Update on Powheg ew

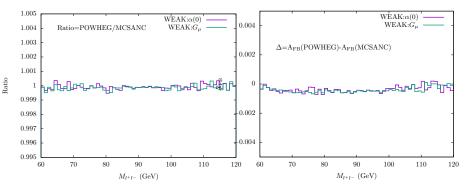
Fulvio Piccinini

INFN Sezione di Pavia

Mauro Chiesa

LAPTH Annecy

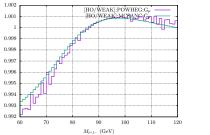
LHC EW Precision sub-group meeting 27 March 2020, CERN

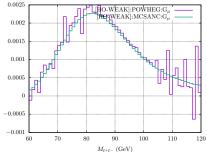

thanks to fruitful collaboration with Lida Kalinoswkaya and Serge Bondarenko

F. Piccinini (INFN Pavia)

update on Powheg ew

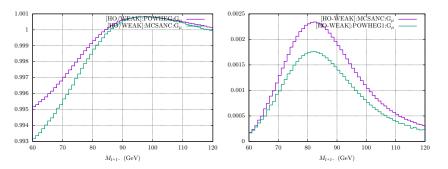
Status of comparisons with MCSANC as of 2018


- G_{μ} , M_W , M_Z scheme
- no cuts on leptons except for $M_{\ell\ell} \ge 50 \text{ GeV}$



plots by S. Bondarenko

• large discrepancies in HO found in the last round of comparisons


comparisons with 2018 data

plots by S. Bondarenko

latest comparisons

plots by S. Bondarenko

NLO within POWHEG_ew

• the original version of the code didn't have the split between pure weak and QED corrections

NLO within POWHEG_ew

• the original version of the code didn't have the split between pure weak and QED corrections

• for QED corrections the real photon radiation requires that the correction factor is proportional to α

NLO within POWHEG_ew

• the original version of the code didn't have the split between pure weak and QED corrections

• for QED corrections the real photon radiation requires that the correction factor is proportional to α

• in order to cancel IR divergences between real and virtual corrections, also the virtual corrections need the explicit factor $\alpha(0)$

• the up to $\mathcal{O}(\alpha)$ contribution is $\mathcal{O}(\alpha_{G_{\mu}}\alpha)$

• in the G_{μ} scheme $\Delta\rho$ at one-loop has to be subtracted from the NLO to avoid double counting when including higher orders

• in the G_{μ} scheme $\Delta\rho$ at one-loop has to be subtracted from the NLO to avoid double counting when including higher orders

• the point is how we calculate the subtraction term:

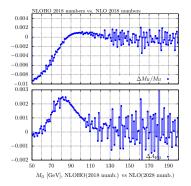
• in the G_{μ} scheme $\Delta\rho$ at one-loop has to be subtracted from the NLO to avoid double counting when including higher orders

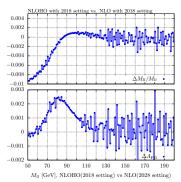
- the point is how we calculate the subtraction term:
- in the original version

$$\Delta \rho = \frac{3\sqrt{2}}{16\pi^2} G_\mu m_t^2$$

• in the G_{μ} scheme $\Delta\rho$ at one-loop has to be subtracted from the NLO to avoid double counting when including higher orders

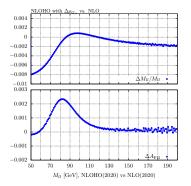
- the point is how we calculate the subtraction term:
- in the original version

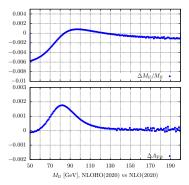

$$\Delta \rho = \frac{3\sqrt{2}}{16\pi^2} G_\mu m_t^2$$


ullet realized with debugging last year \Longrightarrow for the one-loop subtraction

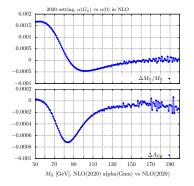
$$\Delta \rho = \frac{\alpha}{16\pi} \frac{3m_t^2}{\left(1 - M_W^2/M_Z^2\right)M_W^2}$$

higher orders with 2018 input setting


- Left: with numbers produced with the old code
- Right: numbers with the new code with 2018 setting and stat



higher orders with present input setting


- Left: with subraction of $\Delta \rho_1$ expressed with G_μ
- Right: with subraction of $\Delta \rho_1$ expressed with α

• with the split of QED and EW corrections, we can calculate the EW corrections with $\alpha_{G_{\mu}}$ ($\Delta \rho_1$ subtraction performed with G_{μ})

as in S. Dittmaier and M. Huber, JHEP01 (2010) 060

Left: NLO; Right: NLOHO

PRELIMINARY

PRELIMINARY

Summary

• we reproduce the "old" numbers setting the $\Delta \rho_1$ subtraction in NLO calculation as in the original version, i.e. $\Delta \rho_1$ calculated with G_{μ}

however this is not consistent

• the calculation of weak corrections based on $\alpha_{G_{\mu}}$ or α could be considered as a source of th. uncertainty, to be taken into account

• numbers with the full Complex Mass Scheme are being processed