

CERN seminar – May the 4th, 2020

technische universität dortmund

Rare decays: from strangeness to beauty

An overview of recent LHCb results in rare hadron decays

Vitalii Lisovskyi (TU Dortmund) on behalf of the LHCb Collaboration

Why rare decays?

Decays forbidden *at the tree level* in the SM, Flavour-Changing Neutral Currents: $q \rightarrow q'\gamma$, $q \rightarrow q'\ell^+\ell^-$

q=quark ℓ =lepton h=hadron

- * Proceed at the **loop level** \rightarrow very suppressed in the SM
 - * Sensitive to virtual BSM particles in the loop
- Precise SM predictions

**

access indirectly high mass scales!

- * Decays forbidden in the SM (or beyond experimental reach): $q \rightarrow q' e^+ \mu^-, h \rightarrow h' \ell^+ \ell^+, ...$
 - Observation would be a clear sign of BSM

Rare decays allow for model-independent BSM searches.

- * Historically drove some benchmarks of particle physics
 - * 1970s: $K_L \rightarrow \mu^+ \mu^-$ is suppressed: GIM mechanism, indirect evidence for charm quark
 - * 2010s: $B_s^0 \rightarrow \mu^+ \mu^-$: rate comparable to the SM, exclude a large BSM range

2

Recent anomalies in rare decays

* A number of tensions with the SM in $b \rightarrow s\ell^+\ell^-$ transitions:

- * Differential branching fractions, angular observables...
 - * For an overview, see the recent <u>CERN seminar</u> by Eluned Smith

- * **Lepton-flavour universality (LFU):** all leptons $(e^{\pm}, \mu^{\pm}, \tau^{\pm})$ have the same couplings to the SM gauge bosons
 - * Hints of deviations from LFU: R_{K} , R_{K^*}
 - * See <u>CERN seminar</u> by Paula Alvarez Cartelle

Should we get excited?

- We don't know yet: most of results are dominated by the statistical uncertainties
- Two pathways towards clarifying the situation:
 - * Update of hot $b \rightarrow s\ell^+\ell^-$ results with a larger dataset
 - * $B_{(s)}^0 \rightarrow \mu^+ \mu^-$, $R_{K^{(*)}}$, ... with the full LHCb dataset are in preparation.
 - Explore new horizons: today
- * We look for **complementary** observables:
 - * Study $s \to d\ell^+ \ell^-$, $c \to u\ell^+ \ell^-$ transitions: are there deviations in **charm** and **strange** decays?
 - * Explore new final states of $b \rightarrow s\ell^+\ell^-$: modes with **electrons and taus**, **baryonic** modes, ...
 - Search for decays forbidden in the SM

LHCb datasets

* Large production cross-sections of various hadrons at LHCb:

(at 13 TeV)

- * $\sigma(pp \to b\bar{b}X) \approx 140\mu b$
- * $\sigma(pp \to c\bar{c}X) \approx 2400 \mu b$

* $\sigma(pp \to s\bar{s}X) \sim 1b$

large boost \rightarrow displacement from the primary vertex

- * Collected 9 fb^{-1} of data at 7, 8 and 13 TeV
 - * Thanks to CERN accelerator team for the excellent LHC performance!

Challenges with electrons

JINST 14 (2019) P04013

* Hardware trigger:

- efficient for final states with muons (~90 %)
- * a bottleneck for final states *without* muons
 - calorimeter has a high occupancy, tight thresholds
- * final states **with electrons** can be triggered in several ways:
- * **Electrons** emit a large amount of **bremsstrahlung** in interactions with the detector material
 - * If a photon is emitted *before the magnet*:
 - electron momentum measured *after* bremsstrahlung;
 - * photon ends up in a *different* ECAL cell
 - * dedicated procedure to search for these photons and correct the electron momenta
 - not a perfect correction, affects the resolution

Shopping list for today

* Meson decays to two leptons * $B_{(s)}^0 \rightarrow e^+ e^-$: arXiv:2003.03999 * $K_S \rightarrow \mu^+ \mu^-$: arXiv:2001.10354

presented for the first time!

