tau / e \tau$ at ATLAS
- LFV $H \rightarrow \mu \tau / e \tau$ at CMS
- $VBFH \rightarrow invisible$ at ATLAS
- $t\bar{t}H \rightarrow invisible$ at ATLAS
- $H \rightarrow invisible$ combination at ATLAS
- $ZH \rightarrow invisible$ at CMS
- $H \rightarrow invisible$ combination at CMS

Introduction

- Rare decays of the SM-like Higgs boson to mesonic final states provide a unique window onto light quark Yukawa couplings
- SM predicts decay of Higgs boson into $Z\gamma$ through loop diagrams
- LFV decays of Higgs boson are a clear signature for BSM physics
- Higgs boson decays to DM particles can be indirectly inferred through missing transverse momentum as they escape detection

Search for $H \rightarrow Z\rho/Z\phi$

- First limits in this channel with full Run 2 data
- Selection:
 - Meson candidates: $p_T^{trk} > 1 \, {\rm GeV}$, $p_T^{leading\,trk} > 10 \, {\rm GeV}$, $\Delta R < 0.1$
 - Isolation: $I^{trk} < 0.5 \,\mathrm{GeV}$
 - ρ candidate: $0.6 < m_{\pi\pi} < 1.0 \,\text{GeV}$
 - ϕ candidate: $1.005 < m_{KK} < 1.035\,{\rm GeV}$
- Parametrization:
 - Background: Chebyshev polynomials (order 2 to 5)
 - Signal: Binned template with a bin width of 1GeV
- Results:
 - Observed 95% CL Upper Limits: $B(H \rightarrow Z\rho) < 1.04 1.31\%$
 - and $B(H \to Z\phi) < 0.31 0.40 \%$
 - Variation in limits comes from polarization

assumption: longitudinal - transversal (see <u>backup</u>)

transversely polarized)

 $m_{\mu\mu\gamma}$ (GeV)

LAS Search for $H \to J/\psi\gamma, \psi(2S)\gamma, \Upsilon(nS)\gamma$

- These searches probe anomalous Higgs coupling to c- and bquarks
- Selection:
 - $\psi(nS) \rightarrow \mu^+ \mu^-$ candidates: $2.0 < m_{\mu^+ \mu^-} < 4.2 \,\text{GeV}$
 - $\Upsilon(nS) \rightarrow \mu^+ \mu^-$ candidates: $8.0 < m_{\mu^+ \mu^-} < 12.0 \,\text{GeV}$
 - $\Delta \phi(Q,\gamma) > \pi/2$, $40(34) < p_T^Q < 54.4(52.7) \,\text{GeV}$ for $\psi(nS)(\Upsilon(nS))$
- Parametrization:
 - \odot Signal: Bi-variate Gaussian distributions ($m_{\mu^+\mu^-\gamma}$ and
 - $m_{\mu^+\mu^-}$)
 - \odot Background: From "Generation Region Loose Isolation, $p_T^Q>30"$ by sampling the pdfs

Results:

- Observed (Expected) Upper Limits at 95% CL:
- $B(H \to J/\psi\gamma) = 3.5 (3.0) \times 10^{-4}$, $B(H \to \psi(2S)\gamma) = 19.8 (15.6) \times 10^{-4}$
- $B(H \to \Upsilon(nS)\gamma) = 4.9, 5.9, 5.7 (5.0, 6.2, 5.0) \times 10^{-4}$

Search for $H \to Z\gamma$

arXiv:2005.05382

• SM Higgs boson can decay into $Z\gamma$ through loop diagrams: $B(H\to Z\gamma)=(1.54\pm0.09)\times10^{-3}$

• Selection:

- FSR correction + constrained kinematic fit improves mass resolution by 14% for $H \rightarrow ee\gamma$ and 10% for $H \rightarrow \mu\mu\gamma$
- \odot To reduce background and simplify background modeling $p_T^\gamma/m_{Z\gamma}>0.12$

● Parametrization:

- Background: Bernstein Polynomial, Power, or exponential
- Signal: Double-sided Crystal Ball

• Results:

• Observed (Expected) Upper Limits at 95% CL on $\sigma \times BR$: 3.6 (2.6) times the SM prediction

Search for $H \rightarrow Z\gamma/\gamma^*\gamma$

H q $\ell^ \gamma^*/Z$ $\ell^ \gamma^*/Z$ ℓ^+

● Parametrization:

- Background: Bernstein Polynomial, Power, or exponential
- Signal: Double-sided Crystal Ball for $H \to \gamma^* \gamma$, Crystal Ball + Gaussian for $H \to Z \gamma$

• Results:

- Observed (Expected) Upper Limits on
 - $\sigma \times BR$ vary between 1.4 and 4.0 (6.1 and
 - 11.4) times the SM cross section for
 - $H \to \gamma^* \gamma / Z \gamma$
- 3.9 (2.0) for the combination

arXiv:1806.05996

Search for $H \rightarrow ee$

arXiv:1909.10235

• In the SM, the
$$H \to ee~{\rm BR}$$
: $G_F m_H m_e^2 / \left(4\sqrt{2}\pi\Gamma_H\right) \simeq 5 \times 10^{-9}$

- Selection:
 - $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} < 3.5\,{\rm GeV^{1/2}}$ for bkg. suppression
- Parametrization:
 - Background: Sum of a Breit-Wigner convoluted with
 - a Gaussian, and an exponential divided by a cubic function
 - Signal: Sum of a Crystal-Ball and a Gaussian function
- o Categories:
 - VBF: $|\Delta \eta_{jj}| > 3$, $m_{jj} > 500 \,\text{GeV}$

• NonVBF: 'Central' if
$$|\eta^{\ell}| < 1.0$$
 else 'Non-central
• 'Low $p_T^{\ell\ell}$ ' $(p_T^{\ell\ell} \le 15 \text{ GeV})$
• 'Mid $p_T^{\ell\ell}$ ' $(15 < p_T^{\ell\ell} \le 50 \text{ GeV})$

• 'High $p_T^{\ell\ell}$ ' ($p_T^{\ell\ell} > 50 \,\mathrm{GeV}$)

- Results:
 - Observed (Expected) Upper Limits
 - at 95% CL: $3.6 \times 10^{-4} (3.5 \times 10^{-4})$
 - Factor of 5 improvement from

previous result

Statistically limited with

largest systematic contribution

from bkg. modeling uncertainty

Search for LFV $H \rightarrow e\mu$

Strong indirect constraints on $Y_{e\mu}$ from $\mu \to e\gamma$

 $\sqrt{|Y_{\mu e}|^2 + |Y_{e\mu}|^2} < 3.6 \times 10^{-6}$

- Selection: $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} < 1.75\,{\rm GeV}^{1/2}$ for bkg. suppression
- Categories: $H \rightarrow ee$ categories + 'Low p_T^{ℓ} ' ($p_T^{\ell,2} < 27 \,\text{GeV}$) due to non-prompt origin of lepton or is a misidentified photon or hadron
- Parametrization:
 - Background Model: Bernstein Polynomial
 - Signal Model: Crystal-Ball plus a Gaussian function
- Results:
 - Observed (Expected) Upper Limits at 95% CL: $6.2 \times 10^{-5} (5.9 \times 10^{-5})$
 - Factor of 6 improvement from previous result
 - Statistically limited with largest systematic contribution from the Higgs boson production x-sec uncertainty 10

Search for LFV $H \rightarrow \mu \tau / e \tau$

arXiv:1901.06131

 10^{-1}

|Y_e_t|

- Search involves both leptonic $(\tau \rightarrow \ell' \nu \bar{\nu})$ and hadronic $(\tau \rightarrow hadrons + \nu)$ decays of τ leptons
- Dilepton final state $\ell au_{\ell'}$ only considers pairs of differentflavor leptons due to the large DY background

Results:

Observed (Expected) Upper Limits at 95% CL: $B(H \to e\tau) = 0.47(0.34^{+0.13}_{-0.10})\%$ and $B(H \to \mu \tau) = 0.28(0.37^{+0.14}_{-0.10})\%$ Yukawa: $\sqrt{|Y_{\tau e}|^2 + |Y_{e\tau}|^2} < 0.0020$ and $\sqrt{|Y_{\tau\mu}|^2 + |Y_{\mu\tau}|^2} < 0.0015$

Search for LFV $H \rightarrow \mu \tau / e \tau$

- In Run 1, a small excess of data w.r.t. the SM background-only hypothesis was observed in the $H \rightarrow \mu \tau$ channel (2.4 σ), Best-fit: $B(H \rightarrow \mu \tau) = (0.84^{+0.39}_{-0.37})\%$
- Results:
 - Excess observed in Run 1 was excluded with the 2016 results

arXiv:1712.07173

Search for VBF $H \rightarrow invisible$

SR10

1%

SR5

2%

3.5

m_{ii} [TeV]

