

ETL LV powering scheme

N. Koss (CERN) March 9th, 2020

Outline

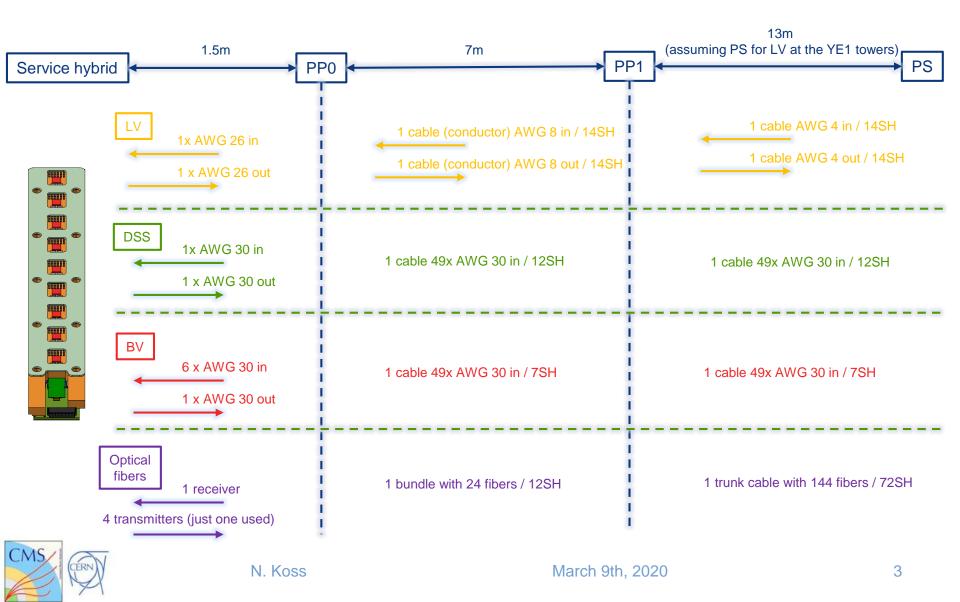
Services scheme

• LV, BV, DSS, optical fibers

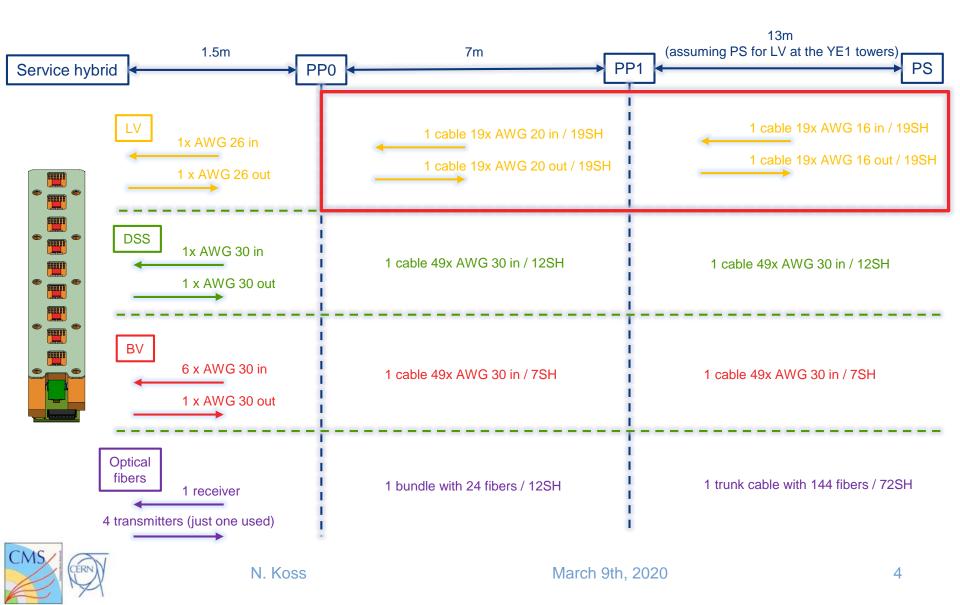
LV power calculations

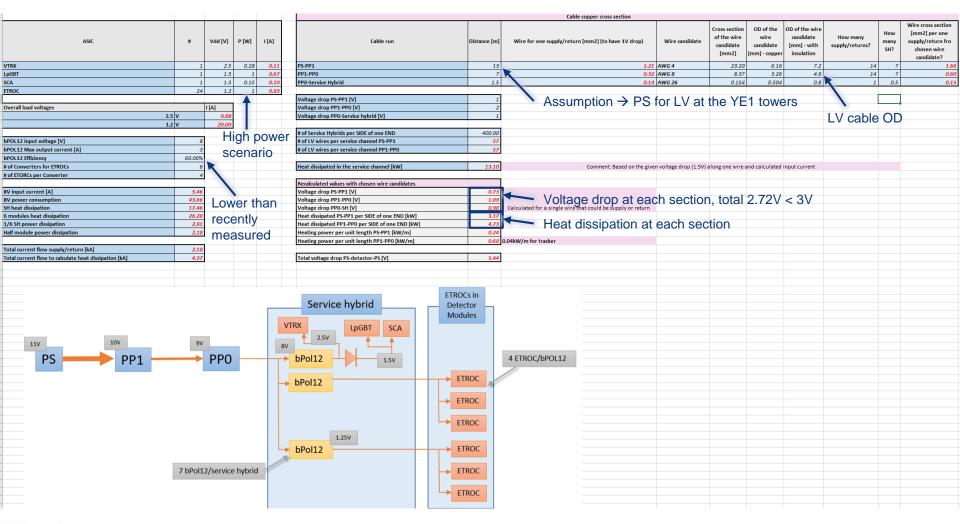
- Voltage drop estimates
- Heat dissipation estimates

