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inversely proportional to their mass. Such sources are more intense and are expected to have higher
amplitudes. Figure 7 shows various examples of possible sources of gravitational waves in which
the three diAerent wave types appear in diAerent parts of the spectrum. 
  

Figure 7. Gravitational wave spectrum showing wavelength and frequency along with some
anticipated sources and the kind of detectors one might use. Figure credit: NASA Goddard Space
Flight Center.

 DiAerent gravitational phenomena give rise to diAerent gravitational wave emissions. We expect
primordial gravitational waves stemming from the in5ationary era of the very early universe.
Primordial quantum 2elds 5uctuate and yield space–time ripples at a wide range of frequencies.
These could in principle be detected as B-mode polarization patterns in the Cosmic Microwave
Background radiation, at large angles in the sky. Unsuccessful eAorts have been reported in recent
years, due to the diFculty of disentangling the noisy dust emission contribution of our own galaxy,
the BICEP2 and PLANCK projects. On the other hand, waves of higher frequencies but still very
long wavelengths arising from the slow inspiral of massive black holes in the centers of merged
galaxies will cause a modi2ed pulse arrival timing, if very stable pulsars are monitored. Pulsar
timing also places the best limits on potential gravitational radiation from cosmic string residuals
from early universe phase transitions. Other facilities are planned as space interferometers, such as
the Laser Interferometer Space Antenna (LISA), which is planned to measure frequencies between
0.03 mHz and 0.1 Hz. LISA plans to detect gravitational waves by measuring separation changes
between 2ducial masses in three spacecrafts that are supposed to be 5 million kilometers apart! The
expected sources are merging of very massive Black Holes at high redshifts, which corresponds to
waves emitted when the universe was 20 times smaller than it is today. It should also detect waves
from tens of stellar-mass compact objects spiraling into central massive Black Holes that were
emitted when the universe was one half of its present size. Last but not least, Figure 7 shows
terrestrial interferometers that are planned to detect waves in the frequency from Hertz to 10,000
Hertz. The most prominent facilities are those of LIGO in the USA, VIRGO in Italy, GEO600 in
Germany, and KAGRA in Japan, which are all running or expected to run soon. They are just
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Searching for GW

Image: icecube.wisc.edu

1. Source model: parameter space: 
 

2. Detector + test statistic/signal: d(t) and matched-filter 
3. Noise (background) model

S = {h+/×(m1, m2, …, θ, ϕ, i, …) | (m1, m2, ⋯) ∈ ℐ, (θ, ϕ, i, …) ∈ ℰ}
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FT of C(τ) is the PSD S( f ) ∼ σ2
f ≡ ⟨ |s( f ) |2 ⟩
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Need a noise model, simplest case is stationary Gaussian random noise

⟨s(t + τ)s(t)⟩ = C(τ)

No one tells you what S( f ) is! Have to measure it for yourself

FT of C(τ) is the PSD S( f ) ∼ σ2
f ≡ ⟨ |s( f ) |2 ⟩
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Suppose you measure a σ2( f ) on data d and want to look for a waveform

Gaussian noise is uncorrelated between frequencies, so compute the inverse-variance-
weighted overlap of the data and the waveform in the frequency domain

Z(h) = ∑
f

d( f )h⋆( f )
σ2( f )

ρ ≡ SNR =
Z(h)

⟨Z(h)2⟩1/2
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∑f d( f )h⋆( f )

σ2( f )

[
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Linear  
with amplitude



Distributions of Matched Filtering 
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the highest- and lowest-mass signals, respectively). The
PSD changes between data blocks, but usually only
slightly, so template banks stay roughly constant over
time in a data set.

C. Matched filtering

The central stage of the pipeline is the matched filtering
of detector data with bank templates, resulting in a list of
triggers that are further analyzed downstream. This stage
was described in detail in Ref. [28]; here we sketch its key
features.

The maximized statistic !2 of Eq. (4) is a function only
of the component masses and the time of coalescence tc.
Now, a time shift can be folded in the computation of inner
products by noting that gð"Þ ¼ hð" $ !tcÞ transforms to
~gðfÞ ¼ ei2#f!tc ~hðfÞ; therefore, the SNR can be computed
as a function of tc by the inverse Fourier transform
(a complex quantity)

ðsjhÞð!tcÞ ¼ 4
Z fhigh

flow

~sðfÞ~h%ðfÞ
SnðfÞ

e2#if!tcdf: (11)

Furthermore, if ~h#=2ðfÞ ¼ i~h0ðfÞ then Eq. (11), computed
for h ¼ h0, yields ðsjh0Þð!tcÞ þ iðsjh#=2Þð!tcÞ.

The IHOPE matched-filtering engine implements the dis-
crete analogs of Eqs. (4) and (11) [28] using the efficient
FFTW library [46]. The resulting SNRs are not stored for
every template and every possible tc; instead, we only
retain triggers that exceed an empirically determined
threshold (typically 5.5), and that corresponds to maxima
of the SNR time series—that is, a trigger above the thresh-
old is kept only if there are no triggers with higher SNR
within a predefined time window, typically set to the length
of the template (this is referred to as time clustering).

For a single template and time and for detector data
consisting of Gaussian noise, !2 follows a $2 distribution
with two degrees of freedom, which makes a threshold of
5.5 seem rather large: pð!> 5:5Þ ¼ 2:7 ' 10$ 7. However,
we must account for the fact that we consider a full
template bank and maximize over time of coalescence:
the bank makes for, conservatively, a thousand independent
trials at any point in time, while the rapid falloff of the
template autocorrelation (as demonstrated in Fig. 7) ren-
ders trials separated by 0.1 s in time essentially indepen-
dent. Therefore, we expect to see a few triggers above this
threshold already in a few hundred seconds of Gaussian
noise, and a large number in a year of observing time.
Furthermore, since the data contain many non-Gaussian
noise transients, the trigger rate will be even higher. In
Fig. 3 we show the distribution of triggers as a function of
SNR in a month of simulated Gaussian noise in blue (dark
gray) and real data in red (light gray) from LIGO’s fifth
science run (S5). The difference between the two is clearly
noticeable, with a tail of high SNR triggers extending to
SNRs well over 1000 in real data.

It is useful to not just cluster in time, but also across the
template bank. When the SNR for a template is above
threshold, it is probable that it will be above threshold
also for many neighboring templates, which encode very
similar waveforms. The IHOPE pipeline selects only one (or
a few) triggers for each event (be it a GW or a noise
transient), using one of two algorithms. In time-window
clustering, the time series of triggers from all templates is
split into windows of fixed duration; within each window,
only the trigger with the largest SNR is kept. This method
has the advantage of simplicity, and it guarantees an upper
limit on the trigger rate. However, a glitch that creates
triggers in one region of parameter space can mask a true
signal that creates triggers elsewhere. This problem is
remedied in TrigScan clustering [47], whereby triggers
are grouped by both time and recovered (template) masses,
using the parameter-space metric to define their proximity
(for a detailed description see Ref. [48]). However, when
the data are particularly glitchy TrigScan can output a
number of triggers that can overwhelm subsequent data
processing such as coincident trigger finding.

D. Multidetector coincidence

The next stage of the pipeline compares the triggers
generated for each of the detectors, and retains only those
that are seen in coincidence. Loosely speaking, triggers are
considered coincident if they occurred at roughly the same
time, with similar masses; see Ref. [49] for an exact
definition of coincidence as used in recent CBC searches.
To wit, the ‘‘distance’’ between triggers is measured with
the parameter-space metric of Eq. (8), maximized over the
signal amplitude A and phase"0. Since different detectors
at different times have different noise PSDs and therefore
metrics, we construct a constant-metric-radius ellipsoid in
"0-"3-tc space, using the appropriate metric for every
trigger in every detector, and we deem pairs of triggers to

FIG. 3 (color online). Distribution of single detector trigger
SNRs in a month of simulated Gaussian noise in blue (dark gray)
and real S5 LIGO data in red (light gray) from the Hanford
interferometer H1.

S. BABAK et al. PHYSICAL REVIEW D 87, 024033 (2013)

024033-6

S5: Babak et. al. (2013)

O1: Abbott et. al. (2017)
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Figure 1: Histograms of single detector PyCBC triggers from the Livingston (L1)
detector. These triggers were generated using data from September 12
to October 20, 2015. These histograms contain triggers from the entire
template bank, but exclude any triggers found in coincidence between the
two detectors. (1a) A histogram of single detector triggers in SNR. The tail
of this distribution extends beyond SNR = 100. (1b) A histogram of single
detector triggers in re-weighted SNR. The chi-squared test down-weights the
long tail of SNR triggers in the re-weighted SNR distribution. The triggers
found using only the Hanford detector have a similar distribution.