• Selection:
$$p_T^{jet,1} > 80 \,\text{GeV}, p_T^{jet,2} > 50 \,\text{GeV}, p_T^{jet,3,4} > 25 \,\text{GeV},$$

 $\eta^{j1} \cdot \eta^{j2} < 0 \text{ and } \Delta \eta_{jj} > 3.8$

• CRs enriched in Z(ll) + jets and $W(l\nu) + jets$ are defined to constrain the MC normalization

• Results:

background process

```
Observed (Expected) Upper Limits at 95% CL
  B(h \rightarrow invisible) : 0.13 (0.13^{+0.05}_{-0.04})
```


Search for $ttH \rightarrow invisible$

- **O-lepton final state:** # of b-tagged jets ≥ 2 , $E_T^{miss} > 250 \,\text{GeV}$, $m_2^{R=1.2} = [0, 60, 120, \infty] \,\text{GeV}$
- Backgrounds Z + jets, W + jets, $t\bar{t}Z$, $t\bar{t}$, and tW modeled with MC and constrained in CRs
- 2-lepton final state: # of b-tagged jets ≥ 1 , $E_T^{miss} - significance > 12$
- Backgrounds $t\bar{t}Z$, $t\bar{t}$ modeled with MC and constrained in CRs; fake lepton bkg. estimated in data-driven way
- Results:
 - Observed (Expected) Upper Limits at 95% CL $B(h \rightarrow invisible) : 0.94 (0.64^{+0.29}_{-0.19}), 0.37 (0.42^{+0.19}_{-0.12})$ for $t\bar{t}H - 0l$, $t\bar{t}H - 2l$ channels

<u>arXiv:2004.14060</u>

ATLAS-CONF-2020-046

Search for $H \rightarrow invisible$ combination

ATLAS-CONF-2020-052

- VBF $H \rightarrow inv$ and $ttH \rightarrow inv$ results from full Run 2 combined with Run 1 results to set the most stringent limit on $H \rightarrow inv$ to date
- \circ No overlap between the events selected for the VBF and $t\bar{t}H$ topologies was found

• $t\bar{t}Z$ -CR from the $t\bar{t}H - 2\ell$ analysis is used to constrain the $t\bar{t}Z$ background in both channels

Analysis	\sqrt{s} [TeV]	Int. luminosity $[fb^{-1}]$	Best fit $\mathcal{B}_{H \to \mathrm{inv}}$	Observed upper limit	Expected upper limit	Reference
Run 2 VBF	13	139	$0.00\substack{+0.07 \\ -0.07}$	0.13	$0.13\substack{+0.05 \\ -0.04}$	[42]
Run 2 $t\bar{t}H$	13	139	$0.04_{-0.20}^{+0.20}$	0.40	$0.36\substack{+0.15 \\ -0.10}$	This document
Run 2 Comb.	13	139	$0.00\substack{+0.06 \\ -0.07}$	0.13	$0.12\substack{+0.05 \\ -0.04}$	This document
Run 1 Comb.	7, 8	4.7, 20.3	$-0.02^{+0.14}_{-0.13}$	0.25	$0.27\substack{+0.10 \\ -0.08}$	[36]
Run $1+2$ Comb.	7, 8, 13	4.7, 20.3, 139	$0.00\substack{+0.06\\-0.06}$	0.11	$0.11\substack{+0.04 \\ -0.03}$	This document

- Previous Run 1+2 combination done by ATLAS has Observed (Expected) limits at 95% CL at $0.26(0.17^{+0.07}_{-0.05})$ - details in <u>backup</u>
- Translation of the $H \rightarrow inv$ result into σ_{WIMP-N} relies on an effective field theory approach; Nuclear form factor $f_N = 0.308 \pm 0.018$ is used 15

Search for $ZH \rightarrow invisible$

arXiv:2008.04735

• "Higgs portal" model: If $m_{\chi} < m_h/2$, the Higgs boson could decay invisibly into a pair of DM particles

• Selections: -

- Results:
 - Observed (Expected) Upper Limits at 95% CL $B(h \rightarrow invisible) : 0.29 (0.25^{+0.09}_{-0.07})$

Quantity	Requirement	Target backgrounds
N_ℓ	=2 with additional lepton veto	WZ, VVV
p_{T}^ℓ	>25/20 GeV for leading/subleading	Multijet
Dilepton mass	$ m_{\ell\ell}-m_Z <15{ m GeV}$	WW, top quark
Number of jets	\leq 1 jet with $p_{ m T}^{ m j}$ $>$ 30 GeV	DY, top quark, VVV
$p_{\mathrm{T}}^{\ell\ell}$	>60 GeV	DY
b tagging veto	0 b-tagged jet with $p_{\rm T} > 30 {\rm GeV}$	Top quark, VVV
au lepton veto	0 $\tau_{\rm h}$ cand. with $p_{\rm T}^{ au} > 18 { m GeV}$	WZ
$\Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{j}},ec{p}_{\mathrm{T}}^{\mathrm{miss}})$	>0.5 radians	DY, WZ
$\Delta \phi(ec{p}_{\mathrm{T}}^{\overline{\ell}\ell},ec{p}_{\mathrm{T}}^{\mathrm{miss}})$	>2.6 radians	DY
$ p_{\mathrm{T}}^{\mathrm{miss}}-p_{\mathrm{T}}^{\ell\ell} /p_{\mathrm{T}}^{\ell\ell}$	< 0.4	DY
$\Delta ar{R}_{\ell\ell}$	<1.8	WW, top quark
$p_{T_{\perp}}^{\text{miss}}$ (all but 2HDM+a)	>100 GeV	DY, WW, top quark

Search for $H \rightarrow invisible$ combination

arXiv:1712.07173

• Current analysis exploits the distinctive kinematic features of the VBF topology by fitting the shape of the m_{jj} distribution

- Results:
 - Observed (Expected) Upper Limits at 95% CL $B(h \rightarrow invisible) : 0.19 (0.15^{+0.04}_{-0.04})$

- Search for $H \rightarrow Z \rho / Z \phi$ performed with full Run 2 data at CMS
- $H \to J/\psi\gamma$ and $H \to J/\psi\gamma, \psi(2S)\gamma, \Upsilon(nS)\gamma$ have been performed with 2016 data at CMS and ATLAS
- Search for $H \rightarrow Z\gamma$ performed with full Run 2 data at ATLAS and with 2016 data at CMS
- Full Run 2 results from CMS are currently in the approval process
- $H \rightarrow ee$ search performed with full Run 2 data at ATLAS along with search for LFV $H \rightarrow e\mu$ • Both CMS and ATLAS have performed LFV $H \rightarrow \mu \tau / e\tau$ searches using the 2016 dataset • Full Run 2 results from CMS are currently in the approval process
- Some full Run 2 $H \rightarrow invisible$ results are published with others soon to be published
- Both CMS and ATLAS have performed the $H \rightarrow invisible$ search using the 2016 dataset and their corresponding combination with Run 1 results have been presented
- Available parameter space for new physics dramatically reduced after Run 2 of the LHC

Backup

Search for $H \rightarrow Z\rho/Z\phi$

- In SM: $B(H \to Z\rho) = (1.4 \pm 0.08) \times 10^{-5}$ and $B(H \to Z\phi) = (4.2 \pm 0.25) \times 10^{-6}$
- The direct process is negligible, but significantly enhanced light quark Yukawa couplings would increase the prevalence of it
- Meson candidate reconstructed using high-purity tracks; Not overlapping with the leptons; Select the pair with highest $p_T \rightarrow \text{maximizes}$ correct selection of meson candidates
- Signal events generated with POWHEG, with $H \rightarrow Z \rho / Z \phi$ modeled with PYTHIA \rightarrow isotropic modeling of decay even though polarization does play a role
- Calculate angular distributions in limit of extreme polarization scenarios: (longitudinally polarized, transversely polarized) x (leptons same helicity, opposite helicity)

- MLP input variables are built using tracks matched by ghost-association to the calorimeter jet and their angles from the jet axis, in order to benefit from the high resolution of the tracking detector
- These variables primarily capitalize on the presence of a narrow resonance, or twopronged substructure in the track system
- An initial data-driven background estimate in the SR is calculated as D = BC/A, then MC samples, reweighted to match data, are used to correct this estimate for the 13% correlation between the m_{lli} and M variables

ATLAS Search for $H \to J/\psi\gamma, \psi(2S)\gamma, \Upsilon(nS)\gamma$

• In SM, $B(H \to J/\psi\gamma) = 2.99 \times 10^{-6}$, $B(H \to \psi(2S)\gamma) = 1.03 \times 10^{-6}$, $B(H \to \Upsilon(nS)\gamma) = (5.22, 1.42, 0.91) \times 10^{-9}$ for (n = 1, 2, 3)

