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What is a GAN?

GAN : Generative Adversarial Neural network
2 competing neural networks
- a generator G

 a discriminator D
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Correcting detector effects
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Correcting detector effects
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Correcting detector effects

simulation/calculation measurement
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Problem(s):
First-principle predictions enter event simulation as a black-box
The MC simulation chain can at best be inverted approximatively



Correcting detector effects

simulation/calculation measurement
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Problem(s):
First-principle predictions enter event simulation as a black-box

The MC simulation chain can at best be inverted approximatively

Goal:
Wish to achieve a direct comparison of first-principles QCD predictions with

at parton level
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Correcting detector effects

simulation/calculation
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Approach:
Use a GAN, where the generator G takes detector level inputs and produces fake
parton level distributions.
The discriminator D judges whether a parton level event is real or fake.
After training, use the generator G for detector unfolding
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Set up the scene

simulation/calculation ‘
............................................................... P -
theory >
: W J
MC generator:
MADGRAPHSJ \7 J
M
perturbative QCD :—» parton level (truth) distribution Py
parton shower: | |detector sim:
PYTHIAS8 J \7 DELPHES
Y E
simulated :—» detector level (DELPHES) distribution Pg
events :
| i selection:
e ’ 2 jets

2 opposite sign electrons
pr;>25GeV

7] < 2.5
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-~~~ Naive GAN setup

e e —o >

detector parton @

Input x are 4-momenta of final state particles.

Training of the discriminator D follows black and red lines. D tries to minimise the
loss function Lp


https://arxiv.org/abs/1907.03764
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-~~~ Naive GAN setup

W J
j
@
X \
detector E parton MMD} | La

Input x are 4-momenta of final state particles.

Training of the generator G follows black and blue lines. G tries to minimise the loss
function Lg

Technical detail on MMD = Maximum Mean Discrepancy

MMD is a kernel-based method to compare two samples drawn from different distributions. It is used
to help the GAN reproduce the invariant mass distribution of intermediate on-shell particles: arXiv:
1907.03764 [hep-ph]
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- GAN unfolding runs on statistical independent
events but simulation-wise identical
« Statistical inversion of detector effect works well

Advantages

« GAN training does not require a per event parton-

detector level matching

Disadvantage
« GAN unfolding is deterministic
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- GAN unfolding runs on statistical independent
events but simulation-wise identical
« Statistical inversion of detector effect works well

Advantages
« GAN training does not require a per event parton-
detector level matching

Disadvantage
« GAN unfolding is deterministic

Question:

- What happens when GAN is used to unfold
sample that only covers part of the detector-level
phase space used for training

 Will the unfolding work?

- NO!

CutI: pr =30 .. 100 GeV (Eq 7 - 88%)
Cut IT: prj, =30 ..60 GeV and pr, , =30 .. 50 GeV (Eq 8 - 38%)
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Fully conditional GAN (FCGAN) setup

---------------------------------------------------------------------------------------------------

random number

parton

While the naive GAN only required event batches to be matched between parton level
and detector level, the training of the FCGAN actually requires event-by-event matching.
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Unfolding full phase space
works even better than naive
GAN
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Fully conditional GAN (FCGAN) results
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Fully conditional GAN (FCGAN) results
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Bonus: new physics injection

Test model dependence on FCGAN-unfolding:

What happens if we train our FCGAN on Standard Model data, but apply it to a different
hypothesis?

* Use W’ with mass of 1.3 TeV and width of 15 GeV ~ pp — W'" — ZW* — (¢7¢7) (57)
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Invariant mass of the hadronically
decaying W-boson hardly
changes
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Reproduces the W’ peak faithfully
Invariant mass of the hadronically

decaying W-boson hardly W'-mass as the central peak position
changes very well learned

Only issue is the W'-width, which the
network over-estimates
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Summary

Short introduction to GANs
Unfolding - GAN unfolding
Results using a naive GAN
Results using FCGAN

Testing on model-independence of FCGAN
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Parameter Value | Parameter Value
Layers 12 |Batch size 512
Units per layer 512 |Epochs 1200
Trainable weights G =~ 3M |Iterations per epoch 500
Trainable weights D 3M |[Number of training events 3 x 10°
AG 1

AD 1073

Table 1: FCGAN setup.
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