O1
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old is kept only if there are no triggers with higher SNR
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dent. Therefore, we expect to see a few triggers above this
threshold already in a few hundred seconds of Gaussian
noise, and a large number in a year of observing time.
Furthermore, since the data contain many non-Gaussian
noise transients, the trigger rate will be even higher. In
Fig. 3 we show the distribution of triggers as a function of
SNR in a month of simulated Gaussian noise in blue (dark
gray) and real data in red (light gray) from LIGO’s fifth
science run (S5). The difference between the two is clearly
noticeable, with a tail of high SNR triggers extending to
SNRs well over 1000 in real data.

It is useful to not just cluster in time, but also across the
template bank. When the SNR for a template is above
threshold, it is probable that it will be above threshold
also for many neighboring templates, which encode very
similar waveforms. The IHOPE pipeline selects only one (or
a few) triggers for each event (be it a GW or a noise
transient), using one of two algorithms. In time-window
clustering, the time series of triggers from all templates is
split into windows of fixed duration; within each window,
only the trigger with the largest SNR is kept. This method
has the advantage of simplicity, and it guarantees an upper
limit on the trigger rate. However, a glitch that creates
triggers in one region of parameter space can mask a true
signal that creates triggers elsewhere. This problem is
remedied in TrigScan clustering [47], whereby triggers
are grouped by both time and recovered (template) masses,
using the parameter-space metric to define their proximity
(for a detailed description see Ref. [48]). However, when
the data are particularly glitchy TrigScan can output a
number of triggers that can overwhelm subsequent data
processing such as coincident trigger finding.

D. Multidetector coincidence

The next stage of the pipeline compares the triggers
generated for each of the detectors, and retains only those
that are seen in coincidence. Loosely speaking, triggers are
considered coincident if they occurred at roughly the same
time, with similar masses; see Ref. [49] for an exact
definition of coincidence as used in recent CBC searches.
To wit, the ‘‘distance’’ between triggers is measured with
the parameter-space metric of Eq. (8), maximized over the
signal amplitude A and phase"0. Since different detectors
at different times have different noise PSDs and therefore
metrics, we construct a constant-metric-radius ellipsoid in
"0-"3-tc space, using the appropriate metric for every
trigger in every detector, and we deem pairs of triggers to

FIG. 3 (color online). Distribution of single detector trigger
SNRs in a month of simulated Gaussian noise in blue (dark gray)
and real S5 LIGO data in red (light gray) from the Hanford
interferometer H1.

S. BABAK et al. PHYSICAL REVIEW D 87, 024033 (2013)

024033-6

S5: Babak et. al. (2013)

O1: Abbott et. al. (2017)

S5
Data Quality for CBC Searches in O1 14

50 100 150 200 250 300 350 400
L1 single detector SNR

10�1

100

101

102

103

104

105

106

107

108

109

N
um

b
er

of
T
ri

gg
er

s

(a)

(b)

Figure 1: Histograms of single detector PyCBC triggers from the Livingston (L1)
detector. These triggers were generated using data from September 12
to October 20, 2015. These histograms contain triggers from the entire
template bank, but exclude any triggers found in coincidence between the
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of this distribution extends beyond SNR = 100. (1b) A histogram of single
detector triggers in re-weighted SNR. The chi-squared test down-weights the
long tail of SNR triggers in the re-weighted SNR distribution. The triggers
found using only the Hanford detector have a similar distribution.
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the highest- and lowest-mass signals, respectively). The
PSD changes between data blocks, but usually only
slightly, so template banks stay roughly constant over
time in a data set.

C. Matched filtering

The central stage of the pipeline is the matched filtering
of detector data with bank templates, resulting in a list of
triggers that are further analyzed downstream. This stage
was described in detail in Ref. [28]; here we sketch its key
features.

The maximized statistic !2 of Eq. (4) is a function only
of the component masses and the time of coalescence tc.
Now, a time shift can be folded in the computation of inner
products by noting that gð"Þ ¼ hð" $ !tcÞ transforms to
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The IHOPE matched-filtering engine implements the dis-
crete analogs of Eqs. (4) and (11) [28] using the efficient
FFTW library [46]. The resulting SNRs are not stored for
every template and every possible tc; instead, we only
retain triggers that exceed an empirically determined
threshold (typically 5.5), and that corresponds to maxima
of the SNR time series—that is, a trigger above the thresh-
old is kept only if there are no triggers with higher SNR
within a predefined time window, typically set to the length
of the template (this is referred to as time clustering).

For a single template and time and for detector data
consisting of Gaussian noise, !2 follows a $2 distribution
with two degrees of freedom, which makes a threshold of
5.5 seem rather large: pð!> 5:5Þ ¼ 2:7 ' 10$ 7. However,
we must account for the fact that we consider a full
template bank and maximize over time of coalescence:
the bank makes for, conservatively, a thousand independent
trials at any point in time, while the rapid falloff of the
template autocorrelation (as demonstrated in Fig. 7) ren-
ders trials separated by 0.1 s in time essentially indepen-
dent. Therefore, we expect to see a few triggers above this
threshold already in a few hundred seconds of Gaussian
noise, and a large number in a year of observing time.
Furthermore, since the data contain many non-Gaussian
noise transients, the trigger rate will be even higher. In
Fig. 3 we show the distribution of triggers as a function of
SNR in a month of simulated Gaussian noise in blue (dark
gray) and real data in red (light gray) from LIGO’s fifth
science run (S5). The difference between the two is clearly
noticeable, with a tail of high SNR triggers extending to
SNRs well over 1000 in real data.

It is useful to not just cluster in time, but also across the
template bank. When the SNR for a template is above
threshold, it is probable that it will be above threshold
also for many neighboring templates, which encode very
similar waveforms. The IHOPE pipeline selects only one (or
a few) triggers for each event (be it a GW or a noise
transient), using one of two algorithms. In time-window
clustering, the time series of triggers from all templates is
split into windows of fixed duration; within each window,
only the trigger with the largest SNR is kept. This method
has the advantage of simplicity, and it guarantees an upper
limit on the trigger rate. However, a glitch that creates
triggers in one region of parameter space can mask a true
signal that creates triggers elsewhere. This problem is
remedied in TrigScan clustering [47], whereby triggers
are grouped by both time and recovered (template) masses,
using the parameter-space metric to define their proximity
(for a detailed description see Ref. [48]). However, when
the data are particularly glitchy TrigScan can output a
number of triggers that can overwhelm subsequent data
processing such as coincident trigger finding.

D. Multidetector coincidence

The next stage of the pipeline compares the triggers
generated for each of the detectors, and retains only those
that are seen in coincidence. Loosely speaking, triggers are
considered coincident if they occurred at roughly the same
time, with similar masses; see Ref. [49] for an exact
definition of coincidence as used in recent CBC searches.
To wit, the ‘‘distance’’ between triggers is measured with
the parameter-space metric of Eq. (8), maximized over the
signal amplitude A and phase"0. Since different detectors
at different times have different noise PSDs and therefore
metrics, we construct a constant-metric-radius ellipsoid in
"0-"3-tc space, using the appropriate metric for every
trigger in every detector, and we deem pairs of triggers to

FIG. 3 (color online). Distribution of single detector trigger
SNRs in a month of simulated Gaussian noise in blue (dark gray)
and real S5 LIGO data in red (light gray) from the Hanford
interferometer H1.
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Figure 1: Histograms of single detector PyCBC triggers from the Livingston (L1)
detector. These triggers were generated using data from September 12
to October 20, 2015. These histograms contain triggers from the entire
template bank, but exclude any triggers found in coincidence between the
two detectors. (1a) A histogram of single detector triggers in SNR. The tail
of this distribution extends beyond SNR = 100. (1b) A histogram of single
detector triggers in re-weighted SNR. The chi-squared test down-weights the
long tail of SNR triggers in the re-weighted SNR distribution. The triggers
found using only the Hanford detector have a similar distribution.
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both the Livingston and Hanford detectors. Although blip transients are seen in both
detectors, they are not found as coincident triggers and do not represent gravitational
wave signals.

Blip transients show up as short duration, band-limited impulses that have power
in the ⇠30-300 Hz frequency range (see Figure 12). They do not couple into any
monitors of detector performance and are not loud enough to exceed the gating
threshold applied in the PyCBC search.
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Figure 12: A time-frequency representation [26] of the Livingston strain channel at the
time of a blip transient. This visualization of a blip transient demonstrates
their typical features: band-limited, short duration, and little visible
frequency structure.

