

The engima of b4 correction in IR5

E. Todesco, E. Maclean CERN, Geneva Switzerland

THE B4 ENIGMA

Historical

- The amount to b4 in the IR triplet can be measured via the detuning with amplitude through the beam (Rogelio OMC team)
- Topic discussed few times
 - Ewen in <u>https://indico.cern.ch/event/821749/</u> (RunIII FiDeL meetings, 2020, 4th February)
 - Ezio in <u>https://indico.cern.ch/event/872709/</u>(RunIII FiDeL meetings, 2020, 7th January)
 - Ewen in https://indico.cern.ch/event/874917/ (RunII FiDeL meetings,
 - 2019, 21th May)

SOURCES OF B4

- Octupolar sources in IR
 - MQXA have a systematic b₄ (about 1.3, stdev 0.11 unit) coming from the mechanical structure dipolar symmetry
 - MQXB have small systematic b₄ (about 0.12, stdev 0.14 unit) but their effect is enhanced by the beta functions
 - Beam screen gives additional 0.12 units, due its dipolar symmetry
 - Positive in IR1 and negative in IR5, due to installation in H / V direction

- Data shown in m-4 (octupole gradients used in MAD)
 - 1 m⁻⁴ corresponds to 1.6 units of octupolar error on MQXA, and zero on MQXB
 - Total correction range provided by the corrector octupoles in IR is 2.4 m⁻⁴
 - Today measured/simulated correction between half and one fourth of the maximum correction
 - Very good agreement for IR1, bad for IR5

• Shown in a scale going from zero to 65% of the correction

- Shown in a scale going from zero to 100% of the correction
 - Discrepancy for IR5 is 0.5 m⁻⁴, corresponding to 20% of the maximum correction

- We reconstructed the correction with only contribution of MQXA
- IR1 and IR5, L and R have approx the same value due to the syst.

- Then we added adding MQXB
- Some impact since beta functions in MQXB are large, even though systematic is close to zero

- Then adding the beam screen contribution
 - The beam screen is oriented vertical in IR1, and horizontal in IR5, so the b4 contribution has different signs gives a change of about 0.3 m⁻⁴
 - BS contribution is the difference seen between FiDeL reports (where it is not included) and WISE simulation (initially misinterpreted as a bug)

• Ewen observed recently that if you change the sign to the beam screen contribution the same level of agreement is obtained in IR1 and IR5

THE IR5 B4 ENIGMA

- Ewen observed recently that if you change the sign to the beam screen contribution the same level of agreement is obtained in IR1 and IR5
 - Indeed, it is hard to believe beam screen cannot have been installed in the wrong direction in IR5 (N. Kos and vacuum group)

- We have an agreement between beam measurements and b4 magnetic measurements that is
 - Below 0.1 units of b₄ in MQXA only in IR1
 - Around 1 units of b_4 in MQXA in IR5
 - Out of a total 1.3 systematic b₄ in MQXA
 - Changing the contribution of the beam screen in IR5 would bring the precision to less than 0.1 units of b₄, but it is not physical according to our present understanding
 - Another hypothesis (from Massimo): could CMS giving a octupolar component in MQXA ?

<u>E. Todesco</u>