PP0 scheme

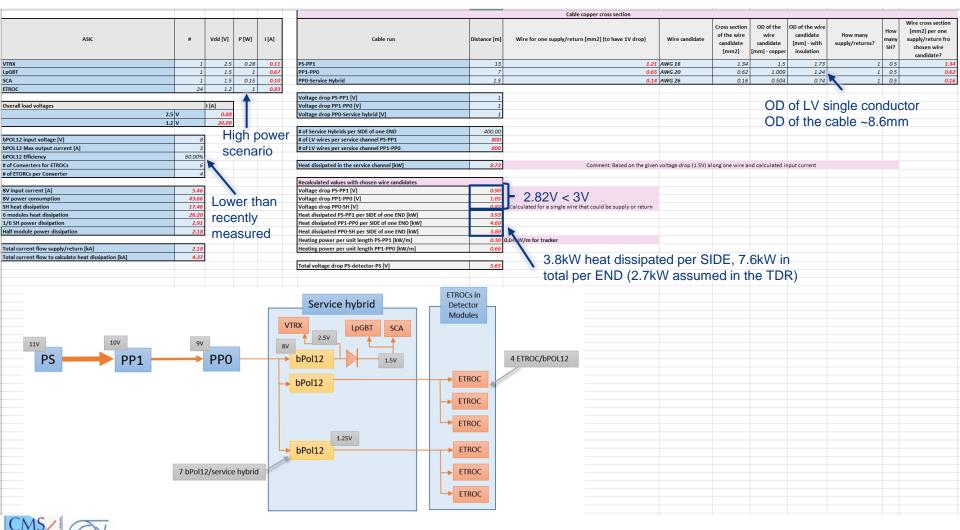

- PP0 v1 layout
- PP0 v2 layout

LV cable


- LV wire candidates
- LV cable candidates


Scheme of the services v1

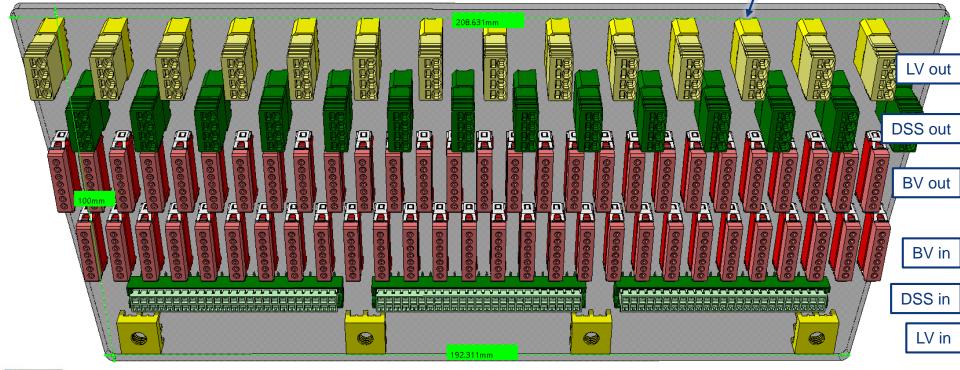
Scheme of the services v2



LV power calculator v1

LV power calculator v2

March 9th, 2020

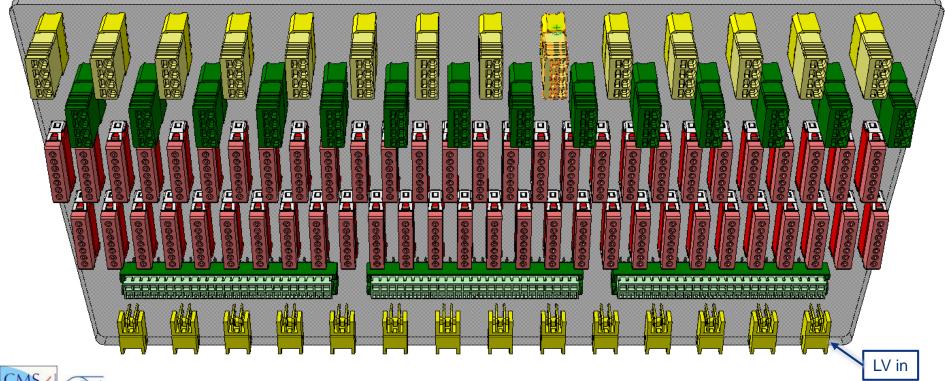

PP0 v1

28 service hybrids/PP0 \rightarrow 14 PP0s per SIDE (10deg segments)

- 14 LV out and 14 DSS out → 2 SH/connector
- 28 BV out and 28 BV in → 1 SH/connector
- 2 LV in and 2LV out → 14 SH/connector
- Fuses still to be implemented

https://www.phoenixcontact.com/online/portal/us?uri=pxc-ocitemdetail:pid=1815280&library=usen&tab=1

 Preliminary layout presented by S. Los → <u>https://indico.cern.ch/event/820512/contributions/3429658/attachments/1842929/3023621/</u>ETL-Cabling-<u>S_Los-May13-2019.pdf</u>



PP0 v2

28 service hybrids/PP0 → 14 PP0s per SIDE (10deg segments)

- LV in screw connectors replaced with 4-pin connectors
- No need of having fuses
- LV in connectors still have to be selected