A time-domain analysis reveals why blip transients are so damaging to the CBC
searches. Figure 13 shows a filtered time-domain representation of a blip transient
in the Livingston strain channel. The data have been filtered with a bandpass filter
with notch filters to attenuate strong lines in the strain spectrum, double-passed to
be zero-phase. Overlaid on top of the strain data is a CBC waveform that reported
a high re-weighted SNR value at the time of the blip transient under study. The two
curves show significant overlap in the few cycles where the template has appreciable
amplitude.

The CBC template that reported a high re-weighted SNR when filtered against
the blip transient in Figure 13 represents a neutron star-black hole binary system
with a total mass Mtotal of 98.34 M� and a highly anti-aligned e↵ective spin of �0.97,
resulting in a short template duration. The waveform spends less than 0.1 seconds
at the frequencies that aLIGO is sensitive to, which, as shown in Figure 13, is the
approximate time scale of some instrumental transients. This time scale is in stark
contrast to that of a binary neutron star waveform, which can have a duration on the
order of 1 minute and contain ample signal for use in the �2 test.

Although blip transients are capable of creating high re-weighted SNR triggers,
their e↵ects are constrained to a fairly small region of the CBC parameter space.
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Figure 16: A time-frequency spectrogram of the 60-200 Hz noise. This noise appears
in storms that often last for many minutes. This time scale and frequency
range is damaging to CBC searches and has often been found responsible for
loud background events.

Figure 17: A zoomed in time-frequency spectrogram of the 60-200 Hz noise. This period
of noise caused a loud trigger in the PyCBC background. The arc-like shape
of the noise is reminiscient of noise due to scattered light, but the frequency
of the noise is higher than expected.
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A time-domain analysis reveals why blip transients are so damaging to the CBC
searches. Figure 13 shows a filtered time-domain representation of a blip transient
in the Livingston strain channel. The data have been filtered with a bandpass filter
with notch filters to attenuate strong lines in the strain spectrum, double-passed to
be zero-phase. Overlaid on top of the strain data is a CBC waveform that reported
a high re-weighted SNR value at the time of the blip transient under study. The two
curves show significant overlap in the few cycles where the template has appreciable
amplitude.
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the blip transient in Figure 13 represents a neutron star-black hole binary system
with a total mass Mtotal of 98.34 M� and a highly anti-aligned e↵ective spin of �0.97,
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at the frequencies that aLIGO is sensitive to, which, as shown in Figure 13, is the
approximate time scale of some instrumental transients. This time scale is in stark
contrast to that of a binary neutron star waveform, which can have a duration on the
order of 1 minute and contain ample signal for use in the �2 test.

Although blip transients are capable of creating high re-weighted SNR triggers,
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LIGO-VIRGO Published Detections
Two observing runs with detections:


1. O1 run: Sep 2015 to Jan 2016

• ~50 days of coincident runtime

• Two confirmed detections of GWs from merging BBHs, and one 

candidate (LVT151012) 

2. O2 run: Nov 2016 to Aug 2017

• 118 days of coincident data between H and L

• 15 days with VIRGO

• A BNS merger detected

• With more confirmed events, and a better handle on the rates, 

criteria for detection were defined. 7 new BBH mergers, and LVT, 
added to the list of events.


Happening right now: O3 …
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FIG. 7. Distribution of templates in two projections of the
search space. The top panel shows the e↵ect of the di↵erent
placement steps (compare with figure 6) while in the lower
panel one can see the e↵ect of the duration boundary shown
in figure 4.

than 5M� and mass ratio between 1 and 3 is the dense
initially covered BBH region. The lack of templates just
outside the stripe is due to the fact that templates at its
boundary also cover systems just outside of it, such that
the final covering step does not add templates there.

III. VALIDATION

In a matched-filter search, the maximum SNR that can
be ideally observed for a given astrophysical signal (opti-
mal SNR) requires a template that exactly matches the
signal waveform. Because the template bank is discrete
and finite and because the waveform model does not in-
clude the full physics of the system, the bank can only
recover a fraction of the optimal SNR, which is known
as the fitting factor ' between the signal and the bank
[51]. Thus, given a population of N sources detectable
with perfectly-matching templates, only ↵N source will
be observed on average with a realistic bank, where ↵ < 1
is known as the signal recovery fraction [52] and is related

to the fitting factor by

↵ =

R
d~x '3(~x)�3(~x)R

d~x �3(~x)
. (3)

Here ~x is the source’s parameter vector (excluding the
luminosity distance) and �(~x) is the distance at which
the optimal SNR of the source takes a fixed reference
value2. Banks are typically constructed to achieve at
least a 90% signal recovery fraction and it is customary
to evaluate the correct performance of a bank in terms
of fitting factor or signal recovery fraction. This can be
done by simulating a large population of compact binary
mergers at a fixed luminosity distance and calculating the
fitting factor between each signal and the bank. Then the
signal recovery fraction can be measured as

↵ ⇡
P

i '
3
i�

3
iP

i �
3
i

(4)

where i labels each simulated signal.
When testing a bank where all templates use the same

lower cuto↵ frequency, the optimal SNR of each signal
is calculated using the same cuto↵. As such, the fitting
factor only shows the SNR loss due to the discretization
of the bank and any disagreement between the true signal
and our waveform model. However, because templates
in the bank described here have a variable flow, optimal
SNRs must now use a lower cuto↵, which we choose to
be fixed at 15 Hz, i.e. the reference frequency used for
calculating each template’s flow. Therefore, our fitting
factors also account for the fact that some SNR is lost
due to a higher starting frequency of the templates. Since
by our definition of flow this loss is never smaller than
0.5%, our fitting factors cannot be larger than 99.5%.
We simulate three di↵erent classes of sources: BNS,

NSBH and BBH. The BBH set is split into two subsets
by M = 100M�, where the lighter set is uniformly dis-
tributed in component masses and covers the BBH mass
space used in O1, while the heavier set is distributed uni-
formly in M and mass ratio q and covers a mass range
similar to the search space of [27]. Each set contains
5 ⇥ 104 systems and the parameters of the simulations
can be found in table I. The waveform model used for the
BNS simulations is the same post-Newtonian model used
for templates with M < 4M�; NSBH and BBH simula-
tions use instead the same e↵ective-one-body model used
for templates with M > 4M�. Note that the BBH sim-
ulations contain signals falling into the region excluded
by the minimum-duration requirement, i.e. they span a
slightly larger parameter space than the bank is designed
to cover.
Figure 8 presents the signal recovery fractions and fit-

ting factor distributions for each class. We divide the

2 Normally taken to be 8, in which case the resulting � is referred
to as the horizon distance. However, the choice is arbitrary and
does not change the value of the signal recovery fraction.

χeff =
m1χ1,z + m2 χ2,z

m1 + m2
Canton and Harry (2017)

Z(h) = ∑
f

d( f )h⋆( f )
σ2( f )
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factor only shows the SNR loss due to the discretization
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and our waveform model. However, because templates
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be fixed at 15 Hz, i.e. the reference frequency used for
calculating each template’s flow. Therefore, our fitting
factors also account for the fact that some SNR is lost
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by our definition of flow this loss is never smaller than
0.5%, our fitting factors cannot be larger than 99.5%.
We simulate three di↵erent classes of sources: BNS,

NSBH and BBH. The BBH set is split into two subsets
by M = 100M�, where the lighter set is uniformly dis-
tributed in component masses and covers the BBH mass
space used in O1, while the heavier set is distributed uni-
formly in M and mass ratio q and covers a mass range
similar to the search space of [27]. Each set contains
5 ⇥ 104 systems and the parameters of the simulations
can be found in table I. The waveform model used for the
BNS simulations is the same post-Newtonian model used
for templates with M < 4M�; NSBH and BBH simula-
tions use instead the same e↵ective-one-body model used
for templates with M > 4M�. Note that the BBH sim-
ulations contain signals falling into the region excluded
by the minimum-duration requirement, i.e. they span a
slightly larger parameter space than the bank is designed
to cover.
Figure 8 presents the signal recovery fractions and fit-

ting factor distributions for each class. We divide the

2 Normally taken to be 8, in which case the resulting � is referred
to as the horizon distance. However, the choice is arbitrary and
does not change the value of the signal recovery fraction.
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ulations contain signals falling into the region excluded
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Figure 3. Dependence of the detector network sensitive volume
on the parameters p = (M, q, �e� ). The solid lines show V (M) for
several values of �e� on a q = 1 slice (top), or several values of q
on a slice of constant �e� = 0 (bottom). The dashed line shows a
power law / M2.2 dependence for reference.

[�1, 1]. The lower limit on M holds if all astrophysical BHs
have m > 5 M� . We chose the lower bound on q to include
the regions where the reported events have support. Note
that such low values of q are outside the calibration region
of the approximants (Khan et al. 2016; Bohé et al. 2017), al-
though the e↵ect for the purpose of SNR estimation should
be minor, and also the approximation that (l,m) = (2,±2)
is less accurate in that regime. In any case, those mass ra-
tios are highly suppressed in the sensitive-volume weighting
(Eq. (25), Fig. 3).