Generation Region

Search for $H \rightarrow Z\gamma$

Background: Non-resonant production of a Z boson and a photon + production of Z bosons in association with jets, with one jet misidentified as a photon

• Selection:

- Photon candidates within $\Delta R = 0.3$ cone around the leptons are rejected to suppress FSR
- Resolution of invariant mass of $Z \rightarrow \mu\mu$ candidates is improved by 3% by correcting muon momenta for collinear **FSR** $\Delta R < 0.15$, using all photons identified in EM calorimeter
- Constrained kinematic fit: Applied to dilepton invariant mass for all Z boson

candidates uses a line shape modeled by a Breit-Wigner distribution and a single Gaussian to model lepton momentum response

o Categorization:

- VBF-enriched category: BDT score > 0.87
- High relative p_T : $p_T^{\gamma}/m_{Z\gamma} > 0.4$
- $P_{Tt} = 40 \,\text{GeV}$ threshold used for other categories,

$$p_{Tt} = \left| \overrightarrow{p_T}^{Z\gamma} \times \hat{t} \right|, \ \hat{t} = \left(\overrightarrow{p_T}^{Z} - \overrightarrow{p_T}^{\gamma} \right) / \left| \overrightarrow{p_T}^{Z} - \overrightarrow{p_T}^{\gamma} \right| \right)$$

Search for $H \rightarrow Z\gamma/\gamma^*\gamma$

- In SM: $\mathscr{B}(H \rightarrow \gamma^* \gamma) = (1.69 \pm 0.10)\%$ and $\mathscr{B}(H \to Z\gamma) = (2.27 \pm 0.14)\%$ w.r.t. $\mathscr{B}(H \to \gamma\gamma)$
- Selection $H \to Z\gamma$: $\odot~M_{ll} > 50\,{\rm GeV}$ with $M_{ll\gamma} + M_{ll} > 185\,{\rm GeV}$ to reject events with FSR from DY processes • $E_T > 0.14 m_{ll\gamma}$ rejects the Z+jets background • Di-jet event selection: $|\eta_{j1} - \eta_{j2}| > 3.5$, $\eta_{Z\gamma} - (\eta_{j1} + \eta_{j2})/2 < 2.5$, $M_{j1j2} > 500 \,\text{GeV}$, $\Delta \phi_{i1i2-Z\gamma} > 2.4$
- Selection $H \rightarrow \gamma^* \gamma$: • $M_{\mu\mu} < 50 \,\text{GeV}$, Reject J/ψ : $2.9 < M_{\mu\mu} < 3.3 \,\text{GeV}$ and Y: $9.3 < M_{\mu\mu} < 9.7 \,\text{GeV}$ $\circ p_T^\gamma/M_{\mu\mu\gamma}>0.3$, $p_T^{\mu\mu}/M_{\mu\mu\gamma}>0.3$ rejects the $\gamma^* + jet$ and $\gamma + jet$ backgrounds $\Delta R > 1$ to suppress DY background events

with FSR

Lepton tagAdditional electron $(p_T > 7 \text{ GeV})$ or muon $(p_T > 5 \text{ GeV})$ Dijet tagAt least 2 jets required dijet selectionAt least 2 jets required dijet selectionBoosted $p_T(ee\gamma) > 60 \text{ GeV}$ $p_T(\mu\mu\gamma) > 60 \text{ GeV}$ Untagged 1Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ $R_9 > 0.94$ Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 2.1$ and one lepton $0 < \eta < 0.9$ $R_9 < 0.94$ Untagged 3Photon $0 < \eta < 1.4442$ At least one lepton $1.4442 < \eta < 2.5$ No requirement on R_9 Photon $0 < \eta < 1.4442$ Both leptons $ \eta > 0.9$ or one lepton in $2.1 < \eta < 2.4$ No requirement on R_9 Untagged 4Photon $1.566 < \eta < 2.5$ Both leptons $0 < \eta < 2.5$ No requirement on R_9 Photon $1.566 < \eta < 2.5$ Both leptons $0 < \eta < 2.4$ No requirement on R_9	Category	${ m e^+e^-\gamma}$	$\mu^+\mu^-\gamma$
Dijet tagAt least 2 jets required dijet selectionAt least 2 jets required dijet selectionBoosted $p_T(ee\gamma) > 60 \text{ GeV}$ $p_T(\mu\mu\gamma) > 60 \text{ GeV}$ Untagged 1Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ $R_9 > 0.94$ Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 2.1$ and one lepton $0 < \eta < 0.9$ $R_9 > 0.94$ Untagged 2Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ R > 0.94Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 0.9$ $R_9 < 0.94$ Untagged 3Photon $0 < \eta < 1.4442$ Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ Both leptons $0 < \eta < 2.5$ No requirement on R_9 Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 2.4$ No requirement on R_9 Untagged 4Photon $1.566 < \eta < 2.5$ No requirement on R_9 Photon $1.566 < \eta < 2.5$ Both leptons $0 < \eta < 2.4$ No requirement on R_9	Lepton tag	Additional electron ($p_{\rm T} > 7 {\rm Ge}$	V) or muon ($p_{\rm T} > 5 {\rm GeV}$)
Boosted $p_{T}(ee\gamma) > 60 \text{ GeV}$ $p_{T}(\mu\mu\gamma) > 60 \text{ GeV}$ Untagged 1Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ $R_9 > 0.94$ Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 2.1$ and one lepton $0 < \eta < 0.9$ $R_9 > 0.94$ Untagged 2Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ $R_9 < 0.94$ Photon $0 < \eta < 0.9$ $R_9 > 0.94$ Untagged 3Photon $0 < \eta < 1.4442$ R least one lepton $1.4442 < \eta < 2.5$ No requirement on R_9 Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 2.5$ No requirement on R_9 Untagged 4Photon $1.566 < \eta < 2.5$ No requirement on R_9 Photon $1.566 < \eta < 2.5$ Both leptons $0 < \eta < 2.5$ No requirement on R_9	Dijet tag	At least 2 jets required dijet selection	At least 2 jets required dijet selection
Untagged 1Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ $R_9 > 0.94$ Photon $0 < \eta < 2.1$ and one lepton $0 < \eta < 2.1$ and one lepton $0 < \eta < 0.9$ $R_9 > 0.94$ Untagged 2Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ $R_9 < 0.94$ Photon $0 < \eta < 2.1$ and one lepton $0 < \eta < 2.1$ Both leptons $0 < \eta < 1.4442$ Both leptons $0 < \eta < 2.1$ and one lepton $0 < \eta < 2.1$ both leptons $0 < \eta < 2.1$ and one lepton $0 < \eta < 2.1$ both leptons $0 < \eta < 2.1$ both leptons $0 < \eta < 2.5$ No requirement on R_9 Untagged 4Photon $1.566 < \eta < 2.5$ No requirement on R_9 Untagged 4Photon $1.566 < \eta < 2.5$ No requirement on R_9	Boosted	$p_{\mathrm{T}}(\mathrm{ee}\gamma) > 60\mathrm{GeV}$	$p_{\mathrm{T}}(\mu\mu\gamma) > 60\mathrm{GeV}$
Untagged 2Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ $R_9 < 0.94$ Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 2.1$ and one lepton $0 < \eta < 2.1$ and one lepton $0 < \eta < 0.9$ $R_9 < 0.94$ Untagged 3Photon $0 < \eta < 1.4442$ At least one lepton $1.4442 < \eta < 2.5$ No requirement on R_9 Photon $0 < \eta < 1.4442$ Both leptons in $ \eta > 0.9$ or one lepton in $2.1 < \eta < 2.4$ No requirement on R_9 Untagged 4Photon $1.566 < \eta < 2.5$ No requirement on R_9 Photon $1.566 < \eta < 2.5$ Both leptons $0 < \eta < 2.4$ No requirement on R_9	Untagged 1	Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ $R_9 > 0.94$	Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 2.1$ and one lepton $0 < \eta < 0.9$ $R_9 > 0.94$
Untagged 3Photon $0 < \eta < 1.4442$ At least one lepton $1.4442 < \eta < 2.5$ No requirement on R_9 Photon $0 < \eta < 1.4442$ Both leptons in $ \eta > 0.9$ or one lepton in $2.1 < \eta < 2.4$ No requirement on R_9 Untagged 4Photon $1.566 < \eta < 2.5$ Both leptons $0 < \eta < 2.5$ No requirement on R_9 Photon $1.566 < \eta < 2.5$ Both leptons $0 < \eta < 2.5$ No requirement on R_9	Untagged 2	Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ $R_9 < 0.94$	$\begin{array}{l} \text{Photon } 0 < \eta < 1.4442\\ \text{Both leptons } 0 < \eta < 2.1\\ \text{and one lepton } 0 < \eta < 0.9\\ R_9 < 0.94 \end{array}$
Untagged 4Photon $1.566 < \eta < 2.5$ Both leptons $0 < \eta < 2.5$ No requirement on R_9 Photon $1.566 < \eta < 2.5$ Both leptons $0 < \eta < 2.4$ No requirement on R_9	Untagged 3	Photon $0 < \eta < 1.4442$ At least one lepton $1.4442 < \eta < 2.5$ No requirement on R_9	Photon $0 < \eta < 1.4442$ Both leptons in $ \eta > 0.9$ or one lepton in $2.1 < \eta < 2.4$ No requirement on R_9
	Untagged 4	Photon 1.566 $< \eta < 2.5$ Both leptons $0 < \eta < 2.5$ No requirement on R_9	Photon 1.566 $< \eta < 2.5$ Both leptons $0 < \eta < 2.4$ No requirement on R_9