> thanks to organisers for opportunity to present these results!

* Lepton universality tests * R_{pK} with $\Lambda_b^0 \to pK^-\ell^+\ell^-$ decays: <u>arXiv:1912.08139</u>

Searches for other suppressed or forbidden decays *B*⁺ → *K*⁺*µ*⁻*τ*⁺ from *B*^{*}_{s2} decays: <u>arXiv:2003.04352</u>
25 *D*_(s) → *ht* t modes: LHCb-PAPER-2020-007, NEW

presented for the first time! presented for the first time!

Meson decays to two leptons

LHCb-PAPER-2020-001 $\operatorname{Why} h^0 \to \ell^+ \ell^-?$ 10 arXiv:2003.03999 accepted by PRL FCNC, very rare: sensitive to BSM contributions **CKM suppression**: $\mathscr{B}(B^0 \to \ell^+ \ell^-) < \mathscr{B}(B^0_s \to \ell^+ \ell^-)$ due to $|V_{td}| < |V_{ts}|$ **GIM suppression** for strange and charm decays * d b S Helicity-suppressed * $A\lambda^3(\rho - i\eta)$ $1-\lambda^2/2$ λ u suppression largest for $\ell^{\pm} = e^{\pm}$ * $1-\lambda^2/2$ $A\lambda^2$ C $\mathscr{B}(B_s^0 \to e^+e^-) \sim \mathscr{B}(B_s^0 \to \mu^+\mu^-) \times (m_e/m_\mu)^2$ t $A\lambda^3(1-\rho-i\eta)$ $-A\lambda^2$ 1 adapted from Fleischer et al., JHEP 05 (2017) 156 10-1 LHCb limit 20092013 10-4 CDF limit CDF limit previous limit 10-7 2017 LHCb New Physics BSM predictions 10-10 +CMS & SM Scenario precise SM predictions! 10-13 too small to be observed yet SM $\overline{\mathcal{B}}(B_s \to \tau^+ \tau^-) \qquad \overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)$ $\overline{\mathcal{B}}(B_s \to e^+ e^-)$ 10-16 LHC experiments searched for $B_{(s)}^0 \to \mu^+ \mu^-$ and $B_{(s)}^0 \to \tau^+ \tau^-$, this is the first search for $B_{(s)} \rightarrow e^+e^-$ at LHC Dataset: 2011-2016

 $(5 \, \text{fb}^{-1})$

Bremsstrahlung

LHCb-PAPER-2020-001 arXiv:2003.03999 accepted by PRL

11

- Mass resolution depends on the **number of** * recovered bremsstrahlung photons
 - studied with $B^+ \to K^+ J/\psi(e^+e^-)$ data:
- However, bremsstrahlung recovery improves * the electron ID
 - only electrons emit a significant amount of radiation

Different background composition between the photon recovery categories:

Photons recovered for both electrons

Search for $K_S \to \mu^+ \mu^-$

- LHCb-PAPER-2019-038 arXiv:2001.10354
- * A 'little sister' of the $K_L \rightarrow \mu^+ \mu^- (\mathscr{B} \sim 6 \times 10^{-9})$ which revolutionised particle physics
- Has additional CP suppression: SM prediction $\mathscr{B} \sim 5 \times 10^{-12}$ <u>hep-ph/0311084</u>
 - * Previous limit: LHCb Run 1, $\mathscr{B} < 0.8 \times 10^{-9} @ 90 \% CL$

- Soft kinematics: need dedicated triggers and reconstruction
 - In place since 2016: efficiency an order of magnitude larger than in Run 1
 - Still limited by the hardware trigger
- * Consider only K_S decaying inside VELO (22%)
 - Removed backgrounds from inelastic interactions with the VELO material
 - Displaced vertices mimicking signal

Eur. Phys. J. C77 (2017) 678

Dataset:

2016-2018

(5.5 fb⁻¹)

