Resummation benchmark: Scale variations in NangaParbat

Valerio Bertone and Giuseppe Bozzi

INFN and Università di Pavia

LHC EW WG Subgroup Meeting 3 DSP

3DSPIN MAPPING THE PROTON IN 3D

March 26, 2020

TMD evolution equations

TMD factorisation allows one to obtain the evolution equations:

$$\begin{cases} \frac{d \ln F}{d \ln \mu} = \gamma(\mu, \zeta) \\ \frac{d \ln F}{d \ln \sqrt{\zeta}} = K(\mu) \end{cases}, \quad \frac{d^2 \ln F}{d \ln \mu d \ln \sqrt{\zeta}} = \begin{cases} \frac{d \gamma}{d \ln \sqrt{\zeta}} \\ \frac{d K}{d \ln \mu} \end{cases} = \gamma_K(\alpha_s(\mu))$$

- To solve these equations we need to fix two pairs of (i.e. four) scales:
 - initial scales: (μ_0, ζ_0)
 - final scales: (μ, ζ)
- The solution is unique and reads:

$$F(\mu, \zeta) = R\left[\left(\mu, \zeta\right) \leftarrow \left(\mu_0, \zeta_0\right)\right] F(\mu_0, \zeta_0)$$

$$R\left[\left(\mu,\zeta\right)\leftarrow\left(\mu_{0},\zeta_{0}\right)\right]=\exp\left\{K(\mu_{0})\ln\frac{\sqrt{\zeta}}{\sqrt{\zeta_{0}}}+\int_{\mu_{0}}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_{F}(\alpha_{s}(\mu'))-\gamma_{K}(\alpha_{s}(\mu'))\ln\frac{\sqrt{\zeta}}{\mu'}\right]\right\}$$

• The question is: how do we choose these four scales?

Scale variations

- A sensible choice of the scales is important to allow perturbation theory to be reliable:
 - no large unresummed logarithms should be introduced,
 - each scale has to be set in the vicinity of its natural (central) value,
 - scale variations (within a reasonable range) give an estimate of HO corrs.
- In TMD factorisation $(q_T \ll Q)$ for DY the relevant scales are q_T and Q:
 - ullet natural to expect $\mu_0 \sim \sqrt{\zeta_0} \sim q_T \sim b_T^{-1}$ and $\mu \sim \sqrt{\zeta} \sim Q$
- In fact, it turns out that (in the MS scheme) the central scales are:

$$\mu_0 = \sqrt{\zeta_0} = rac{2e^{-\gamma_E}}{b_T} \equiv \mu_b \quad ext{and} \quad \mu = \sqrt{\zeta} = Q$$

This choice **nullifies** all unresummed logs. One should thus consider:

$$\mu_0 = C_i^{(1)} \mu_b, \quad \sqrt{\zeta_0} = C_i^{(2)} \mu_b, \quad \mu = C_f^{(1)} Q, \quad \sqrt{\zeta} = C_f^{(2)} Q,$$

Scale variations

- A sensible choice of the scales is important to allow perturbation theory to be reliable:
 - no large unresummed logarithms should be introduced,
 - each scale has to be set in the vicinity of its natural (central) value,
 - scale variations (within a reasonable range) give an estimate of HO corrs.
- In TMD factorisation $(q_T \ll Q)$ for DY the relevant scales are q_T and Q:
 - ullet natural to expect $\mu_0 \sim \sqrt{\zeta_0} \sim q_T \sim b_T^{-1}$ and $\mu \sim \sqrt{\zeta} \sim Q$
- In fact, it turns out that (in the MS scheme) the central scales are:

$$\mu_0 = \sqrt{\zeta_0} = rac{2e^{-\gamma_E}}{b_T} \equiv \mu_b \quad ext{and} \quad \mu = \sqrt{\zeta} = Q$$

This choice **nullifies** all unresummed logs. One should thus consider:

$$\mu_0 = C_i^{(1)} \mu_b, \quad \sqrt{\zeta_0} = C_i^{(2)} \mu_b, \quad \mu = C_f^{(1)} Q, \quad \sqrt{\zeta} = C_i^{(2)} Q,$$

Scale variations

 \bullet To reason why variations of ζ have **no effect** is that:

$$rac{d\sigma}{dq_T} \propto H\left(rac{\mu}{Q}
ight) F_1(\mu, \zeta_1) F_2(\mu, \zeta_2) \quad ext{with} \quad \left(\zeta_1 \zeta_2 \stackrel{!}{=} Q^4
ight)$$

• It is easy to see that:

$$F_{1}(\mu, \zeta_{1})F_{2}(\mu, \zeta_{2}) = \underbrace{R\left[(\mu, \zeta_{1}) \leftarrow (\mu_{0}, \zeta_{0})\right]R\left[(\mu, \zeta_{2}) \leftarrow (\mu_{0}, \zeta_{0})\right]}_{f(\zeta_{1}\zeta_{2}) = f(Q^{4})}F_{1}(\mu_{0}, \zeta_{0})F_{2}(\mu_{0}, \zeta_{0})$$