CMS

Search for LFV $H \rightarrow \mu \tau / e \tau$

$ \begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} exactly \ l \ e \ and \ 1 \mu, \mbox{OS} & exactly \ 1 \ l \ and \ 1 \ \tau_{had} \mbox{-vis}, \mbox{OS} \\ p_T^{\ell_1} > 45 \ {\rm GeV} & p_T^{\Gamma_1 \mbox{-vis}} > 25 \ {\rm GeV}, \ \eta^{\tau_{had} \mbox{-vis}} < 2.4 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} p_T^{\ell_1} > 15 \ {\rm GeV} & p_T^{\Gamma_1 \mbox{-vis}} > 25 \ {\rm GeV}, \ \eta^{\tau_{had} \mbox{-vis}} < 2.4 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ p_T^{\ell_1} > 15 \ {\rm GeV} & p_T^{\Gamma_1 \mbox{-vis}} > 25 \ {\rm GeV}, \ \eta^{\tau_{had} \mbox{-vis}} < 2.4 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ p_T^{\ell_1} (track) / p_T^{\ell_1} (cluster) < 1.2 \ (\mu \ t_e \ only) & \Delta \eta (\ell, \ \tau_{had} \mbox{-vis}) < 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $						
$\begin{array}{c c} \mbox{exactly $1e$ and 1μ, OS} & \mbox{exactly $1e$ and 1π, ad-vis, OS}\\ p_T^{L_1} > 45 \ {\rm GeV} & p_T^{L_2} > 7.3 \ {\rm GeV} \\ p_T^{L_2} > 15 \ {\rm GeV} & p_T^{Thad-vis} > 25 \ {\rm GeV}, $ \eta^{Thad-vis} < 2.4$\\ 30 \ {\rm GeV} < $m_{\rm vis} < 150 \ {\rm GeV} & \sum_{i=\ell, {\rm Thad-vis}} > -0.35$\\ p_T^e({\rm track})/p_{\rm T}^e({\rm cluster}) < 1.2 (\mu \tau_e \ {\rm only}) & \Delta\eta(\ell, \tau_{\rm had-vis}) < 2\\ & b \ {\rm veto} \ ({\rm for \ jets \ with } p_{\rm T} > 25 \ {\rm GeV} \ {\rm ad} \eta < 2.4) \\ \end{array}$ $\begin{array}{c} {\rm Baseline} \\ {\rm VBF} & 2 \ 2 \ {\rm jets}, p_{\rm T}^{\rm il} > 40 \ {\rm GeV}, p_{\rm T}^{\rm il} > 30 \ {\rm GeV} \\ & \Delta\eta({\rm j_1}, {\rm j_2}) > 3, $m({\rm j_1}, {\rm j_2}) > 400 \ {\rm GeV} \\ & - & p_{\rm T}^{\rm Thad-vis} > 45 \ {\rm GeV} \\ \end{array}$ $\begin{array}{c} {\rm Baseline} \\ {\rm VBF} & 2 \ 2 \ {\rm jets}, p_{\rm T}^{\rm il} > 40 \ {\rm GeV}, $p_{\rm T}^{\rm il} > 30 \ {\rm GeV} \\ & \Delta\eta({\rm j_1}, {\rm j_2}) > 3, $m({\rm j_1}, {\rm j_2}) > 400 \ {\rm GeV} \\ & - & p_{\rm T}^{\rm thad-vis} > 45 \ {\rm GeV} \\ \end{array}$ $\begin{array}{c} {\rm Baseline} \\ {\rm VBF} & m_{\rm T}(\ell_1, E_{\rm T}^{\rm miss}) > 50 \ {\rm GeV} & - \\ & \Delta\phi(\ell_2, E_{\rm T}^{\rm miss}) < 40 \ {\rm GeV} \\ & - & p_{\rm T}^{\rm thad-vis} > 45 \ {\rm GeV} \\ \end{array}$ $\begin{array}{c} {\rm For \mbox{on-VBF}} & m_{\rm T}(\ell_2, E_{\rm T}^{\rm miss}) < 50 \ {\rm GeV} \\ & - & p_{\rm T}^{\rm thad-vis} > 45 \ {\rm GeV} \\ \end{array}$	Selection	$\ell au_{\ell'}$	$\ell au_{ m had}$			
$\begin{array}{c cccc} p_{T}^{P_{T}} > 45 \text{GeV} & p_{T}^{\ell} > 27.3 \text{GeV} \\ p_{T}^{P_{T}} > 15 \text{GeV} & p_{T}^{Thad-vis} > 25 \text{GeV}, \eta^{Thad-vis} < 2.4 \\ 30 \text{GeV} < m_{vis} < 150 \text{GeV} & \sum_{i=\ell, \tau_{\text{Ind} vis}} \cos \Delta\phi(i, E_{T}^{\text{miss}}) > -0.35 \\ i=\ell, \tau_{\text{Ind} vis} & p_{T}^{\ell}(\text{track})/p_{T}^{\ell}(\text{cluster}) < 1.2 (\mu\tau_{e} \text{ only}) & \Delta\eta(\ell, \tau_{\text{Ind} vis}) < 2 \\ b \text{-veto (for jets with } p_{T} > 25 \text{GeV and } \eta < 2.4) \\ \end{array}$ $\begin{array}{c} \text{Baseline} \\ \geq 2 \text{jets}, p_{T}^{j_{1}} > 40 \text{GeV}, p_{T}^{j_{2}} > 30 \text{GeV} \\ \Delta\eta(j_{1}, j_{2}) > 3, m(j_{1}, j_{2}) > 400 \text{GeV} \\ - & p_{T}^{\text{Thad-vis}} > 45 \text{GeV} \\ \end{array}$ $\begin{array}{c} \text{Baseline} \\ \text{Product} \\ \text{Baseline} \\ p_{T}(\ell_{2}, E_{T}^{\text{miss}}) > 50 \text{GeV} & - \\ p_{T}(\ell_{2}, E_{T}^{\text{miss}}) < 40 \text{GeV} & - \\ p_{T}^{\tau}/p_{T}^{\ell_{1}} > 0.5 & - \\ \end{array}$ $\begin{array}{c} \text{Fop-quark CR} \\ \text{inverted } b\text{-veto:} \\ \text{VBF and non-VBF} \geq 1 b\text{-tagged jet } (p_{T} > 25 \text{GeV and } \eta < 2.4) \\ \end{array}$		exactly $1e$ and 1μ , OS	exactly 1ℓ and $1\tau_{had-vis}$, OS			
Baseline $p_{T}^{\ell_{2}} > 15 \text{ GeV} \qquad p_{T}^{\text{Tual-vis}} > 25 \text{ GeV}, \eta^{\text{Tual-vis}} < 2.4$ $30 \text{ GeV} < m_{\text{vis}} < 150 \text{ GeV} \qquad \sum_{i \in \ell, \tau_{\text{tual-vis}}} \cos \Delta\phi(i, E_{T}^{\text{miss}}) > -0.35$ $p_{T}^{e}(\text{track})/p_{T}^{e}(\text{cluster}) < 1.2 (\mu \tau_{e} \text{ only}) \qquad \Delta \eta(\ell, \tau_{\text{hal-vis}}) < 2$ $b \text{-veto (for jets with } p_{T} > 25 \text{ GeV and } \eta < 2.4$) Baseline $VBF \qquad 22 \text{ jets, } p_{T}^{1} > 40 \text{ GeV}, p_{T}^{1} > 30 \text{ GeV}$ $ \Delta \eta(j_{1}, j_{2}) > 3, m(j_{1}, j_{2}) > 400 \text{ GeV}$ $- p_{T}^{\text{Tual-vis}} > 45 \text{ GeV}$ Baseline plus fail VBF categorization $m_{T}(\ell_{1}, E_{T}^{\text{miss}}) > 50 \text{ GeV} \qquad -$ $p_{T}(\ell_{2}, E_{T}^{\text{miss}}) < 40 \text{ GeV} \qquad -$ $p_{T}(\ell_{2}, E_{T}^{\text{miss}}) < 40 \text{ GeV} \qquad -$ $p_{T}(\ell_{2}, E_{T}^{\text{miss}}) < 1.0 \qquad -$ $p_{T}(p_{T}^{\ell_{1}} > 0.5 \qquad -$ Fop-quark CR inverted b-veto: $VBF \text{ inverted } b \text{-veto:}$ $VBF = 1 b \text{-tagged jet } (p_{T} > 25 \text{ GeV and } \eta < 2.4)$		$p_{\mathrm{T}}^{\ell_1} > 45 \mathrm{GeV}$	$p_{\mathrm{T}}^{\ell} > 27.3 \mathrm{GeV}$			