LV cable selection for v1

PP0-PP1

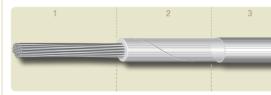
- Single conductor AWG 8 for 14 SH
- **OD 5mm** (assuming 0.9mm of insulation)
- Bending radius ~50mm
- **55** cables per SIDE

LV cross section – 27.5cm² (assuming filling factor 50%)

PP1-PS

- Single conductor AWG 4 for 14 SH
- **OD 8mm** (assuming 0.9mm of insulation)
- Bending radius ~80mm
- 55 cables per SIDE

 LV cross section – 70.4cm² (assuming filling factor 50%)


LV wire selection for v2

Single wires

TYPE FHT XXXX SPC or SCA

Insulation : POLYIMIDE tape halogen free / LSZH

- Operating temperature : -100°C up to +200°C
- Voltage rating : 250 VAC
- Radiation resistance : 10 MGy (1000 Mrad) in standard atmosphere, 50 MGy (5000 Mrad) in inert atmosphere
- Standard colour : natural (amber). Other colours upon request

Construction

PRIMARY WIRE

- 1 Conductor : electrolytic silver plated annealed copper (SPC) or silver plated copper alloy (SCA)
- 2 Insulation : wrapped Polyimide tape
- 3 Insulation : Polyimide coating