- The single dependence on ζ_1 and ζ_2 drops in the combination:
 - we choose $\zeta_1 = \zeta_2 = Q^2$ but any other choice such that $\zeta_1 \zeta_2 = Q^4$ is **identical**.
- In addition, in NangaParbat we have chosen to set $\mu_0 = \sqrt{\zeta_0}$:
 - not strictly necessary but probably a conservative choice.
- At the end of the day, we have **two scales** to be varied:

$$\mu_0 = \sqrt{\zeta_0} = C_i \mu_b$$
 and $\mu = C_f Q$

Comparison to q_T resummation

• In q_T resummation, the **resummation scale** M is introduced as:

$$L = \ln\left(\frac{Q}{\mu_b}\right) = \ln\left(\frac{M}{\mu_b}\right) + \ln\left(\frac{Q}{M}\right)$$

These logs are **exposed** by expressing integral representations of the argument of the Sudakov in terms of the **functions** g_n :

$$\int_{\mu_b}^{Q} \frac{d\mu'}{\mu'} \left[A(\alpha_s(\mu')) \ln \left(\frac{Q}{\mu'} \right) + B(\alpha_s(\mu')) \right] = Lg_0(\alpha_s L) + \sum_{n=1}^{\infty} \alpha_s^{n-1} g_n(\alpha_s L)$$

$$= Lg_0(\alpha_s L) + \sum_{n=1}^k \alpha_s^{n-1} g_n(\alpha_s L) + \mathcal{O}(\alpha_s^{k+n} L^n)$$

- The series in the r.h.s. is **truncated** according to the log accuracy:
 - \bullet the truncation is responsible for the **explicit dependence on** M.
- \bullet If the l.h.s. integral is computed exactly, no dependence on M appears:
 - this is what we do in NangaParbat by computing the integral numerically,
 - therefore, we have **no resummation scale dependence**.

Comparison to qT resummation

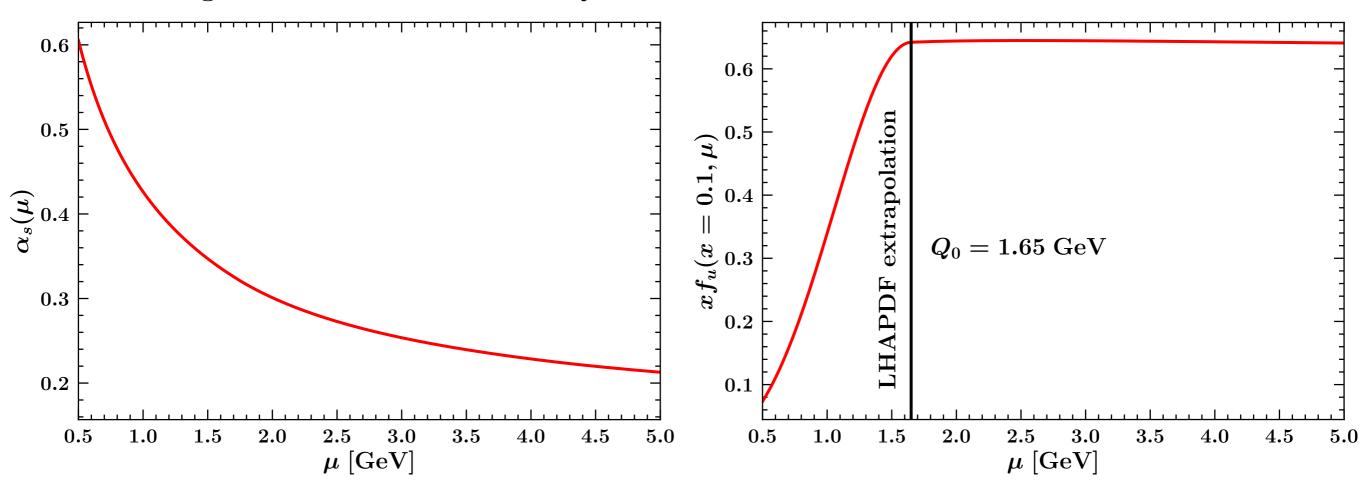
- The **renormalisation scale** μ_R in q_T resummation is probably to be (partly) identified with the scale μ in the TMD formalism:
 - this is the large scale at which the strong coupling α_s is computed.
- The **factorisation scale** μ_F present in q_T resummation is absent in the TMD formalism:
 - in the TMD approach, PDFs are computed at the low scale μ_0 :
 - \bullet μ_0 is varied around μ_b ,
 - in q_T resummation, PDFs are evolved from exactly μ_b up to μ_F :
 - \bullet μ_F is varied around Q.
 - variations of μ_0 are typically much larger than variations of μ_F because at the energies relevant to the benchmark $\alpha_s(\mu_0) \gg \alpha_s(\mu_F)$:
 - problems with NangaParbat in using a b_{max} too large with scale variations.