$30 \text{ GeV} < m_{\text{vis}} < 150 \text{ GeV} \qquad \sum_{i \in \ell, \tau_{\text{had-vis}}} \cos \Delta \phi(i, E_{\text{T}}^{\text{miss}}) > -0.35$ $p_{\text{T}}^{e}(\text{track})/p_{\text{T}}^{e}(\text{cluster}) < 1.2 (\mu \tau_{e} \text{ only}) \qquad \Delta \eta(\ell, \tau_{\text{had-vis}}) < 2$ $b \text{-veto (for jets with } p_{\text{T}} > 25 \text{ GeV and } \eta < 2.4)$ Baseline $\geq 2 \text{ jets, } p_{\text{T}}^{11} > 40 \text{ GeV}, p_{\text{T}}^{12} > 30 \text{ GeV}$ $ \Delta \eta(j_{1}, j_{2}) > 3, m(j_{1}, j_{2}) > 400 \text{ GeV}$ $- p_{\text{T}}^{\tau_{\text{had-vis}}} > 45 \text{ GeV}$ Baseline plus fail VBF categorization $m_{\text{T}}(\ell_{1}, E_{\text{T}}^{\text{miss}}) > 50 \text{ GeV} \qquad -$ $ \Delta \phi(\ell_{2}, E_{\text{T}}^{\text{miss}}) < 1.0 \qquad -$ $p_{\text{T}}^{\tau}/p_{\text{T}}^{\ell_{1}} > 0.5 \qquad -$ Fop-quark CR inverted <i>b</i> -veto: $\text{VBF and non-VBF} \geq 1 \text{ b-tagged jet } (p_{\text{T}} > 25 \text{ GeV and } \eta < 2.4)$ $Z \rightarrow \tau\tau \text{ CR}$ $\frac{30 \text{ GeV} = m_{\text{T}}^{\ell_{1}} \text{ requirement:}}{p_{\text{T}}^{\ell_{1}} \text{ requirement:}}$	Baseline	$p_{\mathrm{T}}^{\ell_2} > 15 \mathrm{GeV}$	$p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 25 \mathrm{GeV}, \eta^{\tau_{\mathrm{had-vis}}} < 2.4$			
$p_{T}^{e}(\operatorname{track})/p_{T}^{e}(\operatorname{cluster}) < 1.2 (\mu \tau_{e} \text{ only}) \Delta \eta(\ell, \tau_{\operatorname{had-vis}}) < 2$ $b \operatorname{-veto} (\text{ for jets with } p_{T} > 25 \text{ GeV and } \eta < 2.4)$ Baseline $\geq 2 \operatorname{jets}, p_{T}^{j_{1}} > 40 \text{ GeV}, p_{T}^{j_{2}} > 30 \text{ GeV}$ $ \Delta \eta(j_{1}, j_{2}) > 3, m(j_{1}, j_{2}) > 400 \text{ GeV}$ $- p_{T}^{\tau_{\operatorname{had-vis}}} > 45 \text{ GeV}$ Baseline plus fail VBF categorization $m_{T}(\ell_{1}, E_{T}^{\operatorname{miss}}) > 50 \text{ GeV} - p_{T}^{\tau_{\operatorname{had-vis}}} > 45 \text{ GeV}$ Non-VBF $m_{T}(\ell_{2}, E_{T}^{\operatorname{miss}}) < 40 \text{ GeV} - p_{T}^{\tau_{\operatorname{had-vis}}} - p_{T}^{\tau_{\operatorname{had-vis}}} > 45 \text{ GeV}$ $p_{T}^{\tau}/p_{T}^{\ell_{1}} > 0.5 - p_{T}^{\tau_{\operatorname{had-vis}}} = 1 b \operatorname{-tagged jet} (p_{T} > 25 \text{ GeV and } \eta < 2.4)$ $Z \to \tau \tau CR$ inverted $p_{T}^{\ell_{1}}$ requirement:	Dusenne	$30 \mathrm{GeV} < m_{\mathrm{vis}} < 150 \mathrm{GeV}$	$\sum_{i=\ell,\tau_{\text{had-vis}}} \Delta \phi(i, E_{\text{T}}^{\text{miss}}) > -0.35$			
$b \text{-veto (for jets with } p_{T} > 25 \text{ GeV and } \eta < 2.4)$ Baseline $\geq 2 \text{ jets, } p_{T}^{j_{1}} > 40 \text{ GeV, } p_{T}^{j_{2}} > 30 \text{ GeV}$ $ \Delta \eta (j_{1}, j_{2}) > 3, m(j_{1}, j_{2}) > 400 \text{ GeV}$ $- p_{T}^{\tau_{\text{had-vis}}} > 45 \text{ GeV}$ Baseline plus fail VBF categorization $m_{T}(\ell_{1}, E_{T}^{\text{miss}}) > 50 \text{ GeV} - p_{T}^{\tau_{\text{had-vis}}} > 45 \text{ GeV}$ Non-VBF $m_{T}(\ell_{2}, E_{T}^{\text{miss}}) < 40 \text{ GeV} - p_{T}^{\tau_{\text{had-vis}}} - p_{T}^{\tau_{\text{had-vis}}} > 45 \text{ GeV}$ Fop-quark CR inverted b-veto: $VBF \text{ and non-VBF} \ge 1 b \text{-tagged jet } (p_{T} > 25 \text{ GeV and } \eta < 2.4)$ $Z \rightarrow \tau\tau \text{ CR}$ inverted $p_{T}^{\ell_{1}}$ requirement:		$p_{\rm T}^e({\rm track})/p_{\rm T}^e({\rm cluster}) < 1.2 \ (\mu \tau_e \ {\rm only})$	$ \Delta \eta(\ell, \tau_{\text{had-vis}}) < 2$			
Baseline $\geq 2 \text{ jets, } p_T^{j_1} > 40 \text{ GeV, } p_T^{j_2} > 30 \text{ GeV}$ $ \Delta \eta(j_1, j_2) > 3, m(j_1, j_2) > 400 \text{ GeV}$ $- p_T^{\text{Thad-vis}} > 45 \text{ GeV}$ Baseline plus fail VBF categorizationm_T(\ell_1, E_T^{miss}) > 50 \text{ GeV}-Mon-VBF $m_T(\ell_2, E_T^{miss}) > 50 \text{ GeV}$ - $p_T(\ell_2, E_T^{miss}) > 40 \text{ GeV}$ - $ \Delta \phi(\ell_2, E_T^{miss}) < 40 \text{ GeV}$ - $ \Delta \phi(\ell_2, E_T^{miss}) < 1.0$ $ \Delta \phi(\ell_2, E_T^{miss}) < 1.0$ $ \Delta \phi(\ell_2, E_T^{miss}) < 1.0$ $ \Delta \phi(\ell_2, E_T^{miss}) < 1.0$ $ \Delta \phi(\ell_2, E_T^{miss}) < 1.0$ $ \Delta \phi(\ell_2, E_T^{miss}) < 1.0$ $ \Delta \phi(\ell_2, E_T^{miss}) < 1.0$ $ \Delta \phi(\ell_2, E_T^{miss}) < 1.0$ $ \Delta \phi(\ell_2, E_T^{miss}) < 2.4$ VBF and non-VBF $\geq 1 b$ -tagged jet ($p_T > 25$ GeV and $ \eta < 2.4$) $Z \to \tau \tau$ CRinverted $p_T^{\ell_1}$ requirement:		<i>b</i> -veto (for jets with $p_{\rm T} > 25$	GeV and $ \eta < 2.4$)			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Baseline				