To get a posterior distribution for the µ-parameters, one
should multiply the likelihood by a prior Pprior(µ). We will
take those priors to be flat.

We emphasize again that the model likelihood (27) ac-
counts both for selection e↵ects due to the sensitive volume
and for the fact that the priors that one has to use to esti-
mate the parameters of each event depend on the merger-
rate model that one is considering.

4 ASTROPHYSICAL IMPLICATIONS

With only 10 detections made so far, it is not yet feasible to
constrain population models that are too complicated. For
this reason, we consider several simple models that intend to
probe the di↵erent variables separately, and apply Eq. (27)
to put constraints on their parameters (see Taylor & Gerosa
(2018) for an alternative framework tailored to constraining
detailed models).

As before, we repeated all analyses using two di↵erent
waveform approximants (SEOBNRv4_ROM or IMRPhenomD). We

find that our results are robust to these choices, so below we
only show the results for the SEOBNRv4_ROM approximant.

4.1 Spin distribution

The distribution of spins of the merger events is currently
one of the more informative data the LVC has presented.
First, the spin distribution might allow us to distinguish be-
tween various formation channels. For example in scenarios
where black holes are dynamically captured into binaries one
expects each spin to be randomly oriented. For field bina-
ries spins might tend to be aligned with the orbital angular
momentum. Tides in binary systems before the second black
hole forms might spin up the secondary and align it with the
orbital angular momentum. For a chemically homogeneous
evolution of the stars to happen, high spins are required.
Thus the LVC measurements of �e� can potentially provide
very interesting constraints.

Second, one could try to ascertain whether the proper-
ties of the merging black holes are similar to those of black
holes in X-ray binaries. In particular there is some indication
that local black holes are rotating fast. The middle panel of
Fig. 1 shows the constraints on mass and spin of a collection
of black holes in XRBs from X-ray measurements. Heavy
black holes in persistent sources, i.e. with heavy compan-
ions, which are the natural progenitors of the LIGO/Virgo
sources, are close to maximally spinning. Furthermore this
spin is usually interpreted as being natal and thus perhaps
should apply to the secondary black hole as well. By com-
parison, the �e� reported by the LVC seem rather low. Of
course �e� constrains only one of the components of the spin
and combines both black holes with weights depending on
the mass ratio. We will try to use the likelihoods we have
computed for the LIGO events to say something about the
spin magnitudes and orientations assuming they all come
from the same population.

4.1.1 Gaussian �e� rate model

In order to understand what the data are already telling us
about the distribution of spins we first consider a merger-
rate model which is simply a (truncated) Gaussian in �e� ,

R(�e� | �e�,��e� ) / G(�e� � �e�,��e� ), |�e� | < 1; (28)

we will use G(x,�) to note the Gaussian distribution

G(x,�) = 1
p

2⇡ �
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We allow a nonzero mean, as expected for example from
an isolated-binary formation scenario, and a dispersion ��e�
whose value can help us constrain the typical magnitude of
the individual spins. The relevant values of ��e� turn out
to be . 0.2, so in the following we will make no distinction
between �2

�e� and the variance of the truncated Gaussian.
For simplicity, in this example we adopt a uniform prior in
M, q.

The µ-parameter likelihood is shown in Fig. 4. The dis-
tribution is consistent with having zero mean, with a mild
preference for positive values. The figure also shows that
��e� = 0 is inconsistent with the data. We find an upper
90% bound ��e� < 0.19.
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Figure 3. Dependence of the detector network sensitive volume
on the parameters p = (M, q, �e� ). The solid lines show V (M) for
several values of �e� on a q = 1 slice (top), or several values of q
on a slice of constant �e� = 0 (bottom). The dashed line shows a
power law / M2.2 dependence for reference.

[�1, 1]. The lower limit on M holds if all astrophysical BHs
have m > 5 M� . We chose the lower bound on q to include
the regions where the reported events have support. Note
that such low values of q are outside the calibration region
of the approximants (Khan et al. 2016; Bohé et al. 2017), al-
though the e↵ect for the purpose of SNR estimation should
be minor, and also the approximation that (l,m) = (2,±2)
is less accurate in that regime. In any case, those mass ra-
tios are highly suppressed in the sensitive-volume weighting
(Eq. (25), Fig. 3).

To get a posterior distribution for the µ-parameters, one
should multiply the likelihood by a prior Pprior(µ). We will
take those priors to be flat.

We emphasize again that the model likelihood (27) ac-
counts both for selection e↵ects due to the sensitive volume
and for the fact that the priors that one has to use to esti-
mate the parameters of each event depend on the merger-
rate model that one is considering.

4 ASTROPHYSICAL IMPLICATIONS

With only 10 detections made so far, it is not yet feasible to
constrain population models that are too complicated. For
this reason, we consider several simple models that intend to
probe the di↵erent variables separately, and apply Eq. (27)
to put constraints on their parameters (see Taylor & Gerosa
(2018) for an alternative framework tailored to constraining
detailed models).

As before, we repeated all analyses using two di↵erent
waveform approximants (SEOBNRv4_ROM or IMRPhenomD). We

find that our results are robust to these choices, so below we
only show the results for the SEOBNRv4_ROM approximant.

4.1 Spin distribution

The distribution of spins of the merger events is currently
one of the more informative data the LVC has presented.
First, the spin distribution might allow us to distinguish be-
tween various formation channels. For example in scenarios
where black holes are dynamically captured into binaries one
expects each spin to be randomly oriented. For field bina-
ries spins might tend to be aligned with the orbital angular
momentum. Tides in binary systems before the second black
hole forms might spin up the secondary and align it with the
orbital angular momentum. For a chemically homogeneous
evolution of the stars to happen, high spins are required.
Thus the LVC measurements of �e� can potentially provide
very interesting constraints.

Second, one could try to ascertain whether the proper-
ties of the merging black holes are similar to those of black
holes in X-ray binaries. In particular there is some indication
that local black holes are rotating fast. The middle panel of
Fig. 1 shows the constraints on mass and spin of a collection
of black holes in XRBs from X-ray measurements. Heavy
black holes in persistent sources, i.e. with heavy compan-
ions, which are the natural progenitors of the LIGO/Virgo
sources, are close to maximally spinning. Furthermore this
spin is usually interpreted as being natal and thus perhaps
should apply to the secondary black hole as well. By com-
parison, the �e� reported by the LVC seem rather low. Of
course �e� constrains only one of the components of the spin
and combines both black holes with weights depending on
the mass ratio. We will try to use the likelihoods we have
computed for the LIGO events to say something about the
spin magnitudes and orientations assuming they all come
from the same population.

4.1.1 Gaussian �e� rate model

In order to understand what the data are already telling us
about the distribution of spins we first consider a merger-
rate model which is simply a (truncated) Gaussian in �e� ,

R(�e� | �e�,��e� ) / G(�e� � �e�,��e� ), |�e� | < 1; (28)

we will use G(x,�) to note the Gaussian distribution
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We allow a nonzero mean, as expected for example from
an isolated-binary formation scenario, and a dispersion ��e�
whose value can help us constrain the typical magnitude of
the individual spins. The relevant values of ��e� turn out
to be . 0.2, so in the following we will make no distinction
between �2

�e� and the variance of the truncated Gaussian.
For simplicity, in this example we adopt a uniform prior in
M, q.

The µ-parameter likelihood is shown in Fig. 4. The dis-
tribution is consistent with having zero mean, with a mild
preference for positive values. The figure also shows that
��e� = 0 is inconsistent with the data. We find an upper
90% bound ��e� < 0.19.
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TABLE I: Summary of the parameters of the template banks. Columns 2 to 6 describe the bounds of physical parameter space
that each bank is designed to cover. ⇣ is a tunable fudge parameter that controls the tolerance for removing nonphysical grid
points. �c↵ is the grid spacing that we chose for each bank. Nsubbanks is the resulting number of subbanks in each bank.
dsubbanks and Lmax,subbanks are the dimensionalities of each subbank (sorted by increasing mean total mass) and the size of
their largest dimension, respectively. Ntemplates is the total number of templates in each bank.