Problems with b_{max}

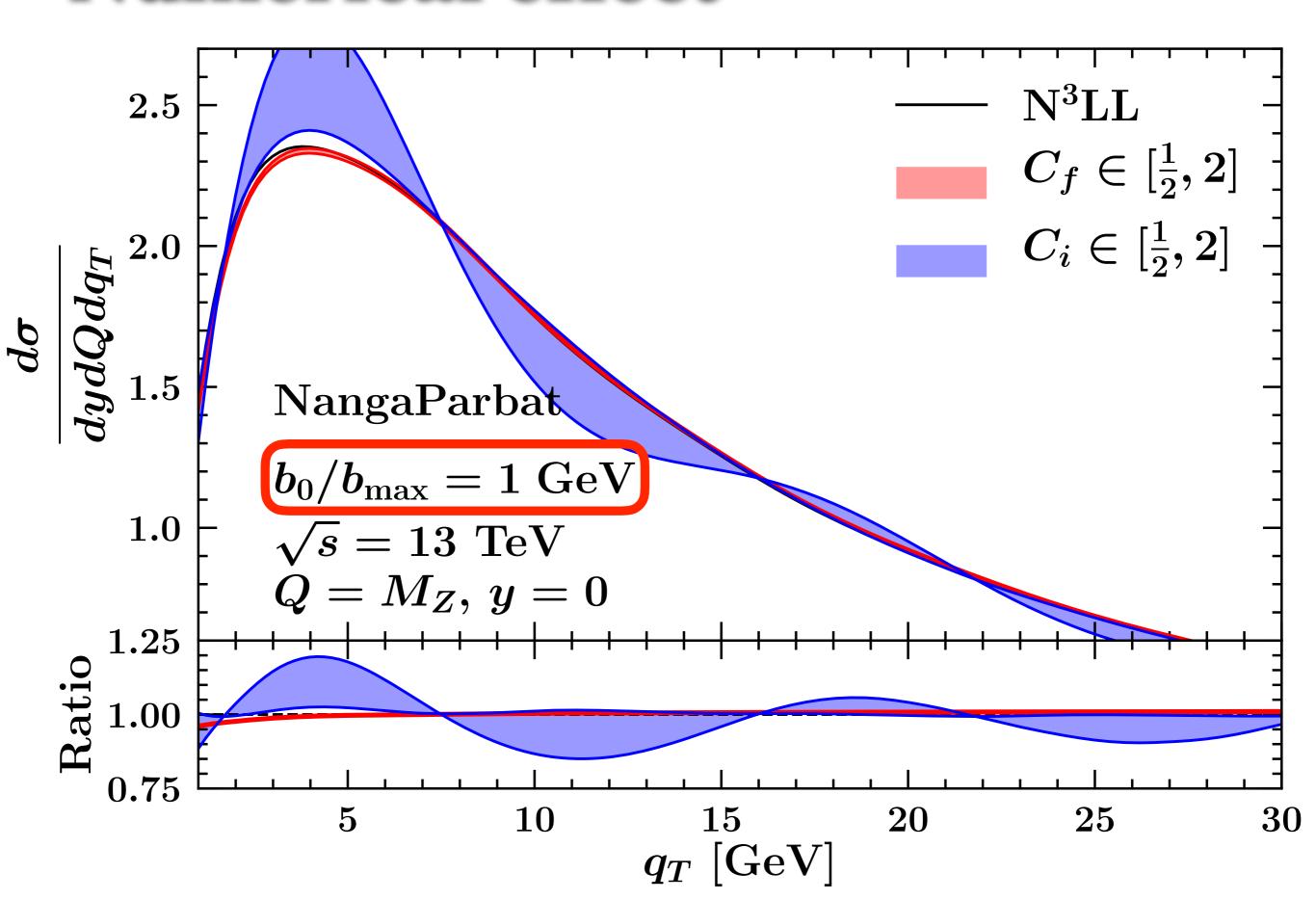
• In the benchmark settings b_{max} is set such that:

$$\mu_{ ext{min}} = rac{b_0}{b_{ ext{max}}} = rac{2e^{-\gamma_E}}{b_{ ext{max}}} = 1 ext{ GeV}$$

- \bullet This is the **minimum** value of the scale at α_s which and PDFs are called.
- \bullet Scales variations in NangaParbat cause μ_{min} to be scaled by some factor:
 - if the scale variation is a factor 1/2, then $\mu_{min} = 0.5 \text{ GeV } \alpha_s$ where is very large and **PDFs are crazy**.



Numerical effect



Numerical effect