$\begin{split} \Delta \eta(\mathbf{j}_{1},\mathbf{j}_{2}) &> 3, \ m(\mathbf{j}_{1},\mathbf{j}_{2}) > 400 \ \text{GeV} \\ &- p_{\text{T}}^{\tau_{\text{had-vis}}} > 45 \ \text{GeV} \\ \hline & \text{Baseline plus fail VBF categorization} \\ &m_{\text{T}}(\ell_{1}, E_{\text{T}}^{\text{miss}}) > 50 \ \text{GeV} &- \\ &m_{\text{T}}(\ell_{2}, E_{\text{T}}^{\text{miss}}) < 40 \ \text{GeV} &- \\ & \Delta \phi(\ell_{2}, E_{\text{T}}^{\text{miss}}) < 1.0 &- \\ &p_{\text{T}}^{\tau}/p_{\text{T}}^{\ell_{1}} > 0.5 &- \\ \hline & \text{Fop-quark CR} & \text{inverted } b\text{-veto:} \\ &\text{VBF and non-VBF} \geq 1 \ b\text{-tagged jet } (p_{\text{T}} > 25 \ \text{GeV and } \eta < 2.4) \\ \hline & Z \to \tau\tau \ \text{CR} & \text{inverted } p_{\text{T}}^{\ell_{1}} \ \text{requirement:} \\ \hline & \text{inverted } p_{\text{T}}^{\ell_{1}} \ \text{inverted } p_{\text{T}}^{\ell_{$	VRF	≥ 2 jets, $p_T^{j_1} > 40$ GeV, $p_T^{j_2} > 30$ GeV				
$- \qquad p_{T}^{\tau_{had-vis}} > 45 \text{ GeV}$ Baseline plus fail VBF categorization $m_{T}(\ell_{1}, E_{T}^{miss}) > 50 \text{ GeV} \qquad -$ Non-VBF $m_{T}(\ell_{2}, E_{T}^{miss}) < 40 \text{ GeV} \qquad -$ $ \Delta \phi(\ell_{2}, E_{T}^{miss}) < 1.0 \qquad -$ $p_{T}^{\tau}/p_{T}^{\ell_{1}} > 0.5 \qquad -$ Fop-quark CR inverted <i>b</i> -veto: VBF and non-VBF $\geq 1 b$ -tagged jet ($p_{T} > 25 \text{ GeV}$ and $ \eta < 2.4$) $Z \rightarrow \tau\tau \text{ CR}$ inverted $p_{T}^{\ell_{1}}$ requirement:	V D1	$ \Delta \eta(j_1, j_2) > 3, m(j_1, j_2) > 400 \text{GeV}$				
Baseline plus fail VBF categorization $m_{\rm T}(\ell_1, E_{\rm T}^{\rm miss}) > 50 {\rm GeV}$ –Non-VBF $m_{\rm T}(\ell_2, E_{\rm T}^{\rm miss}) < 40 {\rm GeV}$ – $ \Delta \phi(\ell_2, E_{\rm T}^{\rm miss}) < 1.0$ – $p_{\rm T}^{\tau}/p_{\rm T}^{\ell_1} > 0.5$ –Fop-quark CRinverted b-veto:VBF and non-VBF $\geq 1 \ b$ -tagged jet ($p_{\rm T} > 25 {\rm GeV}$ and $ \eta < 2.4$) $Z \rightarrow \tau \tau {\rm CR}$ inverted $p_{\rm T}^{\ell_1}$ requirement:		_	$p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 45 \mathrm{GeV}$			
Non-VBF $m_{T}(\ell_{1}, E_{T}^{miss}) > 50 \text{ GeV} - $ $m_{T}(\ell_{2}, E_{T}^{miss}) < 40 \text{ GeV} - $ $ \Delta \phi(\ell_{2}, E_{T}^{miss}) < 1.0 - $ $p_{T}^{\tau}/p_{T}^{\ell_{1}} > 0.5 - $ Fop-quark CR inverted <i>b</i> -veto: VBF and non-VBF $\geq 1 b$ -tagged jet ($p_{T} > 25 \text{ GeV}$ and $ \eta < 2.4$) $Z \rightarrow \tau \tau \text{ CR}$ inverted $p_{T}^{\ell_{1}}$ requirement:		Baseline plus fail VBF categorization				
Non-VBF $m_{T}(\ell_{2}, E_{T}^{miss}) < 40 \text{ GeV} - \frac{ \Delta \phi(\ell_{2}, E_{T}^{miss}) < 1.0}{ \Delta \phi(\ell_{2}, E_{T}^{miss}) < 0.5} - \frac{p_{T}^{\tau}/p_{T}^{\ell_{1}} > 0.5}{-}$ Fop-quark CR inverted <i>b</i> -veto: VBF and non-VBF ≥ 1 <i>b</i> -tagged jet ($p_{T} > 25$ GeV and $ \eta < 2.4$) $Z \rightarrow \tau \tau$ CR inverted $p_{T}^{\ell_{1}}$ requirement:		$m_{\rm T}(\ell_1, E_{\rm T}^{\rm miss}) > 50 {\rm GeV}$	_			
$\begin{split} \Delta \phi(\ell_2, E_T^{\text{miss}}) < 1.0 & -\\ p_T^{\tau} / p_T^{\ell_1} > 0.5 & - \end{split}$ Fop-quark CR inverted <i>b</i> -veto: VBF and non-VBF $\geq 1 \ b$ -tagged jet ($p_T > 25 \ \text{GeV}$ and $ \eta < 2.4$) $Z \rightarrow \tau \tau \ \text{CR}$ inverted $p_T^{\ell_1}$ requirement:	Non-VBF	$m_{\rm T}(\ell_2, E_{\rm T}^{\rm miss}) < 40 {\rm GeV}$	_			
$p_{T}^{\tau}/p_{T}^{\ell_{1}} > 0.5 \qquad -$ Fop-quark CR inverted <i>b</i> -veto: VBF and non-VBF ≥ 1 <i>b</i> -tagged jet ($p_{T} > 25$ GeV and $ \eta < 2.4$) $Z \rightarrow \tau \tau$ CR inverted $p_{T}^{\ell_{1}}$ requirement:		$ \Delta\phi(\ell_2, E_{\rm T}^{\rm miss}) < 1.0$	_			
Top-quark CRinverted b-veto:VBF and non-VBF $\geq 1 b$ -tagged jet ($p_T > 25 \text{ GeV}$ and $ \eta < 2.4$) $Z \rightarrow \tau \tau CR$ inverted $p_T^{\ell_1}$ requirement:		$p_{\rm T}^{\tau}/p_{\rm T}^{\ell_1} > 0.5$	_			
VBF and non-VBF $\geq 1 \ b$ -tagged jet ($p_{\rm T} > 25 \ {\rm GeV}$ and $ \eta < 2.4$) $Z \rightarrow \tau \tau \ {\rm CR}$ inverted $p_{\rm T}^{\ell_1}$ requirement:	Top-quark CR	inverted <i>b</i> -veto:				
$Z \to \tau \tau CR$ inverted $p_T^{\ell_1}$ requirement:	VBF and non-VBF	\geq 1 <i>b</i> -tagged jet ($p_{\rm T}$ > 25 GeV and $ \eta $ < 2.4)			
P.	$Z \rightarrow \tau \tau \ \mathrm{CR}$	inverted $p_{\rm T}^{\ell_1}$ requirement:				
VBF and non-VBF $35 \text{GeV} < p_{\text{T}}^{c_1} < 45 \text{GeV}$	VBF and non-VBF	$35 \mathrm{GeV} < p_{\mathrm{T}}^{\ell_1} < 45 \mathrm{GeV}$				