Search for $K_S \to \mu^+ \mu^-$

<u>LHCb-PAPER-2019-038</u> arXiv:2001.10354

- * Normalised to $K_S \to \pi^+ \pi^-$
- * $K_S \rightarrow \pi^+ \pi^-$ also is a dominant misidentification background: branching fraction is more than *ten orders of magnitude* larger!
- * Background from $K_L \rightarrow \mu^+ \mu^-$ is suppressed due to its long lifetime
 - well-known rate
- * Limit set, combined with LHCb Run 1 result: $\mathscr{B}(K_S \to \mu^+ \mu^-) < 2.1 \times 10^{-10} @ 90 \% CL$

Tests of lepton-flavour universality in $b \rightarrow s\ell^+\ell^-$ transitions

Lepton Flavour Universality

16

Hints of non-universality seen with Run 1 LHCb data in $B^+ \to K^+ \ell^+ \ell^$ and $B^0 \to K^{*0} \ell^+ \ell^-$ decays

* 2019: updated LFU test with $B^+ \to K^+ \ell^+ \ell^-$

- <u>PRL 122 (2019) 191801</u>
- * LHCb data from 2011-16; $R_{K} = 0.846^{+0.060+0.016}_{-0.054-0.014}$: consistent with SM at 2.5 σ

* LFU not probed in baryonic $b \rightarrow s\ell^+\ell^-$ transitions

- Rare baryonic decays are sensitive to different spin-structure of BSM effects
- * The most abundant b-baryon: Λ_b^0

First test of LFU with
$$\Lambda_b^0 \to pK^-\ell^+\ell^-$$
 decays:

* Measure the double ratio: allows to cancel final-state-dependent systematics

$$R_{pK}^{-1} = \frac{\mathscr{B}(\Lambda_b^0 \to pK^-e^+e^-)_{q^2=(0.1,6)}}{\mathscr{B}(\Lambda_b^0 \to pK^-\mu^+\mu^-)_{q^2=(0.1,6)}} \times q^2 \equiv m^2(\ell^+\ell^-)$$

$$\mathscr{B}(\Lambda^0_h \to pK^-J/w(\mu^+\mu^-)))$$

$$\mathcal{B}(\Lambda_b^0 \to pK^-J/\psi(e^+e^-))$$

 r_{Ibw}^{-1} : equals to 1 \rightarrow

stringent test of efficiencies

Dataset: Run 1, 2016

 (4.7 fb^{-1})

smaller electron yields are in the numerator: more symmetric behaviour of the likelihood. Inverted w.r.t previous measurements!

$pK^-\ell^+\ell^-$ travel map

- Resonant contributions from charmonium states
- * For LFU test, use the region $0.1 < q^2 < 6 \text{ GeV}^2$:
 - far enough from charmonium and the dimuon threshold
 - * get best use of our available dataset
- * pK^- system: multiple overlapping Λ^* resonances of different J^P
 - * Use range $m(pK^-) < 2.6 \text{ GeV}$

LHCb-PAPER-2019-040

arXiv:1912.08139

accepted by JHEP

17

Cross-checks

uncertainties

consistent

1.2

LHCb

- Two *exclusive* trigger categories for the electron mode: TIS and electron Very different calibration \rightarrow agreement of the two is a stringent cross-check
- **Calibration of simulation** using $\Lambda_h^0 \to pK^-J/\psi(\ell^+\ell^-)$ data *
 - Validated with the single ratio: $r_{J/\psi}^{-1} = 0.96 \pm 0.05$ with unity
 - Stable in relevant variables, as expected *

 $\rightarrow pK^{-}\ell^{+}\ell^{-}$ mass fits

<u>LHCb-PAPER-2019-040</u> <u>arXiv:1912.08139</u> accepted by JHEP

19

- Dominant backgrounds:
 - * Random track combinations: suppressed by the MVA
 - * Hadron **misidentifications**, such as $B_s^0 \to K_{\to p}^+ K^- \ell^+ \ell^-$: suppressed by PID and selection, remaining contribution included in the mass fit
 - Partially reconstructed backgrounds: employed momentum balance in the decay

First observation of $\Lambda_b^0 \rightarrow pK^-e^+e^-$: **significance** > 7 σ

main systematics: partially-reco shape in the fit

Results

20

* Test of LFU in $0.1 < q^2 < 6 \text{ GeV}^2$, m(pK) < 2600 MeV:

 $R_{pK}^{-1} = 1.17_{-0.16}^{+0.18} \pm 0.07$
agrees with unity at ~ 1 σ level

First LFU test with b-baryons! result statistically-dominated

* Invert the result, back to usual convention: $R_{pK} = 0.86^{+0.14}_{-0.11} \pm 0.05$

points to the same direction as $R_{K^{(*)}}$ by LHCb

Other decays, suppressed or forbidden in the SM

Why LFV?

