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TMD evolution equations

@ 1'MD tactorisation allows one to obtain the evolution equations:
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To solve these equations we need to fix two pairs of (i.e. four) scales:
@ initial scales: (g, Co)
@ final scales: (LL, C)

@ l'he solution 1s unique and reads:
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@ The question 1s: how do we choose these four scales?



Scale variations

@ A sensible choice of the scales 1s important to allow perturbation
theory to be reliable:
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@ no large unresummed logarithms should be introduced,
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@ cach scale has to be set in the vicinity of its natural (central) value,
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@ scale variations (within a reasonable range) give an estimate of HO corrs.
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@ In TMD factorisation (gt < Q) for DY the relevant scales are gt and Q:
@ natural to expect (g CO ~ qr ~~ b;l and o ~ C ~ Q

@ In fact, it turns out that (in the MS scheme) the central scales are:
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@ This choice nullifies all unresummed logs. One should thus consider:

po = C P po,  VCo=CPpy, 1= C}”Q, V¢ = C}z)Q,
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Scale variations

@ To reason why variations of ¢ have no effect is that:
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@ Itis easy to see that:
Fy (1, C1) F2 (11, C2) = R [(115 C1) <= (105 Co)] B [(11, C2) <= (105 Co)] F1 (105 Co) F2 (1o, Co)

F(Gi62) = £(@Q
@ The single dependence on {1 and {2 drops in the combination:

@ we choose {1 = {2 = Q2 but any other choice such that 152 = Q4 is identical.

@ In addition, in NangaParbat we have chosen to set go = Vo

@ not strictly necessary but probably a conservative choice.

@ At the end of the day, we have two scales to be varied:




Comparison to gt resummation

@ In gt resummation, the resummation scale M 1s introduced as:

o () () -+ (5

@ lhese logs are exposed by expressing integral representations of the
argument of the Sudakov in terms of the functions gu:
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@ l'he series in the r.h.s. 1s truncated according to the log accuracy:
@ the truncation 1s responsible for the explicit dependence on M.

@ If the Lh.s. integral 1s computed exactly, no dependence on M appears:

@ this 1s what we do 1n NangaParbat by computing the integral numerically,
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@ therefore, we have no resummation scale dependence.



Comparison to gr resummation

@ |he renormalisation scale g in gr resummation 1s probably to be
(partly) identified with the scale g 1n the TMD formalism:
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@ this 1s the large scale at which the strong coupling @ 1s computed.

@ |he factorisation scale yrpresent in gr resummation 1s absent in the
TMD formalism:
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@ 1n the TMD approach, PDFs are computed at the low scale po:
@ [o1s varied around g,

@ 1n gr resummation, PDFs are evolved from exactly pyp up to pr:

@ pur s varied around Q.

@ variations of p¢ are typically much larger than variations of gr because at
the energies relevant to the benchmark as(p0) > as(ur):

@ problems with NangaParbat in using a bmax too large with scale variations.



Problems with b,,...

@ In the benchmark settings bmax 1s set such that:
b() 2eVE
inin = — — 1 GeV
bmax bmax
@ T'hisis the minimum value of the scale at aswhich and PDFs are called.

@ DScales variations in NangaParbat cause fimin to be scaled by some factor:

@ 1f the scale variation is a factor 1/2, then min = 0.5 GeV aswhere 1s very
large and PDFs are crazy.

QO = 1.65 GeV
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