Search for LFV $H \rightarrow \mu \tau / e \tau$

CMS

Variable		$ m H ightarrow \mu au_h$			${ m H} ightarrow \mu au_{ m e}$				
	_	0 jet 1 jet 2 jet		0 jet	1 jet 2 jet		jet		
))	ggH ,	VBF))	ggH	, VBF
<i>M</i> .:	[GeV]			< 550	>550			< 550	>550
<u>ne</u>					<u>~000</u>			<u></u>	<u>~000</u>
P_{μ}^{T}				26			~	> 10 > 76	
P_{T}	[Gev]		>	20			-	>20	
p_{T}	[Gev]		>	30				-	
$ \eta^{c} $			-	_			<	<2.4	
$ \eta^{\mu} $			<	2.4			<	<2.4	
$ \eta^{\tau_{ m h}} $			<	2.3					
$I_{\rm rel}^{\rm e}$			_	_			<	< 0.1	
$I_{\rm rel}^{\mu}$			<0).15			<	0.15	
ici				Ì	M _{col} fit se	election			
p^{μ}_{T}	[GeV]					>30			
$M_{\rm T}(u)$	[GeV]		_			>60	>40	>15	>15
$M_{\rm T}(\tau_{\rm h})$	[GeV]	<105	<105	<105	< 85	,	,		,
$\Lambda \phi(e \vec{n}^{\text{miss}})$	[radians]	100	-	_ \100	200	< 0.7	< 0.7	< 0.5	<03
$\Delta \phi(\mathbf{c}, p_{\mathrm{T}})$	[radians]		_	_		>25	10	<0.5	<0.5
$\Delta \psi(e, \mu)$	[14014115]					/2.0	/1.0		
							-	-	
Variable			Н -	$ ightarrow \mathrm{e} au_{\mathrm{h}}$			H -	$\rightarrow e\tau_u$	
Variable		0 iet	H - 1 iet	$ ightarrow e au_{h}$	et	$\overline{0}$ iet	H - 1 iet	$ ightarrow \mathrm{e} au_{\mu}$	et
Variable		0 jet	H - 1 jet	$ ightarrow \mathrm{e} au_{\mathrm{h}}$ 2 j	et VBF	0 jet	H - 1 jet	$ ightarrow \mathrm{e} au_{\mu}$ $ ightarrow \mathrm{e} au_{\mu}$ $ ightarrow \mathrm{e} au_{\mu}$	et VBF
Variable	[GeV]	0 jet	H - 1 jet	$ ightarrow e au_{h}$ 2 j ggH < 500	et VBF	0 jet	H - 1 jet	$ ightarrow$ $e au_{\mu}$ 2 j ggH < 500	et VBF
Variable M_{jj}	[GeV]	0 jet	H - 1 jet	$ ightarrow e au_{h}$ 2 j ggH <500 \sim 26	et VBF >500	0 jet	H - 1 jet	$ \rightarrow e\tau_{\mu} $ 2 j ggH <500	et VBF >500
Variable $ \underline{M_{jj}} \underline{p_{T_{\mu}}^{e}} $	[GeV] [GeV]	0 jet	H - 1 jet		et VBF >500	0 jet	H - 1 jet		et VBF >500
Variable M_{jj} p_{T}^{e} p_{T}^{μ}	[GeV] [GeV] [GeV]	0 jet	H - 1 jet	$ \rightarrow e\tau_{h} $ $ 2j$ $ ggH $ $ <500 $ $ >26 $ $ - $	et VBF >500	0 jet	H - 1 jet		et VBF >500
Variable M_{jj} p_{T}^{e} p_{T}^{μ} $p_{T}^{\tau_{h}}$	[GeV] [GeV] [GeV] [GeV]	0 jet	H - 1 jet	$ \rightarrow e\tau_{h} $ $ 2j$ $ ggH $ $ <500 $ $ >26 $ $ - $ $ >30 $	et VBF >500	0 jet	H - 1 jet		et VBF >500
Variable $ \frac{M_{jj}}{p_{T}^{e}} $ $ \frac{p_{T}^{\mu}}{p_{T}^{\tau_{h}}} $ $ \frac{\eta^{e} }{\eta^{e} } $	[GeV] [GeV] [GeV] [GeV]		H - 1 jet	$ \rightarrow e\tau_{h} $ $ 2j$ $ ggH $ $ <500 $ $ >26 $ $ $ $ >30 $ $ <2.1 $	et VBF >500	0 jet	H - 1 jet	$ \rightarrow e\tau_{\mu} $ $ 2 j $ $ ggH $ $ < 500 $ $ > 24 $ $ > 10 $ $ - $ $ < 2.1 $	et VBF >500
Variable	[GeV] [GeV] [GeV] [GeV]	0 jet	H - 1 jet	$ \rightarrow e\tau_{h} $ $ 2j$ $ ggH $ $ <500 $ $ >26 $ $ - $ $ >30 $ $ <2.1 $ $ - $	et VBF >500	0 jet	H - 1 jet		et VBF >500
Variable M_{jj} p_{T}^{e} p_{T}^{μ} $p_{T}^{\tau_{h}}$ $ \eta^{e} $ $ \eta^{\mu} $ $ \eta^{\tau_{h}} $	[GeV] [GeV] [GeV] [GeV]		H - 1 jet	$ \rightarrow e\tau_{h} $ $ 2j$ $ ggH $ $ <500 $ $ >26 $ $ $ $ >30 $ $ <2.1 $ $ $ $ <2.3 $	et VBF >500	0 jet	H - 1 jet	$ \rightarrow e\tau_{\mu} $ $ 2 j $ $ ggH $ $ < 500 $ $ > 24 $ $ > 10 $ $ - $ $ < 2.1 $ $ < 2.4 $ $ - $	et VBF >500
Variable M_{jj} p_T^e $p_T^{\tau_h}$ $p_T^e $ $ \eta^e $ $ \eta^{\mu} $ $ \eta^{\tau_h} $ I_{real}^e	[GeV] [GeV] [GeV] [GeV]		H - 1 jet	$ \rightarrow e\tau_{h} $ $ 2j $ $ ggH $ $ <500 $ $ >26 $ $ $ $ >30 $ $ <2.1 $ $ $ $ <2.3 $ $ (0.15 $	et VBF >500	0 jet	H - 1 jet		et VBF >500
Variable M_{jj} $p_{\rm T}^{\rm e}$ $p_{\rm T}^{\mu}$ $p_{\rm T}^{\tau_{\rm h}}$ $ \eta^{\rm e} $ $ \eta^{\mu} $ $ \eta^{\mu} $ $ \eta^{\mu} $ $I_{\rm rel}^{\rm e}$ $I_{\rm rel}^{\mu}$	[GeV] [GeV] [GeV]		H - 1 jet	$ \rightarrow e\tau_{h} $ $ 2j$ $ ggH $ $ <500 $ $ >26 $ $ $ $ >30 $ $ <2.1 $ $ $ $ <2.3 $ $ (0.15 $ $ $	et VBF >500	0 jet	H - 1 jet		et VBF >500
Variable $ \frac{M_{jj}}{p_{T}^{e}} $ $ \frac{p_{T}^{\mu}}{p_{T}^{\tau_{h}}} $ $ \frac{\eta^{e}}{ \eta^{e} } $ $ \frac{ \eta^{e} }{ \eta^{\mu} } $ $ \frac{ \eta^{\tau_{h}} }{I_{rel}^{e}} $	[GeV] [GeV] [GeV]		H - 1 jet	$ \rightarrow e\tau_{h} $ $ 2j $ $ ggH $ $ <500 $ $ >26 $ $ $ $ >30 $ $ <2.1 $ $ $ $ <2.3 $ $ (0.15 $ $ $ $ M $	et VBF >500	0 jet	H - 1 jet		et VBF >500
Variable $ \frac{M_{jj}}{p_{T}^{e}} $ $ \frac{p_{T}^{\mu}}{p_{T}^{\tau_{h}}} $ $ \frac{\eta^{e}}{ \eta^{e} } $ $ \frac{\eta^{e}}{ \eta^{\mu} } $ $ \frac{\eta^{\tau_{h}}}{I_{rel}^{\mu}} $ $ \frac{M_{rel}}{I_{rel}^{\mu}} $	[GeV] [GeV] [GeV]		H - 1 jet	$ \rightarrow e\tau_{h} $ $ 2j $ $ ggH $ $ <500 $ $ >26 $ $ $ $ >30 $ $ <2.1 $ $ $ $ <2.3 $ $ (0.15 $ $ $ $ M_{co} $	et VBF >500	0 jet —	H - 1 jet	$ \rightarrow e\tau_{\mu} \\ 2 j \\ ggH \\ <500 \\ >24 \\ >10 \\ \\ <2.1 \\ <2.1 \\ <2.4 \\ \\ <0.1 \\ <0.1 \\ < \\ <0.1 \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ < \\ <$	et VBF >500
Variable M_{jj} p_{T}^{e} p_{T}^{μ} $p_{T}^{\tau_{h}}$ $p_{T}^{\tau_{h}}$ $ \eta^{e} $ $ \eta^{\mu} $ $ \eta^{r_{h}} $ I_{rel}^{e} I_{rel}^{μ} I_{rel}^{μ} $M_{T}(\tau_{h})$ $M_{T}(z_{h})$	[GeV] [GeV] [GeV] [GeV]	0 jet	H - 1 jet	$ \rightarrow e\tau_{h} $ $ 2j $ $ ggH $ $ <500 $ $ >26 $ $ - $ $ >30 $ $ <2.1 $ $ - $ $ <2.3 $ $ 0.15 $ $ - $ $ M_{co} $ $ <60 $	et VBF >500	0 jet	H - 1 jet	$ \rightarrow e\tau_{\mu} 2 j ggH <500 >24 >10 <21 <2.1 <2.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1$	et VBF >500
Variable $ \frac{M_{jj}}{p_{T}^{e}} \\ \frac{p_{T}^{\mu}}{p_{T}^{\tau_{h}}} \\ \frac{p_{T}^{\tau_{h}}}{ \eta^{e} } \\ \frac{ \eta^{e} }{ \eta^{\mu} } \\ \frac{ \eta^{\tau_{h}} }{I_{rel}^{e}} \\ \frac{I_{rel}^{\mu}}{I_{rel}^{\mu}} \\ \frac{M_{T}(\tau_{h})}{M_{T}(e)} \\ $	[GeV] [GeV] [GeV] [GeV] [GeV]	0 jet	H - 1 jet	$ \rightarrow e\tau_{h} $ $ 2j$ $ ggH $ $ <500 $ $ >26 $ $ $ $ >30 $ $ <2.1 $ $ $ $ <2.3 $ $ (0.15 $ $ $ $ M_{co} $ $ <60 $ $ $	et VBF >500	0 jet —	H - 1 jet	$ \rightarrow e\tau_{\mu} 2j \\ ggH <500 \\>24 \\>10 \\ \\<2.1 \\<2.4 \\ \\<0.1 \\<0.1 \\<0.1 \\<0.1 \\ \\>60 \\<1.0 $	et VBF >500
Variable $ \frac{M_{jj}}{p_{T}^{e}} \\ \frac{p_{T}^{\mu}}{p_{T}^{\tau_{h}}} \\ \frac{p_{T}^{\tau_{h}}}{p_{T}^{\tau_{h}}} \\ \frac{ \eta^{e} }{ \eta^{\mu} } \\ \frac{ \eta^{\tau_{h}} }{I_{rel}^{e}} \\ \frac{M_{T}(\tau_{h})}{M_{T}(e)} \\ \Delta\phi(e, \vec{p}_{T}^{miss}) \\ $	[GeV] [GeV] [GeV] [GeV] [GeV] [GeV] [radians]	0 jet	H - 1 jet	$ \rightarrow e\tau_{h} $ 2 j ggH 26	et VBF >500	0 jet	H - 1 jet	$ \rightarrow e\tau_{\mu} 2 j ggH < 500 > 24 > 10 $	et VBF >500
Variable $ \frac{M_{jj}}{p_{T}^{e}} \\ \frac{p_{T}^{\mu}}{p_{T}^{\tau_{h}}} \\ \frac{p_{T}^{\tau_{h}}}{p_{T}^{\tau_{h}}} \\ \frac{ \eta^{e} }{ \eta^{\mu} } \\ \frac{ \eta^{e} }{ \eta^{\mu} } \\ \frac{I_{rel}^{e}}{I_{rel}^{\mu}} \\ \frac{I_{rel}^{\mu}}{I_{rel}^{\mu}} \\ \frac{M_{T}(\tau_{h})}{M_{T}(e)} \\ \Delta\phi(e, \vec{p}_{T}^{miss}) \\ p_{\zeta} - 0.85 p_{\zeta}^{vis} $	[GeV] [GeV] [GeV] [GeV] [GeV] [GeV] [radians] [GeV]		H - 1 jet	$ \rightarrow e\tau_{h} $ 2 j ggH 26	et VBF >500	0 jet	H - 1 jet	$ \begin{array}{r} \rightarrow e\tau_{\mu} \\ 2 j \\ ggH \\ <500 \\ >24 \\ >10 \\ \hline \\ <2.1 \\ <2.1 \\ <2.4 \\ \hline \\ <0.1 \\ <0.1 \\ \hline \\ <60 \\ <1.0 \\ \hline \\ -60 \end{array} $	et VBF >500

