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Outline:

• What is a GAN?

• Why do we need to correct for detector effects? 

• Set up the scene: What is studied? 

• Naive GAN setup

• Fully conditional GAN (FCGAN) setup
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GAN : Generative Adversarial Neural network


2 competing neural networks


• a generator G 

• a discriminator D
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Visit https://www.thispersondoesnotexist.com  
GAN creating fake images of people

https://www.thispersondoesnotexist.com


Correcting detector effects

theory naturedoes it describe
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Problem(s): 
First-principle predictions enter event simulation as a black-box

The MC simulation chain can at best be inverted approximatively 

Goal:

Wish to achieve a direct comparison of first-principles QCD predictions with modern 
LHC measurements at parton level 

simulation/calculation
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Approach: 
Use a GAN, where the generator G takes detector level inputs and produces fake 
parton level distributions. 

The discriminator D judges whether a parton level event is real or fake.

After training, use the generator G for detector unfolding

G



theory

perturbative QCD

simulated 
events

MC generator: 
MADGRAPH5

detector sim: 
DELPHES

parton shower: 
PYTHIA8
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Set up the scene

selection: 
2 jets

2 opposite sign electrons

pT, j > 25 GeV
|ηj | < 2.5

parton level (truth) distribution Pp 

detector level (DELPHES) distribution Pd 
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Naive GAN setup

Input x are 4-momenta of final state particles.


Training of the discriminator D follows black and red lines. D tries to minimise the 
loss function LD

Training of the generator G follows black and blue lines. G tries to minimise the loss 
function LG


Technical detail on MMD = Maximum Mean Discrepancy

MMD is a kernel-based method to compare two samples drawn from different distributions. It is used 
to help the GAN reproduce the invariant mass distribution of intermediate on-shell particles: arXiv:
1907.03764 [hep-ph]  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https://arxiv.org/abs/1907.03764
https://arxiv.org/abs/1907.03764
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Naive GAN result
• GAN unfolding runs on statistical independent 

events but simulation-wise identical

• Statistical inversion of detector effect works well


Advantages

• GAN training does not require a per event parton-

detector level matching


Disadvantage 

• GAN unfolding is deterministic


Question:

• What happens when GAN is used to unfold 

sample that only covers part of the detector-level 
phase space used for training


• Will the unfolding work?

• NO!
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Naive GAN result

(Eq 7 - 88%)
(Eq 8 - 38%)
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Fully conditional GAN (FCGAN) setup

While the naive GAN only required event batches to be matched between parton level 
and detector level, the training of the FCGAN actually requires event-by-event matching. 


random number
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Fully conditional GAN (FCGAN) results

Unfolding full phase space 
works even better than naive 
GAN

Eq . (7) : pT, j1 ∈ [30,100] GeV

Eq . (8) : pT, j1 ∈ [30,60] GeV

Unfolding a part of phase space 
works now

Eq . (13) : pT, j1 > 60 GeV

Eq . (12) : pT, j1 ∈ [30,50] GeV

pT, j2 ∈ [30,50] GeV

pT, j2 ∈ [30,40] GeV
pT,ℓ− ∈ [20,50] GeV

Eq. (12) 14% of phase space 
still works. Cutting off one side 
with eq (13) only spoils mjj 
could maybe fixed with 
conditional MMD!19
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Bonus: new physics injection
Test model dependence on FCGAN-unfolding:

What happens if we train our FCGAN on Standard Model data, but apply it to a different 
hypothesis?


• Use W′ with mass of 1.3 TeV and width of 15 GeV


Reproduces the W′ peak faithfully


W′-mass as the central peak position 
very well learned


Only issue is the W′-width, which the 
network over-estimates


 


Invariant mass of the hadronically 
decaying W-boson hardly 
changes 
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Reproduces the W′ peak faithfully


W′-mass as the central peak position 
very well learned


Only issue is the W′-width, which the 
network over-estimates


 


Invariant mass of the hadronically 
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Summary 

• Short introduction to GANs


• Unfolding - GAN unfolding


• Results using a naive GAN


• Results using FCGAN


• Testing on model-independence of FCGAN
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