- Lepton flavour is not protected by any fundamental symmetry in the SM
 not conserved in neutrino oscillations
- * Many models explaining the LFU violation, naturally predict the violation of lepton-flavour number: $h \to X\ell^+\ell'^-$, $\ell \neq \ell'$
 - * **SM:** through neutrino oscillations, **decay rate negligibly small**
 - * **BSM:** rate can be **enhanced** to the level reachable at LHCb

Dataset: Run1, Run2 (9 fb⁻¹)

22

- * First search for $B^+ \to K^+ \mu^- \tau^+$ at LHCb
 - ► BaBar: $\mathscr{B}(B^+ \to K^+ \mu^- \tau^+) < 2.8 \times 10^{-5} @ 90 \% CL [PRD 86, 012004]$
 - * $B^+ \to K^+ \mu^- \tau^+$ has **less background** from semileptonic $B \to \overline{D} \mu^+ \nu_{\mu} X$ decays, than $B^+ \to K^+ \mu^+ \tau^-$
- Experimental challenge: partially-reconstructed tau lepton decays with missing neutrinos
 - we developed dedicated techniques for partial reconstruction

From spectroscopy to rare decays

* Narrow excited B_{s2}^* state decaying to B^+K^- observed at Tevatron in 2008

Idea: use B^*_{s2} to tag B^+ mesons

- use momentum of the kaon;
- * mass constraints for B_{s2}^* and B^+ ;
- * and their vertex constraints. Energy of B^+ can be determined up

to a quadratic ambiguity

LHCb-PAPER-2019-043

arXiv:2003.04352

submitted to JHEP

23

Inclusive selection of τ^+ decay to one track + X

No peaking backgrounds with $m_{miss}^2 \sim m_{\tau}^2!$

Search for $B^+ \to K^+ \mu^- \tau^+$: results

- Multivariate selection
 - Fit to data in 4 bins of MVA output
- Require $m(K^+\mu^-t^+)_{t\to\mu} < 4.8 \text{ GeV to remove}$ $B^+ \to K^+ c \bar{c} (\mu^+\mu^-)$
- * $B^+ \rightarrow K^+ J/\psi(\mu^+ \mu^-)$ used as normalisation channel
- * No significant signal found , set an upper limit: $\mathscr{B}(B^+ \to K^+ \mu^- \tau^+) < 3.9 \times 10^{-5} @ 90 \% CL$

slightly above the BaBar limit.

Main result: new technique for decays with taus!