Other constructions on request

AXDN' REFERENCE	AWG	CONDUCTOR				INSULATED WIRE		
		CONSTRUCTION (Nb × 0 mm)	Ø (mm)	AREA (mm2)	NOMINAL RESISTANCE (Ω/ 100m)	NOMINAL Ø (mm)	WEIGHT (g/m)	
FHT 3007 SCA	30	7 x 0.102	0.304	0.057	37	0.53	0.76	
FHT 3001 SCA	30	1 x 0.254	0.254	0.051	39	0.48	0.69	
FHT 2807 SCA	28	7 x 0.127	0.381	0.089	23	0.61	1.11	
FHT 2801 SCA	28	1 x 0.320	0.320	0.080	26	0.55	1.00	
FHT 2619	26	19 x 0.102	0.504	0.16	12	0.74	1.79	1
FHT 2601	26	1 x 0.404	0.404	0.13	13	0.63	1.49	
FHT 2419	24	19 x 0.127	0.634	0.24	7.6	0.86	2.65	
FHT 2401	24	1 x 0.511	0.511	0.20	8.4	0.74	2.26	
FHT 2219	22	19 x 0.160	0.800	0.38	4.7	1.03	4.73	
FHT 2201	22	1 x 0.643	0.643	0.32	5.3	0.87	3.41	
FHT 2019	20	19 x 0.203	1.009	0.616	3.2	1.24	6.26	
FHT 2001	20	1 x 0.812	0.812	0.52	3.3	1.04	5.30	_
FHT 1819	18	19 x 0.254	1.269	0.96	2.1	1.50	9.63	Г
FHT 1619	16	19 X 0.300	1.500	1.34	1.4	1.73	12.30	1 3

LV wire selection

- 1. SH-PP0
- 2. PP0-PP1
- 3. PP1-PS

AXON catalogue:

http://www.axon-cable.com/publications/Halogen-free-cables.pdf

LV cable selection for v2

Example of the composite cable given by AXON:

TYPE XZT 19x0.59 / AWG 20 LSZH

ZT OPTIMIZED

Insulation : ASC3 - 55J

Operating temperature : -40°C up to +70°C

Voltage rating : 600 VAC

Standard colour : black.

Main characteristics

DIMENSIONS AND WEIGHT

- Diameter on shielding : 9.00 mm.

Nominal cable weight : 275 g/m.
 MECHANICAL CHARACTERISTICS

- Minimum bend radius : 110 mm.

Allowable traction : 80 daN.

BEHAVIOUR TO FIRE

a-Reaction to fire : category A

according to IEC 60332-3.

b-Opacity of fumes : test passed

c-Toxicity of gas emitted during the

combustion process : conventional index

d-Corrosivity of fumes : test according to IEC 60754- 2 passed.

according to IEC 61034-2.

of the toxicity < 10.

- Diameter on assembled wires : 7.50 mm.

Diameter on outer jacket : 10.70 ± 0.50 mm.

Example of construction

 1 TO 19 - SINGLE WIRES

 WWG 20 /X 2037 TPC.

 Conductor : tin plated copper.

 Construction : 37 x 0.142 mm.

 Diameter : 0.97 mm.

 Area : 0.59 mm².

 Resistance : 3.5 Ω/ 100 m.

 Insulation : POLIAX.

 Diameter : 1.50 mm.

 20 - POLYESTER

 SEPARATING TAPE

 21 & 22 - SHIELDING

tin plated copper double braid, Zr optimized. (see table below). 23 – BLACK ASC3-55J JACKET LSZH thermoplastic elastomer.

PP0-PP1

- Multicore cable serving 19SH
- **OD 8mm** (assuming 0.9mm of insulation)
- Bending radius ~80mm
- 42 cables per SIDE

LV cross section – 53.76cm² (assuming filling factor 50%)