Bank m1 (M�) m2 (M�) M (M�) qmin |�1,2|max ⇣ �c↵ Nsubbanks dsubbanks Lmax,subbanks Ntemplates

BNS 0 < 1.1 1 2 777.0 48 806
BNS 1 (1, 3) (1, 3) (1.1, 1.3) — 0.99 0.05 0.55 1 2 434.3 23 856
BNS 2 > 1.3 1 2 824.6 43 781
NSBH 0 < 3 1 4 753.4 84 641
NSBH 1 (3, 100) (1, 3) (3, 6) 1/50 0.99 0.05 0.5 2 6, 6 259.5, 166.8 85 149
NSBH 2 > 6 3 5, 4, 4 87.5, 61.2, 9.4 15 628
BBH 0 < 5 0.55 1 3 270.6 8246
BBH 1 (5, 10) 0.55 2 4, 4 113.7, 50.0 4277
BBH 2 (3, 100) (3, 100) (10, 20) 1/18 0.99 0.05 0.5 3 3, 4, 3 41.5, 33.5, 10.3 1607
BBH 3 (20, 40) 0.45 3 2, 2, 2 11.7, 10.8, 4.9 225
BBH 4 > 40 0.35 5 2, 2, 2, 1, 1 2.9, 2.0, 1.1, 0.7, 0.5 46

Total 316 262

heavy systems, and a combination of the mass ratio and
e↵ective spin which can be measured with a lower pre-
cision. These are the leading contributions to the phase
evolution as can be understood from the post-Newtonian
expansion.

An important advantage of our geometric coordinates
is that they are well suited for a two-step search that ef-
fectively achieves a smaller grid spacing at reduced com-
putational cost. We realize this by refining the template
grid on demand around all triggers that exceed an ap-
propriately lowered SNR threshold [17, 29]. During the
search, we first use a coarse grid, and refine every trigger
using neighboring templates from a denser grid that has
half the spacing along each dimension. The fact that the
distance between c↵ components translates directly to
mismatch (Eq. (15)) makes this method straightforward
to implement.

To characterize the e↵ectualness of the bank at recov-
ering the target physical signals, we generate a set of 104

random “test waveforms” within the parameter range of
each bank, using the same approximant with which the
input waveforms were generated. We choose the parame-
ters from a distribution that is uniform in the component
masses m1,m2 and aligned spins �1,�2. In principle, we
would have to match each test waveform against every
waveform in the bank to look for the best match. To save
computational e↵ort, we select a candidate best-match
based on the approximate metric Eq. (15) by extract-
ing the phase of the test waveform  (i)(f), projecting it

onto the linear space, c(i)↵ = h (i)
�  , ↵i, and finding

the closest grid point with respect to the Euclidean met-
ric (15). Since a priori we do not know which subbank
best describes the test waveform, we pick the best candi-
date from each subbank and compute the match with all.
The best match with our reduced set of candidates is a
lower bound on the best match over all the waveforms in
the bank. Rather than using Eq. (4) directly, we compute
the match by following the detection strategy described

FIG. 5: E↵ectualness of our template banks, tested on ran-
dom waveforms drawn from a distribution uniform in indi-
vidual masses and aligned spins. The vertical axis shows the
fraction of the random trials that do not achieve a given match
in the bank.

in Venumadhav et al. [17]: we account for the finite time
resolution of the Fourier transform by downsampling the
waveforms to 512Hz and sinc-interpolating the matched-
filter output twice. We show the result of this test in
Fig. 5, in terms of the cumulative fraction of the matches
with each bank before and after applying the grid refine-
ment, which we use to assess the collection threshold on
the coarse grid and the e↵ectualness achieved for each
bank, respectively. We find that depending on the bank
99% of the templates have a match higher than 0.95–0.98.

Roulet et. al., (2018)
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GW151226 was detected with a network matched-filter
SNR of 13 by both searches. Figure 2 shows the detection
statistic values assigned to GW151226 by the two searches
and their respective noise background distributions. At the
detection statistic value assigned to GW151226, the
searches estimate a false alarm probability of < 10−7

(> 5σ) [14] and 3.5 × 10−6 (4.5σ) [17] when including
candidate events in the background calculation. This
procedure strictly limits the probability of obtaining a false
positive outcome in the absence of signals [56]. The
estimates from the two searches are consistent with expect-
ations for a compact binary coalescence signal, given the
differences in methods of data selection and candidate
event ranking. When excluding search candidate events
from the background calculation, a procedure that yields a
mean-unbiased estimate of the distribution of noise events,
the significance is found to be greater than 5σ in both
searches. Further details of the noise background and
significance estimation methods for each search are given
in [18] and discussions specific to GW151226 are in [5].

V. SOURCE DISCUSSION

To estimate the source parameters, a coherent Bayesian
analysis [21,57] of the data was performed using two
families of waveform models. Both models are calibrated to
numerical simulations of binary black holes in general
relativity. One waveform model includes spin-induced
precession of the binary orbital plane [58], created by
rotating the model described in [59]. The other waveform
model restricts the component black hole spins to be
aligned with the binary orbital angular momentum
[42,43]. Both are publicly available [60]. Table I shows
source parameters for GW151226 including the initial and
final masses of the system. The parameter uncertainties
include statistical and systematic errors from averaging
posterior probability samples over the two waveform
models, in addition to calibration uncertainties. Here, we
report the median and 90% credible intervals.
The initial binary was composed of two stellar-mass black

holes with a source-frame primary mass m1 ¼ 14.2þ8.3
−3.7M⊙,

secondary mass m2 ¼ 7.5þ2.3
−2.3M⊙, and a total mass of

21.8þ5.9
−1.7M⊙. The binary merged into a black hole of mass

20.8þ6.1
−1.7M⊙, radiating 1.0þ0.1

−0.2M⊙c2 in gravitational waves
with a peak luminosity of 3.3þ0.8

−1.6 × 1056 erg=s. These
estimates of the mass and spin of the final black hole, the
total energy radiated in gravitational waves, and the peak
gravitational-wave luminosity are derived from fits to
numerical simulations [39,63–65]. The source localization
is refined to 850 deg2, owing to the different methods used
[21], and refined calibration.
The long inspiral phase of GW151226 allows accurate

estimates of lower-order post-Newtonian expansion param-
eters, such as the chirp mass [26,45]. However, only loose
constraints can be placed on the total mass and mass ratio

(m2=m1) because the merger and ringdown occur at
frequencies where the detectors are less sensitive.
Figure 3 shows the constraints on the component masses
of the initial black hole binary. The component masses

TABLE I. Source parameters for GW151226. We report median
values with 90% credible intervals that include statistical and
systematic errors from averaging results of the precessing and
nonprecessing spin waveform models. The errors also take into
account calibration uncertainties. Masses are given in the source
frame; to convert to the detector framemultiply by (1þ z) [61]. The
spins of the primary and secondary blackholes are constrained to be
positive. The source redshift assumes standard cosmology [62].
Further parameters of GW151226 are discussed in [5].

Primary black hole mass 14.2þ8.3
−3.7M⊙

Secondary black hole mass 7.5þ2.3
−2.3M⊙

Chirp mass 8.9þ0.3
−0.3M⊙

Total black hole mass 21.8þ5.9
−1.7M⊙

Final black hole mass 20.8þ6.1
−1.7M⊙

Radiated gravitational-wave energy 1.0þ0.1
−0.2M⊙c2

Peak luminosity 3.3þ0.8
−1.6 × 1056 erg=s

Final black hole spin 0.74þ0.06
−0.06

Luminosity distance 440þ180
−190 Mpc

Source redshift z 0.09þ0.03
−0.04

FIG. 3. Posterior density function for the source-frame masses
msource

1 (primary) and msource
2 (secondary). The one-dimensional

marginalized distributions include the posterior density functions
for the precessing (blue) and nonprecessing (red) spin waveform
models where average (black) represents the mean of the two
models. The dashed lines mark the 90% credible interval for the
average posterior density function. The two-dimensional plot
shows the contours of the 50% and 90% credible regions plotted
over a color-coded posterior density function.
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Non-stationary Noise
the highest- and lowest-mass signals, respectively). The
PSD changes between data blocks, but usually only
slightly, so template banks stay roughly constant over
time in a data set.

C. Matched filtering

The central stage of the pipeline is the matched filtering
of detector data with bank templates, resulting in a list of
triggers that are further analyzed downstream. This stage
was described in detail in Ref. [28]; here we sketch its key
features.

The maximized statistic !2 of Eq. (4) is a function only
of the component masses and the time of coalescence tc.
Now, a time shift can be folded in the computation of inner
products by noting that gð"Þ ¼ hð" $ !tcÞ transforms to
~gðfÞ ¼ ei2#f!tc ~hðfÞ; therefore, the SNR can be computed
as a function of tc by the inverse Fourier transform
(a complex quantity)

ðsjhÞð!tcÞ ¼ 4
Z fhigh

flow

~sðfÞ~h%ðfÞ
SnðfÞ

e2#if!tcdf: (11)

Furthermore, if ~h#=2ðfÞ ¼ i~h0ðfÞ then Eq. (11), computed
for h ¼ h0, yields ðsjh0Þð!tcÞ þ iðsjh#=2Þð!tcÞ.

