

UK Update

Niklas Templeton on behalf of the UK team

Global CC coordination meeting – Friday 13 March

UK Update

- Cold Magnetic Shields
- Warm Magnetic Shield
- Thermal Screen
- Cavity Support System
- Transport
- OVC Tender & Tooling

RFD Cold Magnetic Shields

- 2 x RFD SPS cold magnetic shields manufactured by Magnetic Shields LTD
- Factory acceptance visit conducted on 26th of February
- Visual Inspection, Dimensional check & field measurements carried out – All OK
- Initial field measurement results show a shielding factor of up to 100 in the worst case orientation – significant improvement!
- Improved attenuation due to new dry hydrogen furnace

DQW COLD MAGNETIC SHIELD (PRE-SERIES)

First 2 shields of the pre-series under manufacturing at Magnetic Shields Ltd.

Warm Magnetic Shield

- Global MuMetal Shield @ 300 K
- Thickness = 2 mm (+ 1 mm spacers)
- Lower Assembly Lines OVC as second skin
 - Allows for OVC tolerance up to ± 6 mm
- Upper Assembly mounted to Top Plate
- Underlap between Upper & Lower Assemblies
- Assemblies connected via EM gasket/spring fingers
- Mass: 182.7 kg

Warm Magnetic Shield

- Proposal to mount end panels off OVC stiffening webs
- Required webs to be modified
 - Remove chamfer
 - Add tapped hole
 - May need to increase thickness from 10 mm

Thermal Screen Update

- Flexure & stiffener design
- Upper cooling circuit
- Lower cooling circuit
- FSI Bottom
- Pipe Transitions
- Thermalisation
- Heat loads taken from EDMS 2310389

Thermal Screen Update

- Flexure & stiffener design updated
 - Machined from bulk
 - Alignment features added
- Max Lateral Displacement: 1.6 mm
- Lateral Flexure Length: 47 mm
- Max Longitudinal Displacement: 5.1 mm
- Longitudinal Flexure Length: 90 mm
- Design Stress < 240 MPa
- Total Heat Leak Estimate (4 brackets): 6.3 W

featured Stress valent (von-Mises) Stress	
08:56	
Max	
	Max

23.92

Flexure Geometry Longitudinal							
Length	90	mm					
Width	100	mm					
Thickness	1	mm					
Second Moment of Area, I	8.33	mm ⁴					
Section Modulus, Z	16.67	mm³					
Flexure Displacement							
Maximum Screen Length	2440	mm					
(L ₂₉₃ - ₁₄₀)/L ₂₉₃	0.417	%					
Max Flexure Displacement	5.1	mm					
Material Young's Modulus, E	1.10E+11	Ра					
Force Required, W	76.8						
Max Stress, S	207.3	MPa					

Thermal Screen Upper Assembly

Thermal Screen Lower Assembly

10

Thermalisation VHOM

- Heat Load to 80 K
 - Static: 7.8 W
 - Dynamic: 11.8 W
- No Braids: 4
- Heat Load / Braid: 4.9 W
- Braid Length: 130 mm
- Braid CSA: 40 mm²
- Increased compared to DQW

Braid dT: 18.4 K

Thermalisation Blades

- Heat Load to 80 K: 20 W
- No Braids: 8
- Heat Load / Braid: 2.5 W
- Braid Length: 160 mm
- Braid CSA: 40 mm²
- Braid dT: 11.6 K

Thermalisation Tuner – Option 1

Split Braid Option

- Heat Load to 80 K: 7.3 W
- No Braids: 12
- Heat Load / Braid: 0.6 W
- Braid Length: 220 mm
- Braid CSA: 16 mm²
- Braid dT: 9.7 K

Thermalisation Tuner – Option 2

Half Ring Clamp Option

- Heat Load to 80 K: 7.3 W
- No Braids: 4
- Heat Load / Braid: 1.8 W
- Braid Length: 150 mm
- Braid CSA: 40 mm²
- Braid dT: 7.9 K

Thermalisation FPC

- Heat Load to 80 K
 - Static: 56 W
 - Dynamic: 65.2 W
- No Braids: 16
- Heat Load / Braid: 7.6 W
- Braid Length: 200 mm
- Braid CSA: 75 mm²
- Increased compared to DQW

