
Analysis Benchmarks
Where are the bottlenecks?
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First ECHEP workshop

During first workshop we had a lot of emphasis on processing speed

● Some known inefficiencies in generators (e.g. negative weights, lexical_cast)
● Benefits of SIMD, trading accuracy for speed in simulation (fast-sim)
● Alternative architectures (GPU, FPGA, etc) to accelerate software in HEP

Improvements usually identified through profiling & benchmarks

In some cases a lot of expert knowledge went into improvements
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https://indico.ph.ed.ac.uk/event/66/timetable/?view=standard


One possible 6 month plan
● Step 1: Identify several benchmark analyses (1 month)

○ Open data, coordinate between experiments

● Step 2: Implement using existing tools (2.5 months)
○ Coffea or FAST-HEP
○ Directly with PARSL or DASK where data not amenable to columnar approach
○ Deliverable: where do these existing tools struggle for different analyses / 

experiments

● Step 3: Understand caching requirements (2.5 months)
○ Timing without caching
○ Deliverable: Profiling for second run with caching
○ Deliverable: Size of caching required

● Step 4 (extension): Explore caching between analyzers (?)
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ECHEP Analysis summary slides (Ben Krikler)

https://docs.google.com/presentation/d/1nAPZvEl9p0bh0VJF9I4y0CavZKoYIGrEFD1mV75AjZE/edit#slide=id.g7e13e4ff43_0_25


Python for accelerated development

● High level programming → fast to try 
something

● Compact language → fewer lines of code, 
fewer bugs

● Quick refactoring
● Access to Big data tools → ML + distributed 

processing
● Full-Stack prototyping (even FPGA)
● Can be easy to change architectures (e.g. 

CPU → GPU with numba/tensorflow)
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Faster than C++?
... depends

(the near future is Python)

https://zenodo.org/record/1418513#.XniKnoj7TAQ

https://www.digikey.co.uk/en/articles/techzone/2019/apr/build-and-program-fpga-based-designs-quickly-python-jupyter-notebooks
https://numba.pydata.org/numba-doc/dev/cuda/index.html
https://www.tensorflow.org/
https://zenodo.org/record/1418513#.XniKnoj7TAQ


Step 1: Identify several 
benchmark analyses
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Start with some small subtasks for guidance



HEP Data analysis

Compared to dedicated efforts in generators and simulation, data analysis is more 
varied

● Analysis methods & algorithms can differ widely between groups
● Code is usually written by non-experts
● Mixture of using experiment software frameworks and standalone code

Difficult to utilize advanced techniques or new architectures
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Analysis benchmarks
First two benchmarks implemented - meant to highlight big differences between individual analysis steps

● Selecting events with at least 4 jets with pt > 30 GeV and |eta| < 2.4 (e.g. a loose skim)

○ 0 to N jets per event → loops of depth 2

○ Uses CMS Top Quark open data (6,423,106 events)

● Categorise ttbar decay channel

○ 10 different decay channels (from full hadronic to full leptonic)

○ Need to traverse genparticle decay chain → loops of depth 3 & many comparisons

○ Uses private MC due to missing information in Open Data (1,441,999 events)

Processed on CERN GitLab CI, data are copied to local disk
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https://gitlab.cern.ch/fast-hep/public/challenges/
http://opendata.cern.ch/record/12354#


Selection results (6,423,106 events)
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method HDD (CERN CI) SSD comment

numpy 18.5 s 8.4 s Advanced python

Loop depth 1 53.2 s 30.5 s Advanced python

Loop depth 2 214.5 s 128.2 s Beginner python

C++ loop depth 2 6.6 s 4.4 s Advanced ROOT

Advanced ROOT: using ROOT features that are not that common (yet) but recommended (e.g. TTreeReaderArray) - ROOT usage 
is stuck “in the past” due to inheritance of macros

https://gitlab.cern.ch/fast-hep/public/challenges/blob/master/challenges/fast_selection/challengers/numpy/__init__.py
https://gitlab.cern.ch/fast-hep/public/challenges/blob/master/challenges/fast_selection/challengers/simple_for_loop/__init__.py
https://gitlab.cern.ch/fast-hep/public/challenges/blob/master/challenges/fast_selection/challengers/simple_for_loops/__init__.py
https://gitlab.cern.ch/fast-hep/public/challenges/blob/master/challenges/fast_selection/challengers/cpp_for_loops/code.cpp


(fresh) Decay channel results (1,441,999 events)
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method HDD (CERN CI) SSD comment

numpy 37.1 s 12.5 s Advanced python

Loop depth 3 1436.8 s 822.4 s Beginner python

C++ loop depth 3 8.9 s 4.3 s (18.5 s) Advanced ROOT

C++ GetEntry 308.9 s 148.3 s Beginner ROOT

C++ GetEntry + 
disabling unused 
branches

--- 15.7 s (51.2s) Beginner ROOT

Note 1: Arrays stored in NanoAOD do not work well with SetBranch method (output is wrong for some events))
Note 2: Using namespaces in the ROOT macro, increases processing time (???)