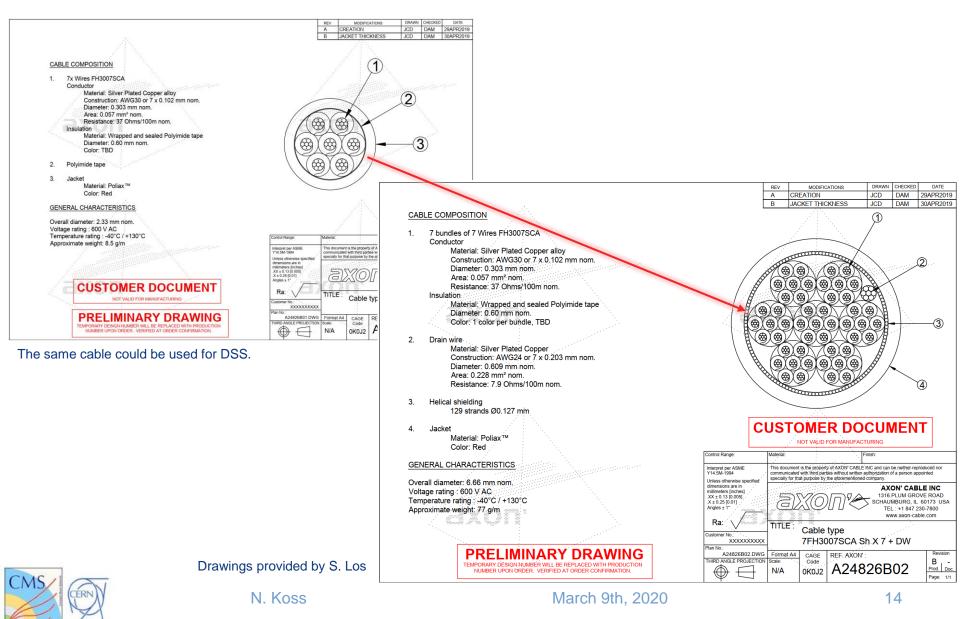
PP1-PS

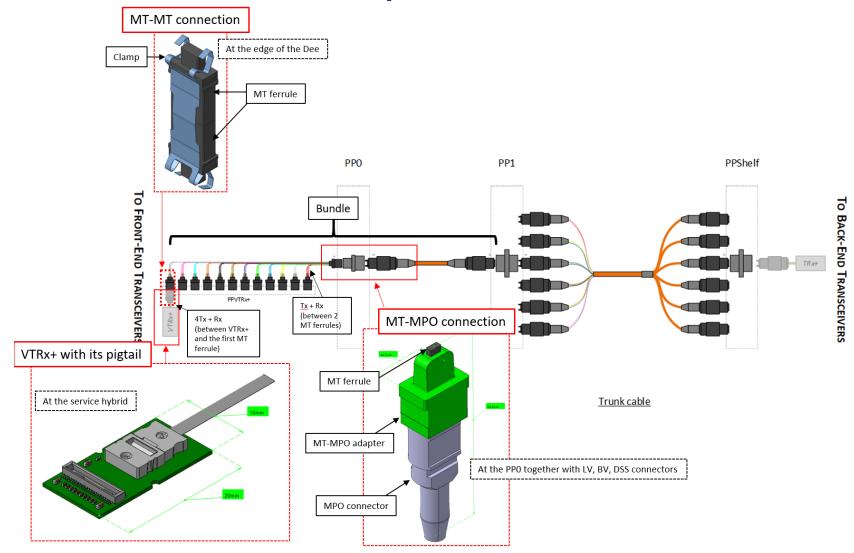
- Multicore cable serving 19SH
- **OD 11mm** (assuming 0.9mm of insulation)
- Bending radius ~110mm
- 42 cables per SIDE

 LV cross section – 101.64cm² (assuming filling factor 50%)

Almost factor of two larger cross section than in v1. These cables WON'T FIT in the feedthrough and in the service channel

Conclusions


- v1 assumes power grouping of 14 service hybrids
 - Worse power granularity (comparing to the TDR)
 - Cables
 - More compact cables, easier to bend and fit (5mmOD)
 - Less space needed for the LV cables (in the feedthrough, service channel and behind the detector)
 - In order to validate the layout, we should ask suppliers for the drawings and samples
 - Preliminary PP0 layout is ready
 - Fuses need to be implemented
 - Connectors for LV and DSS out have to be reselected
- v2 assumes one channel per one service hybrid
 - Power granularity as in the TDR
 - Cables
 - Composite cables → DON'T FIT IN THE FEEDTHROUGH AND IN THE SERVICE CHANNEL
 - More space needed for the LV cables (in the feedthrough, service channel and behind the detector)
 - Preliminary PP0 layout is being prepared
 - No need of fuses
 - · Connectors for LV in have to be selected



BV cable candidates

Scheme for the optical fibers