two bins of highest MVA score

Mass distributions

2050

2050

other fits shown in backup slides

PID selection suppresses $D^+_{(s)} \rightarrow 3h$ In some cases, misID background is significant * Data in all channels well described by **background-only shape** ** misidentification backgrounds $D^+_{(s)} \rightarrow 3h$ are under control Non-peaking Non-peaking LHCb Preliminary 125Candidates per 4 MeV $D^+ \rightarrow \pi \pi \pi$ $D^+ \rightarrow K \pi \pi$ Candidates per 4 MeV 80 $D_s^+ \rightarrow K \pi \pi$ $D^+_s \rightarrow \pi \pi \pi$ Combined Combined 60 75 $\rightarrow \pi^+ \pi^+ \pi^ D^+ \rightarrow \pi^+ \pi^+ \pi^-$ 40 - $50 \cdot$ background background $D_s^+ \to K^+ \pi^+ \pi^-$ 20 -25background LHCb Preliminary 2000 1900 1950 2000 1900 1850 1850 19502050 $m \left(K^{\pm} e^{\pm} \mu^{\mp} \right) \left[\text{MeV} \right]$ $m \left(\pi^{\pm} e^{\pm} \mu^{\mp} \right)$ [MeV] Non-peaking Candidates per 4 MeV $D^+ \rightarrow K \pi \pi$ 150Candidates per 4 MeV 80 $D^+_{s} \rightarrow K\pi\pi$ Combined 60 LHCb Preliminary Non-peaking 50 - $D^+ \rightarrow \pi^+ \pi^+ \pi^- D_s^+ \rightarrow \pi^+ \pi^+ \pi^-$ background background $D^+ \rightarrow \pi \pi \pi$ 20 $D_{\rm s}^+ \to K^+ \pi^+ \pi^ D^+_s \rightarrow \pi \pi \pi$ LHCb Preliminary Ďackground Combined 0 1850 1900 1950 2000 20501850 2000 1900 1950 $m \left(\pi^{\pm} \mu^{\pm} \mu^{\mp} \right)$ [MeV] $m \left(K^{\pm} \mu^{\pm} \mu^{\mp} \right) \left[\text{MeV} \right]$

Limits

NEW! LHCb-PAPER-2020-007 27 (in preparation)

2016 limit at 90% confidence

Summary

- LHCb is actively analysing its rich dataset of rare strange, charm and beauty decays
- Covered today new LHCb results which came out in the last few months:
 searches for B⁰_(s) → e⁺e⁻, B⁺ → K⁺τ⁻μ⁺, K_S → μ⁺μ⁻ and 25 D⁺_(s) → hℓℓ modes;
 - * first test of lepton-flavour universality in rare baryonic decays.
- * We analyse new channels and update old results
 - several first observations, or first limits
 - * most of the results still statistically dominated
- Sensitivity to several channels enters the region interesting to probe BSM models
- * We find new interplays between the rare decays and hadron spectroscopy
- * Many results with the full Run 1 and Run 2 dataset are coming

Prospects

- * We are upgrading the LHCb: it will be essentially a new detector
- * Main goals of the Upgrade:
 - collect larger datasets, up to 50 fb⁻¹ by 2030
 - remove the bottlenecks in our trigger
- Upgrade II is in preparation

	2021	2022	2023	2024	2025	2026	2027	20	28	2029	2030	2031	2	2032		
LHC		Run 3			LS3				Ru	n 4		LS4		Run 5		•••
<i>LHCb</i>		Upgrade I						Upgrade Ib			Upgrade II					

- * Expect a healthy competition with Belle II, CMS and ATLAS
- * Bright times ahead for the precision flavour physics!

Thanks for your attention!

Stay along for the talk of Emmy Gabriel on discoveries of new hadrons!

arXiv:1808.08865

Electrons in LHCb

- Electrons emit a large amount of bremsstrahlung in interactions with the detector material
- If a photon is emitter after the magnet:
 - momentum of the electron measured correctly
 - energies of the photon and electron are deposited in the same ECAL cell
- If a photon is emitted before the magnet:
 - momentum is measured after bremsstrahlung
 - photon ends up in a different ECAL cell
 - dedicated procedure to search for these photons and correct the electron momenta
 - Not a perfect correction, affects the resolution

LFU with baryons

32

Dataset:

Run 1, 2016

(4.7 fb⁻¹)

- Production rate of Λ_b^0 : $\frac{f_{\Lambda_b^0}}{f_u + f_d} = 0.259 \pm 0.018$ at 13 TeV [PRD 100 (2019) 031102(R)]
 - * plenty of Λ_b^0 decays recorded at LHCb

Baryonic $b \to s\ell^+\ell^-$ decays observed by 2019: * $\Lambda_b \to \Lambda \mu^+ \mu^-$: long-lived neutral Λ , small efficiency * $\Lambda_b \to pK\mu^+\mu^-$: **our choice for LFU test** * $\Lambda_b \to p\pi\mu^+\mu^-$: Cabibbo-suppressed No baryonic $b \to se^+e^-$ mode seen before