https://gitlab.cern.ch/fast-hep/public/challenges/blob/master/challenges/ttbar_decay_channel/challengers/numpy/__init__.py
https://gitlab.cern.ch/fast-hep/public/challenges/blob/master/challenges/ttbar_decay_channel/challengers/many_loops/__init__.py
https://gitlab.cern.ch/fast-hep/public/challenges/blob/master/challenges/ttbar_decay_channel/challengers/cpp_for_loops/code.cpp
https://gitlab.cern.ch/fast-hep/public/challenges/blob/master/challenges/ttbar_decay_channel/challengers/cpp_for_loops_getentry/code.cpp
https://gitlab.cern.ch/fast-hep/public/challenges/blob/master/challenges/ttbar_decay_channel/challengers/cpp_for_loops_getentry_selective/code.cpp
https://gitlab.cern.ch/fast-hep/public/challenges/blob/master/challenges/ttbar_decay_channel/challengers/cpp_for_loops_getentry_selective/code.cpp
https://gitlab.cern.ch/fast-hep/public/challenges/blob/master/challenges/ttbar_decay_channel/challengers/cpp_for_loops_getentry_selective/code.cpp


(fresh) Decay channel results (1,441,999 events)
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method HDD (CERN CI) SSD comment

numpy 37.1 s 12.5 s Advanced python

Loop depth 3 1436.8 s 822.4 s Beginner python

C++ loop depth 3 8.9 s 4.3 s (18.5 s) Advanced ROOT

C++ GetEntry 148.3 s Beginner ROOT

C++ GetEntry + 
disabling unused 
branches

15.7 s (51.2s) Beginner ROOT

Note 1: Arrays stored in NanoAOD do not work well with SetBranch method (output is wrong for some events))
Note 2: Using namespaces in the ROOT macro, increases processing time (???)

Depending on task & implementation 

performance can range across orders of 

magnitude 

https://gitlab.cern.ch/fast-hep/public/challenges/blob/master/challenges/ttbar_decay_channel/challengers/numpy/__init__.py
https://gitlab.cern.ch/fast-hep/public/challenges/blob/master/challenges/ttbar_decay_channel/challengers/many_loops/__init__.py
https://gitlab.cern.ch/fast-hep/public/challenges/blob/master/challenges/ttbar_decay_channel/challengers/cpp_for_loops/code.cpp


Step 2: Implement using 
existing tools
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Moving from implementation to description
FAST-HEP tools offer another approach
● Describe what you need, tools will do the rest

● Optimizations can happen in the background

○ This includes architecture selection & parallel processing (local & distributed)

● What is the fraction of covered use-cases?

○ We know it works for some CMS, LZ and DUNE analyses

■ Including a range of distributed backends (e.g. from Coffea project)

○ Performance issues with nested types (e.g. vector<vector<vector>>)

■ Awkward-array 1.0 will fix these

○ Multi-tree input (e.g. CMS L1 trigger prototyping, standard LZ analyses) not yet functional
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CMS Efforts overview
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CMS Analysis Facility/real-time data query system

Steps 3 & 4 have certainly overlap

● Analysis with Apache Spark
○ Caching capabilities

● Real-time data query system
○ Explores fast data query and caching

○ Shows big difference depending on how 

the data are accessed

○ code transformation performance should 

be similar to TTreeReaderArray

● Now all under ServiceX
○ Use Kafka for streaming

○ Cache results for instant replay
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https://arxiv.org/abs/1711.01229

https://arxiv.org/abs/1711.00552
https://arxiv.org/abs/1711.01229
https://arxiv.org/pdf/1906.08169.pdf
https://indico.cern.ch/event/773049/contributions/3474438/attachments/1935769/3207764/BenGalewskyCHEP2019.pdf
https://arxiv.org/abs/1711.01229


New CMS effort

Software and Computing R&D and code modernization/performance

● Just started: First meeting on the 12th of March

● Many areas targeted

○ Not sure how much of it is public knowledge (or allowed to be)

● But, due to the nature of the effort:

○ Significant overlap with ECHEP
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https://indico.cern.ch/event/893763/


Summary
Questions and Outlook

First benchmarks implemented

● What is the best analysis to highlight current 

bottleneck?

● Are these the same between ATLAS & CMS?

● Do we have something similar for LHCb (and 

other experiments)?

Next: implement with existing (high-level) tools

● FAST-HEP + Coffea (Parsl backend)

● Current example highlight the difficulty of 

replacing for-loops

Other efforts exist

● Mostly going in a similar direction

○ Minimize overlap, maximize syngery

● User → ServiceX for steps 3+4 might be an option
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ECHEP analysis effort



Backup slides
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Other thoughts
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(as a by-product of step 2)



Expertise vs automation
Other than being an expert in C++, Python & <distributed computing system of 

your experiment, department, funding agency’s choice> what can be done?

Automation:

● E.g. CERN CI has access to EOS

○ can a mini-version of the analysis be run in CI (tests & profiling)?

○ Do we have to provide skeleton analysis or training for this?

● Is there a way to test this in the submission systems?

○ CI → submission system for scaling?
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TODO
Putting everything into ECHEP 
context:

Analysis is fraction X of total computing 
budget, following route Y would reduce 
usage by Z. → does this translate into 
analysis improvements, more resources 
for other analyses or just saving money?
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Do we have to worry about 
producing plots?

● It can be time-consuming, but 
usually is not

Statistical analysis (RooFit, PyHF, 
Minuit) can take a lot of time

● Which tool is the best (fast & 
reliable)?



Other items

HSF simulation on non-LHC simulation requirements: 
https://indico.cern.ch/event/899153/
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https://indico.cern.ch/event/899153/


Draft roadmap

Attempt to measure analysis bottlenecks

● Focus on specific algorithms within different analyses
○ Compare SIMD/GPU to typical implementations

● Provide training material for advanced algorithms
○ Translating an analysis into SIMD or different architectures is not trivial

● Advertise tools (e.g. FAST-HEP, Coffea) that can improve transitions for 
non-experts

Focus on Python (compare to C++) as it is a friendlier language
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