Worst case

SPS operation

Braid dT: 23.4 K

Thermalisation CWT

- Heat Load to 80 K: 41.2 W
- No Braids: 32
- Heat Load / Braid: 1.3 W
- Braid Length: 120 mm
- Braid CSA: 16 mm²
- Braid dT: 11.2 K

Thermalisation Summary

RFD	Heat Load 80 K (W)	No. Braides, n	A (mm2)	L (mm)	dT (K)
CWT	41.2	32	16	120	11.2
Support Blades	20	8	40	160	11.6
FPC	121.2	16	75	200	23.4
Tuner	7.3	4	40	150	7.9
VHOM	19.6	4	40	130	18.4
Pick Up	19.6	4	40	130	18.4
ННОМ	TBD	-	-	-	-
Instrumentation	strumentation 10		-	-	-
Screen Flexures	6.3	-	-	-	-
Radiation	Radiation 30		-	-	-
	275.2				

Blade Thermalisation Study

Thomas Jones

Blade thermalisation

Situation on DQW

- Heat leak to 2K from hand calculation and FEA 0.3W per blade, 1.2W total.
- In reality, observed a higher value to 2K and lower to the 80K. This was true for all static heat leak with an intermediate intercept.
- Suggests thermal intercepts could be improved.

Improvements for RFD

Thermal Conductivity Integral for Stainless Steel Jacob W. Kooi

K _{dt} 300K to 80K =	27.43 W/cm
K _{dt} 80K to 10K =	3.6 W/cm
K _{dt} 10K to 2K =	0.1 W/cm

Thermal contraction of Stainless Steel from FNAL ES371110

$Q = (K_{dt}A)/X$ i.e. integral value already contains ΔT

Blade total length (cm) = 3	34	24 = Coupler Total Length (cm)
Width of blade $(cm) = 7$.	.5 ഗ്ര	6.2 = Coupler ID (cm)
Thickness of blade (cm) = 0.	.3 Ind	6.8 = Coupler OD (cm)
Length 300K to 80K (cm) = 2	20 -	4.5 = Length 300K to 80K (cm)
Length 80K to 10K (cm) = 8 .	.5	14 = Length 80K to 10K (cm)
Length 10K to 2K (cm) = 5 .	.5	5.5 = Length 10K to 2K (cm)
Cross sectional area $(cm^2) = 2.2$	25	6.13 = Cross Sectional Area (cm ²)
Q from 300K to 80K (W)= 3.0	9 -	37.34 = Q from 300K to 80K (W)
Q from 80K to 10K (W)= 0.9	95 ge	1.58 = Q from 80K to 10K (W)
Q from 10K to 2K (W)= 0.0)4 📆	0.11 = Q from 10K to 2K (W)
Contraction 300K to 80K (from room temp) (mm) = 0.3	34 8	0.076 = Contraction 300K to 80K (from room temp) (mm)
Contraction 80K to 10K (from room temp) (mm) = 0.2	26	0.42 = Contraction 80K to 10K (from room temp) (mm)
Contraction 10K to 2K (from room temp) (mm) = 0.1	7	0.17 = Contraction 10K to 2K (from room temp) (mm)
Total contraction (mm) = 0.7	' 6	0.67 = Total contraction (mm)
Differenc	e 0.0	9 mm

- Suggest to move thermal intercept further down to ~200mm from room temperature point.
- Include an intercept to the 4K-20K circuit on each blade to minimise heat to 2K.
- If possible increase the number of fasteners per thermal strap to 2. With the aim to increase redundancy and contact pressure.

- Intercepts at Hand Calc positions •
- Gravity applied •

В

- Room temperature applied as ٠ convection to see potential 'ice' regions
- Temperature results show ٠ heaters required on coupler and tuner
- Vertical deformation results in agreement with hand calc.
- ~0.1mm difference in contraction. •

Transport Tooling

Edward Jordan

Wire Rope isolator change

- Supplier expressed concern with the static preload on the isolator from the self weight of the module.
 - A common rule of thumb is to allow a maximum of 20mm static deflection on the isolator
 - The proposed configuration had 26mm static deflection
- A second supplier offered an isolator with thicker diameter
 - Static deflection of 11mm