The IHOPE matched-filtering engine implements the dis-
crete analogs of Eqs. (4) and (11) [28] using the efficient
FFTW library [46]. The resulting SNRs are not stored for
every template and every possible tc; instead, we only
retain triggers that exceed an empirically determined
threshold (typically 5.5), and that corresponds to maxima
of the SNR time series—that is, a trigger above the thresh-
old is kept only if there are no triggers with higher SNR
within a predefined time window, typically set to the length
of the template (this is referred to as time clustering).

For a single template and time and for detector data
consisting of Gaussian noise, !2 follows a $2 distribution
with two degrees of freedom, which makes a threshold of
5.5 seem rather large: pð!> 5:5Þ ¼ 2:7 ' 10$ 7. However,
we must account for the fact that we consider a full
template bank and maximize over time of coalescence:
the bank makes for, conservatively, a thousand independent
trials at any point in time, while the rapid falloff of the
template autocorrelation (as demonstrated in Fig. 7) ren-
ders trials separated by 0.1 s in time essentially indepen-
dent. Therefore, we expect to see a few triggers above this
threshold already in a few hundred seconds of Gaussian
noise, and a large number in a year of observing time.
Furthermore, since the data contain many non-Gaussian
noise transients, the trigger rate will be even higher. In
Fig. 3 we show the distribution of triggers as a function of
SNR in a month of simulated Gaussian noise in blue (dark
gray) and real data in red (light gray) from LIGO’s fifth
science run (S5). The difference between the two is clearly
noticeable, with a tail of high SNR triggers extending to
SNRs well over 1000 in real data.

It is useful to not just cluster in time, but also across the
template bank. When the SNR for a template is above
threshold, it is probable that it will be above threshold
also for many neighboring templates, which encode very
similar waveforms. The IHOPE pipeline selects only one (or
a few) triggers for each event (be it a GW or a noise
transient), using one of two algorithms. In time-window
clustering, the time series of triggers from all templates is
split into windows of fixed duration; within each window,
only the trigger with the largest SNR is kept. This method
has the advantage of simplicity, and it guarantees an upper
limit on the trigger rate. However, a glitch that creates
triggers in one region of parameter space can mask a true
signal that creates triggers elsewhere. This problem is
remedied in TrigScan clustering [47], whereby triggers
are grouped by both time and recovered (template) masses,
using the parameter-space metric to define their proximity
(for a detailed description see Ref. [48]). However, when
the data are particularly glitchy TrigScan can output a
number of triggers that can overwhelm subsequent data
processing such as coincident trigger finding.

D. Multidetector coincidence

The next stage of the pipeline compares the triggers
generated for each of the detectors, and retains only those
that are seen in coincidence. Loosely speaking, triggers are
considered coincident if they occurred at roughly the same
time, with similar masses; see Ref. [49] for an exact
definition of coincidence as used in recent CBC searches.
To wit, the ‘‘distance’’ between triggers is measured with
the parameter-space metric of Eq. (8), maximized over the
signal amplitude A and phase"0. Since different detectors
at different times have different noise PSDs and therefore
metrics, we construct a constant-metric-radius ellipsoid in
"0-"3-tc space, using the appropriate metric for every
trigger in every detector, and we deem pairs of triggers to

FIG. 3 (color online). Distribution of single detector trigger
SNRs in a month of simulated Gaussian noise in blue (dark gray)
and real S5 LIGO data in red (light gray) from the Hanford
interferometer H1.
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the highest- and lowest-mass signals, respectively). The
PSD changes between data blocks, but usually only
slightly, so template banks stay roughly constant over
time in a data set.

C. Matched filtering

The central stage of the pipeline is the matched filtering
of detector data with bank templates, resulting in a list of
triggers that are further analyzed downstream. This stage
was described in detail in Ref. [28]; here we sketch its key
features.

The maximized statistic !2 of Eq. (4) is a function only
of the component masses and the time of coalescence tc.
Now, a time shift can be folded in the computation of inner
products by noting that gð"Þ ¼ hð" $ !tcÞ transforms to
~gðfÞ ¼ ei2#f!tc ~hðfÞ; therefore, the SNR can be computed
as a function of tc by the inverse Fourier transform
(a complex quantity)
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Furthermore, if ~h#=2ðfÞ ¼ i~h0ðfÞ then Eq. (11), computed
for h ¼ h0, yields ðsjh0Þð!tcÞ þ iðsjh#=2Þð!tcÞ.

The IHOPE matched-filtering engine implements the dis-
crete analogs of Eqs. (4) and (11) [28] using the efficient
FFTW library [46]. The resulting SNRs are not stored for
every template and every possible tc; instead, we only
retain triggers that exceed an empirically determined
threshold (typically 5.5), and that corresponds to maxima
of the SNR time series—that is, a trigger above the thresh-
old is kept only if there are no triggers with higher SNR
within a predefined time window, typically set to the length
of the template (this is referred to as time clustering).

For a single template and time and for detector data
consisting of Gaussian noise, !2 follows a $2 distribution
with two degrees of freedom, which makes a threshold of
5.5 seem rather large: pð!> 5:5Þ ¼ 2:7 ' 10$ 7. However,
we must account for the fact that we consider a full
template bank and maximize over time of coalescence:
the bank makes for, conservatively, a thousand independent
trials at any point in time, while the rapid falloff of the
template autocorrelation (as demonstrated in Fig. 7) ren-
ders trials separated by 0.1 s in time essentially indepen-
dent. Therefore, we expect to see a few triggers above this
threshold already in a few hundred seconds of Gaussian
noise, and a large number in a year of observing time.
Furthermore, since the data contain many non-Gaussian
noise transients, the trigger rate will be even higher. In
Fig. 3 we show the distribution of triggers as a function of
SNR in a month of simulated Gaussian noise in blue (dark
gray) and real data in red (light gray) from LIGO’s fifth
science run (S5). The difference between the two is clearly
noticeable, with a tail of high SNR triggers extending to
SNRs well over 1000 in real data.

It is useful to not just cluster in time, but also across the
template bank. When the SNR for a template is above
threshold, it is probable that it will be above threshold
also for many neighboring templates, which encode very
similar waveforms. The IHOPE pipeline selects only one (or
a few) triggers for each event (be it a GW or a noise
transient), using one of two algorithms. In time-window
clustering, the time series of triggers from all templates is
split into windows of fixed duration; within each window,
only the trigger with the largest SNR is kept. This method
has the advantage of simplicity, and it guarantees an upper
limit on the trigger rate. However, a glitch that creates
triggers in one region of parameter space can mask a true
signal that creates triggers elsewhere. This problem is
remedied in TrigScan clustering [47], whereby triggers
are grouped by both time and recovered (template) masses,
using the parameter-space metric to define their proximity
(for a detailed description see Ref. [48]). However, when
the data are particularly glitchy TrigScan can output a
number of triggers that can overwhelm subsequent data
processing such as coincident trigger finding.

D. Multidetector coincidence

The next stage of the pipeline compares the triggers
generated for each of the detectors, and retains only those
that are seen in coincidence. Loosely speaking, triggers are
considered coincident if they occurred at roughly the same
time, with similar masses; see Ref. [49] for an exact
definition of coincidence as used in recent CBC searches.
To wit, the ‘‘distance’’ between triggers is measured with
the parameter-space metric of Eq. (8), maximized over the
signal amplitude A and phase"0. Since different detectors
at different times have different noise PSDs and therefore
metrics, we construct a constant-metric-radius ellipsoid in
"0-"3-tc space, using the appropriate metric for every
trigger in every detector, and we deem pairs of triggers to

FIG. 3 (color online). Distribution of single detector trigger
SNRs in a month of simulated Gaussian noise in blue (dark gray)
and real S5 LIGO data in red (light gray) from the Hanford
interferometer H1.
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Mitigating Glitches

Data Quality for CBC Searches in O1 25

both the Livingston and Hanford detectors. Although blip transients are seen in both
detectors, they are not found as coincident triggers and do not represent gravitational
wave signals.

Blip transients show up as short duration, band-limited impulses that have power
in the ⇠30-300 Hz frequency range (see Figure 12). They do not couple into any
monitors of detector performance and are not loud enough to exceed the gating
threshold applied in the PyCBC search.
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Figure 12: A time-frequency representation [26] of the Livingston strain channel at the
time of a blip transient. This visualization of a blip transient demonstrates
their typical features: band-limited, short duration, and little visible
frequency structure.

A time-domain analysis reveals why blip transients are so damaging to the CBC
searches. Figure 13 shows a filtered time-domain representation of a blip transient
in the Livingston strain channel. The data have been filtered with a bandpass filter
with notch filters to attenuate strong lines in the strain spectrum, double-passed to
be zero-phase. Overlaid on top of the strain data is a CBC waveform that reported
a high re-weighted SNR value at the time of the blip transient under study. The two
curves show significant overlap in the few cycles where the template has appreciable
amplitude.