Search for $H \rightarrow invisible$ combination

Overview of Run 2 searches:

• VBF topology: $E_T^{miss} > 180 \,\text{GeV}$, $|\Delta \eta_{ii}| > 4.8$, Final

discriminant is # of events in 3 m_{ii} regions (1,

1.5, 2, ∞) TeV

- Z(lep)H topology: $E_T^{miss} > 90 \,\text{GeV}$, $E_T^{miss}/H_T > 0.6$, Dilepton back-to-back to E_T^{miss} ; Final discriminant is E_T^{miss}
- V(had)H topology: $E_T^{miss} > 250 \text{ GeV}$ and $\geq 1 \text{ jet}$ (R=1.0) or $E_T^{miss} > 150 \text{ GeV}$ and $\geq 2 \text{ jets}$ (R=0.4); Categorize: $70 \leq m_J, m_{jj}/\text{GeV} \leq 100$ for VH and $100 \leq m_J, m_{jj}/\text{GeV} \leq 250$ for ggH and VBF

arXiv:1904.05105

Analysis	\sqrt{S}	Int. luminosity	Observed	Expected	$p_{\rm SM}$ -value	Reference
Run 2 VBF	$13 { m TeV}$	$36.1 { m ~fb^{-1}}$	0.37	$0.28\substack{+0.11 \\ -0.08}$	0.19	[36]
Run 2 $Z({\rm lep})H$	$13 { m TeV}$	$36.1 { m ~fb^{-1}}$	0.67	$0.39\substack{+0.17\\-0.11}$	0.06	[37]
Run 2 $V(had)H$	$13 { m TeV}$	$36.1 { m ~fb^{-1}}$	0.83	$0.58\substack{+0.23 \\ -0.16}$	0.12	[38]
Run 2 Comb.	13 TeV	36.1 fb^{-1}	0.38	$0.21\substack{+0.08 \\ -0.06}$	0.03	this Letter
Run 1 Comb.	$7,8~{ m TeV}$	4.7, 20.3 fb ⁻¹	0.25	$0.27\substack{+0.10 \\ -0.08}$		[35]
Run $1+2$ Comb.	7, 8, 13 TeV	$4.7, 20.3, 36.1 \text{ fb}^{-1}$	0.26	$0.17\substack{+0.07 \\ -0.05}$	0.10	this Letter

29

Search for VBF $H \rightarrow invisible$

- There is complementarity between the direct searches for invisible Higgs decays and the indirect constraints from the visible decays
- Selection:
 - To enrich the contribution from multi-jet events with
 - a *fake*_e in the one electron CR $S_{\text{MET}} = \frac{E_{\text{T}}^{\text{miss}}}{\sqrt{p_{\text{T}}^{\text{j1}} + p_{\text{T}}^{\text{j2}} + p_{\text{T}}^{e}}}$

$$C_{i} = \exp\left(-\frac{4}{\left(\eta^{j1} - \eta^{j2}\right)^{2}} \left(\eta^{i} - \frac{\eta^{j1} + \eta^{j2}}{2}\right)^{2}\right) \text{ and invariant mass}$$

of the extra jet
$$m_i^{\text{rel}} = \frac{\min\left\{m_{j1,i}, m_{j2,i}\right\}}{m_{jj}}$$

ATLAS-CONF-2020-008

Search for $ZH \rightarrow invisible$

137 fb⁻¹ (13 TeV)

• To simulate the consequences of not detecting the third lepton, the "emulated p_T^{miss} " is estimated from the vectorial sum of p_T^{miss} and the transverse momentum of the additional lepton/s (in three-lepton and four-lepton control regions)

137 fb⁻¹ (13 TeV)

Search for $H \rightarrow invisible$ combination

Shape analysis	Cut-and-count analysis	Target background
$p_{\rm T} > 80 (40) {\rm GeV}, \eta < 4.7$		All
>250 GeV		QCD multijet, t \bar{t} , γ +jets, V+jets
	>0.5 rad	QCD multijet, γ +jets
$N_{\mu,e} = 0$ with p_T	$T_{\rm T} > 10 { m GeV}, \eta < 2.4 (2.5)$	$W(\ell\nu)$ +jets
$N_{\tau_h} = 0$ with	$p_{\rm T} > 18 { m GeV}, \eta < 2.3$	$W(\ell\nu)$ +jets
$N_{\gamma} = 0$ with	$p_{\rm T} > 15 { m GeV}, \eta < 2.5$	γ +jets, V γ
$N_{iet} = 0$ with $p_T > 20$ GeV, CSVv2 > 0.848		tī, single top quark
,	<0	$Z(\nu\overline{\nu})$ +jets, $W(\ell\nu)$ +jets
<1.5 rad		$Z(\nu\overline{\nu})$ +jets, $W(\ell\nu)$ +jets
>1	>4	$Z(\nu\overline{\nu})$ +jets, $W(\ell\nu)$ +jets
>200 GeV	>1.3 TeV	$Z(\nu\overline{\nu})$ +jets, $W(\ell\nu)$ +jets
	Shape analysis $p_{\rm T} > 80$ ($N_{\mu,\rm e} = 0$ with $p_{\rm T}$ $N_{\tau_{\rm h}} = 0$ with $N_{\gamma} = 0$ with $N_{\rm jet} = 0$ with $p_{\rm T}$ >1 >200 GeV	$\begin{array}{llllllllllllllllllllllllllllllllllll$

31