Impact of isolator change

- The new isolator will only withstand a drop height of 300mm,
 - Previous target was 460mm
- This new value of 300mm still adheres to MIL-STD-810H
 - "Realistic variations to the default values provided in Tables 516.8-IX thru 516.8-XI may be permitted when justified;
 e.g. large/complex systems in which specific handling considerations are identified in the LCEP may supersede the default levels provided."
 pg. 516.8-32
- Vertical Natural frequency increased from 3hz to 4.75hz

OVC Tender & Tooling

Carlos Granjeiro

1st OUTER VACUUM VESSEL PROCUREMENT

Further Competition for

Purchase of an Outer Vacuum Vessel Prototype for Hi-<u>Lumi</u> Crab Cavities

Activity	Date				
Issue of Further Competition documentation	Monday 20 January 2020				
Return of Tender documentation	Friday 14 February 2020 at 12 am				
Post Submission Clarifications/Negotiations	From Friday 14 February 2020				
Contract Award Date	Monday 24 February 2020				

10 Companies showed interest:

3 proposals received

All proposals refused for not being able to comply with requirements

Closure date was extended 1 week (21 February) (requested by several companies because of material availability)

2nd OUTER VACUUM VESSEL PROCUREMENT

Further Competition for

Purchase of an Outer Vacuum Vessel Prototype for Hi-<u>Lumi</u> Crab Cavities

Activity	Date				
Issue of Further Competition documentation	Friday 28 February 2020				
Return of Tender documentation	Thursday 26 March at 12 am				
Post Submission Clarifications/Negotiations	From Friday 27 March 2020				
Contract Award Date	Wednesday 3 April 2020				

Changes from previous Tender:

- RELAXATION OF THE NORM (CERN SPEC EDMS 1429406 V1.0) replaced by EN 10028-7 + EN 10216-5 + EN 10217-7 + EN 10253-4
- 2 Grades of Stainless Steel Allowed (1.4404 and 1.4435)
- Cobalt content $\leq 0.3\%$ by mass
- 8 Companies showed interest
- 6 were deemed able to compete
- 2 Already dropped off (before 1.4404 extension)

Remaining companies (1 Spain, 2 UK and 1 Italy) (3 are the same of the previous competing bids)

OUTER VACUUM VESSEL TOOLING

Tooling for workshop transfer: Castor wheel with jacking system Will attach directly on the corners of the OVC using bolts and pins.

It could be considered to introduce a new inner reinforcement in the region to stiffen the area

OUTER VACUUM VESSEL TOOLING

- OVC: 1.4435 , Interface: Aluminium
- Force 2500 kg
- Supports: Fixed top and bottom only
- Deflection: 0.056 mm (Real deflection will be lower)
- Stress: 28 MPa (15 MPa on the weld region)

Minimal distortion and stress even in a very conservative validation

Additional Slides

		SPS operation				SPS operation					
		Static				Dynamic 5 MV (40 kW FPC)					
		2 K bath	comments	10 K intercept	80 K intercept	comments	2 K bath	comments	10 K intercept	80 K intercept	comments
	Radiation	3.4	(from DQW)		30	(from DQW)	-			-	-
	CWT [2]	5.8		-	41.2		0			0	-
		1.1	cavity support		20	cavity support					
	Supports [3]		No He lines support		-	No He lines support	-			-	-
		0.3	(from DQW)		5.2	(from DQW)					
	FPC [4]	5.3			56		8.2			65.2	
	VHOM lines	0.7	design changes ongoing		7.8		3.4			11.8	
	VHOM antennas [5]	-			-		0.3			-	-
	HHOM lines	2.7	design changes ongoing		-		7			TBD	
	HHOM antennas [5]	-			-		0.7			-	-
	Pickup lines	2.7	(from HHOM)		7.8	(from VHOM)	7	(from HHOM)		11.8	(from VHOM)
	Pickup antennas [5]	-			-		0	around 0		-	-
	Tuner [5]	0.9			7.3		-			-	-
	Instrumentation	2.3	(from DQW)		10	(from DQW)	-			-	-
	He level sensor [6]	0.2			0.5	most conservative	-			-	-
	Cryo safety device [7]	0.7			4.5		-			-	-
	Beam screen [XX]		ТВС		ТВС		TBC			TBC	ТВС
	Beam	-			-		0.5			-	-
	Cavity [7], [8]	-			-		23.1			-	-
HILUM			Stati	С					Dynamic		
HL-LHC PROJEC	TOTAL (temporary)	26.1			190.3		50.2			88.8	