The CBC template that reported a high re-weighted SNR when filtered against
the blip transient in Figure 13 represents a neutron star-black hole binary system
with a total mass Mtotal of 98.34 M� and a highly anti-aligned e↵ective spin of �0.97,
resulting in a short template duration. The waveform spends less than 0.1 seconds
at the frequencies that aLIGO is sensitive to, which, as shown in Figure 13, is the
approximate time scale of some instrumental transients. This time scale is in stark
contrast to that of a binary neutron star waveform, which can have a duration on the
order of 1 minute and contain ample signal for use in the �2 test.

Although blip transients are capable of creating high re-weighted SNR triggers,
their e↵ects are constrained to a fairly small region of the CBC parameter space.
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A time-domain analysis reveals why blip transients are so damaging to the CBC
searches. Figure 13 shows a filtered time-domain representation of a blip transient
in the Livingston strain channel. The data have been filtered with a bandpass filter
with notch filters to attenuate strong lines in the strain spectrum, double-passed to
be zero-phase. Overlaid on top of the strain data is a CBC waveform that reported
a high re-weighted SNR value at the time of the blip transient under study. The two
curves show significant overlap in the few cycles where the template has appreciable
amplitude.

The CBC template that reported a high re-weighted SNR when filtered against
the blip transient in Figure 13 represents a neutron star-black hole binary system
with a total mass Mtotal of 98.34 M� and a highly anti-aligned e↵ective spin of �0.97,
resulting in a short template duration. The waveform spends less than 0.1 seconds
at the frequencies that aLIGO is sensitive to, which, as shown in Figure 13, is the
approximate time scale of some instrumental transients. This time scale is in stark
contrast to that of a binary neutron star waveform, which can have a duration on the
order of 1 minute and contain ample signal for use in the �2 test.

Although blip transients are capable of creating high re-weighted SNR triggers,
their e↵ects are constrained to a fairly small region of the CBC parameter space.

• Must not “remove samples” - Lines 
will leak out


• Rephrase the problem: 

• Replace the bad segment with 

an infinitely loud white noise 
process.


• Solve the least squares linear 
algebra problem of measuring 
amplitude, and identify the 
equivalent data


• Solution: Inpaint the samples in 
the bad segment to the value 
expected by the rest of the data


• Does not generate new triggers

• Preserves existing triggers (like the 

BNS GW170817)

Z(h) = ∑
f

d( f )h⋆( f )
σ2( f )



Mitigating Glitches

Data Quality for CBC Searches in O1 25

both the Livingston and Hanford detectors. Although blip transients are seen in both
detectors, they are not found as coincident triggers and do not represent gravitational
wave signals.

Blip transients show up as short duration, band-limited impulses that have power
in the ⇠30-300 Hz frequency range (see Figure 12). They do not couple into any
monitors of detector performance and are not loud enough to exceed the gating
threshold applied in the PyCBC search.

-500 -400 -300 -200 -100 0 100 200 300 400 500

Time [milliseconds]

1

2

4

8

16

32

64

128

256

512

1024
Fr

eq
ue

nc
y

[H
z]

0

5

10

15

20

25

N
or

m
al

iz
ed

en
er

gy

Figure 12: A time-frequency representation [26] of the Livingston strain channel at the
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A time-domain analysis reveals why blip transients are so damaging to the CBC
searches. Figure 13 shows a filtered time-domain representation of a blip transient
in the Livingston strain channel. The data have been filtered with a bandpass filter
with notch filters to attenuate strong lines in the strain spectrum, double-passed to
be zero-phase. Overlaid on top of the strain data is a CBC waveform that reported
a high re-weighted SNR value at the time of the blip transient under study. The two
curves show significant overlap in the few cycles where the template has appreciable
amplitude.

The CBC template that reported a high re-weighted SNR when filtered against
the blip transient in Figure 13 represents a neutron star-black hole binary system
with a total mass Mtotal of 98.34 M� and a highly anti-aligned e↵ective spin of �0.97,
resulting in a short template duration. The waveform spends less than 0.1 seconds
at the frequencies that aLIGO is sensitive to, which, as shown in Figure 13, is the
approximate time scale of some instrumental transients. This time scale is in stark
contrast to that of a binary neutron star waveform, which can have a duration on the
order of 1 minute and contain ample signal for use in the �2 test.

Although blip transients are capable of creating high re-weighted SNR triggers,
their e↵ects are constrained to a fairly small region of the CBC parameter space.

• Must not “remove samples” - Lines 
will leak out


• Rephrase the problem: 

• Replace the bad segment with 

an infinitely loud white noise 
process.


• Solve the least squares linear 
algebra problem of measuring 
amplitude, and identify the 
equivalent data


• Solution: Inpaint the samples in 
the bad segment to the value 
expected by the rest of the data


• Does not generate new triggers

• Preserves existing triggers (like the 

BNS GW170817)

Z(h) = ∑
f

d( f )h⋆( f )
σ2( f )



Mitigating Glitches
Check for consistency between different parts of the overlaps, and veto on this 

Requirements:

• False positive rate ~ 1% on Gaussian noise

• Robust to


A. PSD drift

B. Inefficiency in the template bank



Effect of Mitigating Glitches

Background

No vetoes



Effect of Mitigating Glitches

Background

No vetoes With 
vetoes



10

FIG. 6. The impact of signal and data quality vetoes on the
distribution of Hanford detector triggers in the BBH 3 bank.

local maxima within subintervals of 0.1 s. We set a
generous threshold that should be reached at most
once per run (approximately accounting for corre-
lations between templates) within Gaussian noise,
and is robust to astrophysical events (due to the
maximization over time).

3. Finally, we account for rare cases with significant
PSD drifts on finer timescales than the ones used
while triggering (described in Section III F and
Ref. [10]. When this PSD drift is statistically sig-
nificant, we veto coincidence candidates (both at
zero-lag and in timeslides) whose combined inco-
herent scores are brought down below our collection
threshold.

Figure 6 shows the cumulative e↵ect of our vetoes on
the score distribution of the triggers in the BBH 3 bank,
which contains short waveforms of heavy binary black
hole mergers. Also shown are the hardware injections
present in the data stream and GW150914 which belongs
to this bank’s chirp mass domain. We note that the veto
retained every hardware injection in this chirp mass do-
main that passed the flagging procedure of Section III C.
It is interesting to note that GW150914 does not stand
out from the single detector trigger distribution before
the application of the veto, and is clearly detected even
without resorting to coincidence after it.

J. Incoherent Ranking

When constructing a statistic to rank events an impor-
tant part is P (⇢2

H
, ⇢

2

L
| H0), the probability of obtaining a

trigger with SNRs ⇢H, ⇢L in each detector under the null
hypothesis H0. Under the assumption that the noise in
both detectors is independent,

P (⇢2
H
, ⇢

2

L
| H0) = P (⇢2

H
| H0)P (⇢2

L
| H0) . (11)

FIG. 7. Relation between our new rank-based score ⇢̃ and
the SNR ⇢, for the Hanford detector. The initial linear de-
pendence reflects the Gaussian part of the trigger distribution,
the curve saturates due to the non-Gaussian glitch tail. This
e↵ect is more prominent in the higher-mass banks, which are
more sensitive to glitches.

If the noise in each detector was Gaussian,

logP (⇢ | H0) = �⇢
2
/2 + const (12)

and

logP (⇢H, ⇢L | H0) = �(⇢2
H
+ ⇢

2

L
)/2 + const . (13)

Under this assumption it is optimal to use ⇢
2

H
+ ⇢

2

L
to

rank candidate events. Unfortunately this is an invalid
assumption for two reasons: firstly, even for Gaussian
noise, at high SNR the maximization over templates,
phase and arrival time leads to

logP (⇢ | H0) = �⇢
2
/2 + c log(⇢) + const (14)

where the constant c depends on the bank dimension.
However, in practice this is a minor correction, the more
substantial problem is the non-Gaussian tail of the noise,
the so-called glitches. In the high SNR limit P (⇢ | H0) is
much larger than the Gaussian expression would predict.
The non-Gaussian tail in the ⇢ distribution has an im-

portant consequence when combining the scores of multi-
ple detectors. If we were simply to use ⇢2

H
+⇢

2

L
as a score,

we would be ranking coincidences in which the trigger in
one of the detectors is coming from this non-Gaussian
tail, as we would be misjudging its probability by many
orders of magnitude.
To correct this problem we empirically determine

log[P (⇢i | H0)] for each detector. We do so by taking
our triggers and ranking them according to ⇢i for each
detector i. We then model

P (⇢i | H0) / Rank(⇢i), (15)

which is a good approximation for distributions with ex-
ponential or polynomial tails. We denote

⇢̃
2

i
= �2 logP (⇢i | H0). (16)
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Improved Background on O1: GW15101212

FIG. 2. Cumulative histograms of search results for the matched-filter searches, plotted versus inverse false-alarm rate. The dashed lines show
the expected background, given the analysis time. Shaded regions denote sigma uncertainty bounds for Poisson uncertainty. The blue dots are
the named gravitational-wave events found by each respective search. Any events with a measured or bounded inverse false alarm rate greater
than 3000 y are shown with an arrow pointing right. Left: PyCBC results. Right: GstLAL results.

