

# **HL-LHC filling schemes**

G. ladarola

### Many thanks to:

R. Tomas, G. Rumolo, H. BartosikC. Schwick and the LPC for filling scheme webtoolsA. Poyet and G. Sterbini for the beam-beam analysis tool



### Introduction and assumptions

Updated **filling schemes** for the different operational scenarios were made available on the <u>WP2 webpage</u> (no major change, just some cleanup)

In the following we make the following **assumptions** (based on the LHC Run 2):

- Gap between injections into the SPS (T<sub>MKP</sub>): 200 ns (7 slots)
- Gap between injections into the LHC (T<sub>MKI</sub>): 800 ns (31 slots)
- Abort gap length: 3.05 µs (121 slots)
- Kicker pulses (MKI, MKE) long more than 8.55 µs
- The **first injection** consists in a short batch (8b or 12b)
  - These are left **non-colliding** in IP1/5
- All other bunches are colliding in IP1/5
- As close as possible to **four-fold symmetry** to maximize number of collisions in **IP8**
- Filling schemes generated using the <u>LPC tool</u> and analyzed with <u>FillingPatterns</u> python package (which now includes also beam-beam pattern calculations by A. Poyet and G. Sterbini)



#### Additional info for burn-off calculations

|                              |     | IP15 partner<br>collides in LHCb |     |
|------------------------------|-----|----------------------------------|-----|
|                              |     | Yes                              | No  |
| Bunch<br>collides<br>in LHCb | Yes | 2376                             | 186 |
|                              | No  | 186                              | 0   |
|                              |     |                                  |     |



| N. collisions:   | Patterns from SPS:   |
|------------------|----------------------|
| ATLAS/CMS: 2736  | [8]                  |
| LHCb: 2370       | [48, 48]             |
| ALICE: 2246      | [48, 48, 48, 48, 48] |
|                  |                      |
| N. bunches: 2744 | N. injections: 13    |

#### Additional info for burn-off calculations

|                              |     | IP15 partner<br>collides in LHCb |     |
|------------------------------|-----|----------------------------------|-----|
|                              |     | Yes                              | No  |
| Bunch<br>collides<br>in LHCb | Yes | 2017                             | 345 |
|                              | No  | 345                              | 29  |
|                              |     |                                  |     |



#### Additional info for burn-off calculations

|                              |     | IP15 partner<br>collides in LHCb |    |
|------------------------------|-----|----------------------------------|----|
|                              |     | Yes                              | No |
| Bunch<br>collides<br>in LHCb | Yes | 1796                             | 82 |
|                              | No  | 82                               | 0  |
|                              |     |                                  |    |



### **Beam-beam pattern analysis**



25ns\_2760b\_2748\_2492\_2574\_288bpi\_13inj\_800ns\_bs200ns - beam 1





25ns\_2744b\_2736\_2246\_2370\_240bpi\_13inj\_800ns\_bs200ns\_BCMS\_5x48b - beam 1





8b4e\_1972b\_1960\_1178\_1886\_224bpi\_12inj\_800ns\_bs200ns - beam 1





25ns\_2760b\_2748\_2492\_2574\_288bpi\_13inj\_800ns\_bs200ns - beam 2





25ns\_2744b\_2736\_2246\_2370\_240bpi\_13inj\_800ns\_bs200ns\_BCMS\_5x48b - beam 2





8b4e\_1972b\_1960\_1178\_1886\_224bpi\_12inj\_800ns\_bs200ns - beam 2





## Filling scheme for coupling measurements

### **BCMS coupling-measurement scheme**

CERN

The OMC team asked to make a filling schemes having a **small number of bunches with no beam-beam encounters** (HO and LR) anywhere

- Modified the 48b scheme (thinking of Run 3) to get **8 bunches** with these characteristics
- On a first attempt this could be achieved with a loss of ~9% on the number of bunches (considered acceptable if this scheme is used for example once every ~20 fills)



25ns\_2504b\_2496\_1987\_2092\_240bpi\_15inj\_800ns\_bs200ns\_coupling







### Thanks. For your attention