• First test of LFU with $\Lambda_b \to pK\ell^+\ell^-$ decays:

$$R_{pK}^{-1} = \frac{\mathscr{B}(\Lambda_b^0 \to pK^- e^+ e^-)_{q^2 = (0.1,6)}}{\mathscr{B}(\Lambda_b^0 \to pK^- \mu^+ \mu^-)_{q^2 = (0.1,6)}} \times \frac{\mathscr{B}(\Lambda_b^0 \to pK^- J/\psi(\mu^+ \mu^-))}{\mathscr{B}(\Lambda_b^0 \to pK^- J/\psi(e^+ e^-))}$$

* smaller electron yields are in the numerator: more symmetric behavior of the likelihood. Inverted w.r.t previous measurements!

$pK^-\ell^+\ell^-$ travel map

- Similarly to other b-hadron decays, there are resonant contributions from charmonium states
 - * The $\Lambda_b^0 \to pK^-\psi(2S)(\ell^+\ell^-)$ contribution is much smaller than in other b-hadron decays, due to **closeness to the upper mass threshold**
 - * Almost no signal in "high-q²" region above the $\psi(2S)$
- * For LFU test, use the region $0.1 < q^2 < 6 \text{ GeV}^2$:
 - far enough from charmonium and the dimuon threshold
 - get best use of our available dataset

m(pK⁻) travel map

* $\Lambda_h^0 \to pK^- J/\psi$: multiple overlapping $\Lambda^* \to pK^-$ resonances of different J^P

and some pentaquarks in $J/\psi p!$

- * $\Lambda_b^0 \to pK^-\mu^+\mu^-$: similar, but not necessarily the same resonant content
 - difficult to separate one single resonance
 - this complicates theoretical interpretation of our result
 - Large phase-space, but almost no signal at high *m*(*pK*⁻): this analysis restricted to $m(pK^{-}) < 2.6 \, \text{GeV}$

arXiv:1912.08139

accepted by JHEP

Search for $B_{(s)} \rightarrow e^+e^-$

35

- * LHC experiments searched for $B_{(s)}^0 \to \mu^+\mu^-$ and $B_{(s)}^0 \to \tau^+\tau^-$, this is the first search for $B_{(s)} \to e^+e^-$ at LHC * Test of LFU w.r.t. $B_{(s)}^0 \to \mu^+\mu^-$
- * $B^+ \to K^+ J/\psi(e^+e^-)$ taken as a normalisation channel
 - Cancellation of uncertainties due to electron reconstruction
- * Multivariate selection against random track combinations
 - * relies on the **kinematics**, **geometry** and **isolation** tools
- Partially reconstructed backgrounds can survive this selection, are included in the invariant-mass fit
 - their mass shapes are not peaking
 - * misidentified $B^0 \to \pi^- e^+ \nu_e$ is the closest to the signal region
- PID selection applied to strongly suppress misidentifications
 - ∗ Special care for misidentified $B_{(s)}^0 \rightarrow h^+h^-$: located in the signal region

Mass resolution

- Mass **resolution** is **degraded** by * bremsstrahlung
- * Makes it difficult to separate the B^0 and B_c^0 signals
 - Search for each mode separately, assuming absence of the other

- Mass resolution depends on the **number of** * recovered bremsstrahlung photons studied with $B^+ \to K^+ J/\psi(e^+e^-)$ data:
- * Analysis is performed in three categories of bremsstrahlung recovery separately

arXiv:2003.03999

accepted by PRL

36

Bremsstrahlung and PID

- * Bremsstrahlung recovery **improves** the **electron ID**
 - only electrons emit a significant amount of radiation

0

4500

5000

5500

6000

 $m(e_{\gamma}^{+}e_{\gamma}^{-})$ [MeV/ c^{2}]

6500

* Different background composition between the three categories:

From hadron spectroscopy to rare decays

Candidates / (1 MeV/ c^2)

Pull

- Narrow excited B_{s2}^* state decaying to B^+K^- observed by CDF and D0
 - confirmed by LHCb in 2013
 - * about 1% of B^+ mesons originate from decays of B^*_{s2}

Idea: use B_{s2}^* to tag B^+ mesons

- use momentum of the kaon;
- * mass constraints for B_{s2}^* and B^+ ;

and their vertex constraints.

