COVID modeling

James Morton

Sequence search

- Sequence similarity forms the basis of
 - Protein function prediction
 - Evolutionary analysis
 - Protein interaction analysis
 - Many more applications

BLAST

Sequences producing significant alignments:

Sbjct:

411

Score E (bits) value

- gnl|Pfam|pfam00155 aminotran_1, Aminotransferases class-I 338 4e-94
- gnl|Pfam|pfam00155, aminotran 1, Aminotransferases class-I

PERTLDLAMORLKAFVG

```
Add query to multiple alignment, display up to 10 =
                                                    most similar to the query
                                          sequences
             Length = 428
             Score = 338 bits (857), Expect = 4e-94
             KSTWFSEVQMGPPDAILGVTEAFKKDTNPKKIN----LGAGAYRDDNTQPFVLPSVREAE
Query:
Sbjct:
             LSRNATFNSHGQDSSYFLGWQEYEKNPYHEVHNTNGIIQMGLAENQLCFDLLESWLAKNP
                                                                             60
Query:
             KRVVSRS-----LDKEYATIIGIPEFYNKAIELALGKGSKRLAAKHNVTAQSISGTGA
                                                                             131
       61
Sbjct:
             EAAAFKKNGESIFAELALFQDYHGLPAFKKAMVDFMAEIRGNKVTFDPNHLVLTAGATSA
Query:
       132
             LRIGAAFLAKFWQGNREIYIPSPSWGNHV-AIFEHAGLPVNRYRYYDKDTCALDFGGLIE
                                                                             190
Sbjct:
             NETFIFCLADPGE---AVLIPTPYYPGFDRDLKWRTGVEIVPIHCTSSNGFQITETALEE
                                                                             247
Query:
             DLKKIPE---KSIVLLHACAHNPTGVDPTLEQWREISALVKKRNLYPFIDMAYQGFATGD
        191
Sbjct:
             AYQEAEKRNLRVKGVLVTNPSNPLGTTMTRNELYLLLSFVEDKGIHLISDEIYSGTAFSS
             IDRDAQAVRTFEAD-----GHDFCLAQSFAKNMGLYGERAGAFTVLCSDEEEAARV
Query:
Sbjct:
             P--SFISVMEVLKDRNCDENSEVWQRVHVVYSLSKDLGLPGFRVGAIYSNDDMVVAAATK
             M----SQVKILIRGLYSNP---PVHGARIAAEILNNEDLRAQWLKDVKLMADRIIDV
                                                                             348
Query:
Sbjct:
        296
            MSSFGLVSSQTQHLLSAMLSDKKLTKNYIAENHKRLKQRQKKLVSGLQKSG-ISCLNGNA
                                                                             354
Query:
       349
             RTKLKDNLIKLGSSQNWDHIVNQIGMFCFTGLKPEQVQK-LIKDHSVYLTNDGRVSMAGV
                                                                             407
Sbjct:
       355
             GLFCWVDMRHLLR----SNTFEAEMELWKKIVYEVHLNISPGSSCHCTEPGWFRVCFANL
             TSKNVEYLAESIHKVTK
Query:
        408
```

427

Basic Local Alignment Search Tool

150k citations

Stephen F. Altschul¹, Warren Gish¹, Webb Miller² Eugene W. Myers³ and David J. Lipman¹

1,688,561 papers

Recent work

Bepler et al 2019 : LSTMs

- Contact map prediction
- Sequence similarity

Alley et al 2019 : LSTMs

Protein engineering

Rives et al 2019: Attention model

Contact map prediction

Rao et al 2019: LSTMs + Attention

- Contact map prediction
- Protein engineering

Madani et al 2019: Attention

Protein engineering

Recommended strategy: Learn residue coordinates (per protein) in an unsupervised manner. Then use the coordinates for downstream tasks (i.e. classification / regression)

Benefits: requires much less labeled data

Our benchmark

Pfam 10k triplets (sequence based)

SCoP: 6k triplets (structure based)

PFAM: 10M sequences

Uniref90: 100M sequences

	PFam	SCoP
ELMo PFam	0.95	0.81
RoBERTa base PFam	0.52	0.50
RoBERTa base Uniref90	0.98	0.77
BLAST	0.99	0.04

Existing limitations

- Viral proteins are known to be under-represented in databases
 - Metagenomics samples are better representative
- The more proteins, the better search will become

- BFD: 2.5B proteins from Uniref + metagenomics
 - Note: add link
- Compute resources
 - Lack of openly available models

What do we need

- Current compute estimate: 7 days 1024 V100 GPUs (170k GPU hours)
 - Previous study: 128 V100s, 4 days, 250M proteins
 - Requirements: 32GB RAM per GPU, 100GB CPU RAM per node
 - 2TB of hard disk storage per node at a minimum
 - Homogenous compute (each node has the same GPU hardware and the same number of GPUs)
 - MPI is preferred

Next immediate steps

- Make model publicly immediately available upon completion
 - Followed by benchmarks within 1 week

• Task 1: Perform protein search against existing drug databases

Task 2: Build drug-protein interaction model (finetuning)

Model Size

- ~700M parameters
 - 36 layers
 - 16 attention heads
 - 1536 embedding dimensions
 - 4096 FFN