Energy of B^+ can be determined up to a quadratic ambiguity

* 2018: method used to measure the proportions of $D^0/D^{*0}/D^{**0}$ in semileptonic B^+ decays

* 2020: search for decays with a τ^{\pm} !

38

Search for $B^+ \to K^+ \mu^- \tau^+$

- * Search for $B^+ \to K^+ \mu^- \tau^+$ from B_{s2}^*
 - * BaBar: $\mathscr{B}(B^+ \to K^+ \mu^- \tau^+) < 2.8 \times 10^{-5} @ 90 \% CL [PRD 86, 012004]$
 - * $B^+ \to K^+ \mu^- \tau^+$ has **less background** from semileptonic $B \to \overline{D} \mu^+ \nu_{\mu} X$ decays, than $B^+ \to K^+ \mu^+ \tau^-$
- * Sketch of the decay topology:

LHCb-PAPER-2019-043

arXiv:2003.04352

submitted to JHEP

- * Inclusive selection of τ^+ decay to one track + X * require $m(K^+\mu^-t^+)_{t=\mu} < 4.8 \text{ GeV}$ to remove $B^+ \to K^+ c \bar{c} (\mu^+\mu^-)$
- * $B^+ \to K^+ J/\psi(\mu^+ \mu^-)$ used as **normalisation channel**

Dataset:

Run1, Run2

 (9 fb^{-1})

- * Multivariate selection based on topology, two-body kinematics and flight distance of the tau (from momentum conservation)
- Background: mostly semileptonics
- **No peaking backgrounds** with $m_{miss}^2 \sim m_{\tau}^2$
 - * Processes of the kind $B^+ \to K^+ \mu^- D^+$ do not exist in the SM

Search for $25 D^+_{(s)} \rightarrow h\ell\ell \mod s$

* $K^-\ell^+\ell^{(\prime)+}$ modes: only $D_s^+ \to K^-\ell^+\ell^{(\prime)+}$ modes analysed

Search for $25 D^+_{(s)} \rightarrow h\ell\ell \mod s$

* $\pi^{-}\ell^{+}\ell^{(\prime)+}$ modes: large misID backgrounds under control

NEW! Search for $25 D^+_{(s)} \rightarrow h\ell\ell$ modes LHCb-PAPER-2020-007 43 (in preparation) * $h^+e^+e^-$ and $h^+\mu^+\mu^-$ modes Non-peaking LHCb Preliminary Candidates per 4 MeV $D^+ \rightarrow \pi \pi \pi$ Candidates per 4 MeV $D_s^+ \rightarrow \pi \pi \pi$ 60 150 Combined 40 100 Non-peaking 20 50 $D^+ \rightarrow K \pi \pi$ $D_s^+ \rightarrow K \pi \pi$ LHCb Preliminary Combined 0 1850 1900 1950 2000 1900 2000 2050 1850 1950 2050 $m \left(K^{\pm} e^{\pm} e^{\mp} \right) \left[\text{MeV} \right]$ $m\left(\pi^{\pm}e^{\pm}e^{\mp}\right)$ [MeV] Two plots below were shown in the main body of the talk Non-peaking Candidates per 4 MeV $D^+ \rightarrow K \pi \pi$ Candidates per 4 MeV 80 150 $D^+_s \rightarrow K \pi \pi$ Combined 60 100 LHCb Preliminary Non-peaking 50 $D^+ \rightarrow \pi \pi \pi$ 20 $D_s^+ \rightarrow \pi \pi \pi$ LHCb Preliminary Combined

0

1850

1950

1900

0 1850 2000 2000 20501900 1950 2050 $m \left(\pi^{\pm} \mu^{\pm} \mu^{\mp} \right)$ [MeV] $m\left(K^{\pm}\mu^{\pm}\mu^{\mp}\right)$ MeV

Search for $25 D^+_{(s)} \rightarrow h\ell\ell \mod s$