FAR [y�1] Network SNR
Event UTC Time PyCBC GstLAL cWB PyCBC GstLAL cWB

GW150914 09:50:45.4 < 1.53 ⇥ 10�5 < 1.00 ⇥ 10�7 < 1.63 ⇥ 10�4 23.6 24.4 25.2
GW151012 09:54:43.4 0.17 7.92 ⇥ 10�3 – 9.5 10.0 –
GW151226 03:38:53.6 < 1.69 ⇥ 10�5 < 1.00 ⇥ 10�7 0.02 13.1 13.1 11.9
GW170104 10:11:58.6 < 1.37 ⇥ 10�5 < 1.00 ⇥ 10�7 2.91 ⇥ 10�4 13.0 13.0 13.0
GW170608 02:01:16.5 < 3.09 ⇥ 10�4 < 1.00 ⇥ 10�7 1.44 ⇥ 10�4 15.4 14.9 14.1
GW170729 18:56:29.3 1.36 0.18 0.02 9.8 10.8 10.2
GW170809 08:28:21.8 1.45 ⇥ 10�4 < 1.00 ⇥ 10�7 – 12.2 12.4 –
GW170814 10:30:43.5 < 1.25 ⇥ 10�5 < 1.00 ⇥ 10�7 < 2.08 ⇥ 10�4 16.3 15.9 17.2
GW170817 12:41:04.4 < 1.25 ⇥ 10�5 < 1.00 ⇥ 10�7 – 30.9 33.0 –
GW170818 02:25:09.1 – 4.20 ⇥ 10�5 – – 11.3 –
GW170823 13:13:58.5 < 3.29 ⇥ 10�5 < 1.00 ⇥ 10�7 2.14 ⇥ 10�3 11.1 11.5 10.8

TABLE I. Search results for the eleven GW events. We report a false-alarm rate for each search that found a given event; otherwise, we display
‘–’. The network SNR for the two matched filter searches is that of the template ranked highest by that search, which is not necessarily the
template with the highest SNR. Moreover, the network SNR is the quadrature sum of the detectors coincident in the highest-ranked trigger; in
some cases, only two detectors contribute, even if all three were operating nominally at the time of that event.

and GW170823. All four are binary black hole events.
As noted in Sec. III, data from O1 was reanalysed because

of improvements in the search pipelines and expansion of the
parameter space searched. For the O2 events already pub-
lished, our reanalysis is motivated by updates to the data it-
self. The noise subtraction procedure [52] that was available
for parameter estimation of three of the published O2 events
was not initially applied to the entire O2 data set, and there-
fore could not be used by searches. Following the procedures
of [51], this noise subtraction was applied to all of O2 and is
reflected in Table I for the four previously published O2 GW
events, as well as the four events presented here for the first
time.

For both PyCBC and cWB, the time-shift method of back-
ground estimation may result in only an upper bound on the

false alarm rate, if an event has a larger value of the ranking
statistic than any trigger in the time-shifted background; this
is indicated in Table I. For GW150914 and GW151226, the
bound that PyCBC placed on the FAR in these updated results
is in fact higher than that previously published [1, 2, 4], be-
cause as noted in Sec. III A this search elected to use shorter
periods of time-shifting to better capture the variation in the
detectors’ sensitivities. For GstLAL, the FAR is reported in
Table I as an upper bound of 1.00 ⇥ 10�7 whenever a smaller
number was obtained. This reflects a more conservative noise
hypothesis within the GstLAL analysis, and follows the pro-
cedures and motivations detailed in section IV of [3].

Five of the GW events reported here occurred during Au-
gust 2017, which comprises approximately 10% of the total
observation time. There are ten non-overlapping periods of

BBH 2

Venumadhav et. al., (2019)

Abbott et. al., (2018)
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We report a new binary black hole merger in the publicly available LIGO First Observing Run (O1)
data release. The event has an inverse false alarm rate of one per six years in the detector-frame
chirp-mass range Mdet 2 [20, 40]M� in a new independent analysis pipeline that we developed.
Our best estimate of the probability that the event is of astrophysical origin is Pastro = 0.8 . The
estimated physical parameters of the event indicate that it is the merger of two massive black holes,
Mdet = 31+2

�3 M� with an e↵ective spin parameter, �e↵ = 0.81+0.15
�0.21, making this the most highly

spinning merger reported to date. It is also among the two highest redshift mergers observed so far.
The high aligned spin of the merger supports the hypothesis that merging binary black holes can
be created by binary stellar evolution.

I. INTRODUCTION

The LIGO/Virgo collaboration has reported ten bi-
nary black hole (BBH) coalescence events detected dur-
ing their First and Second Observing Runs [1]. These
systems consist of black holes (BHs) with masses rang-
ing from 10 M� to 60 M�, with the primary and the sec-
ondary BH having comparable masses. Two of the detec-
tions, GW151226 [2] and GW170729 [3], show conclusive
evidence for at least one component BH having a posi-
tive spin along the direction of the orbital angular mo-
mentum, while the remaining events are consistent with
both components being non-spinning. The astrophysi-
cal formation of the LIGO/Virgo BBHs is currently an
active topic of research.

The detection of BBH signals is currently limited by
confusion with noise transients of non-astrophysical ori-
gin. This sets the threshold matched filtering score for
BBH triggers that can be confidently declared. We devel-
oped a new search pipeline [4] for which we made e↵orts
to precisely characterize noise systematics and e↵ectively
mitigate noise transients [5, 6], with a view to reducing
the detection threshold to search for faint and distant
BBH events. Any addition to the BBH sample will bring
tremendous scientific value as it will enhance our ability
to map out the BBH parameter space and accumulate
evidence for or against models of their formation. In
this paper, we report a new BBH merger event found in
the publicly available LIGO First Observing Run (O1)
data [7] using the new search pipeline. The strain signal
recorded by advanced LIGO at the time of the event is
consistent with the merger of two aligned and fast spin-
ning BHs.

⇤ bzackay@ias.edu
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FIG. 1. The blue curve shows the cumulative number of
expected background events above a given value of the coher-
ent score ⇢2

c per O1 run in the BBH 3 bank, estimated from
20 000 timeslides of the data. The flattening at low values is
an artifact of the threshold used while collecting background
triggers. Vertical black lines mark candidates, i.e., triggers at
physical shifts (with previously reported events and injections
removed). The event GW151216 , marked in red, has a FAR
of 1 in 52 O1.

II. THE NEW EVENT

Ref. [4] reports the overall results of the BBH search
we performed using our new compact binary coalescence
detection pipeline. Our search used five banks, each
covering a factor of two in detector-frame chirp-mass
Mdet ⌘ (1 + z) (m1 m2)3/5/(m1 + m2)1/5.

We detected a significant trigger within our tem-
plate bank BBH 3, which covers the chirp-mass range
[20, 40] M� [8]. Restricting the frequency range to
[20, 512] Hz in the analysis, we obtained a maximal net-
work matched-filter signal-to-noise-ratio SNR = 8.5 with
the spin-aligned BBH waveform model IMRPhenomD. This
trigger was previously reported as a subthreshold candi-
date in the 1-OGC catalogue by Ref. [9], in which it was
not deemed su�ciently significant to be declarable.

BBH 3
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TABLE III. Events and subthreshold candidates in all of the binary black hole banks.

Name Bank M(M�) GPS timea ⇢2H ⇢2L FAR�1(O1)b W

R(event|H0)
(days) R>100(days

�1) pastro

GW151226 BBH 1 9.74 1135136350.585 120.0 52.1 > 20 000 –c – 1c

GW151012 BBH 2 18 1128678900.428 55.66 46.75 > 20 000 7⇥ 105 d 0.01 0.9998d

GW150914 BBH 3 28 1126259462.411 396.1 184.3 > 20 000 –c – 1c

GW151216e BBH 3 29 1134293073.164 39.4 34.8 52 74± 2 0.033 0.71

151231 BBH 3 30 1135557647.145 37.5 25.2 0.98 5.4± 0.4 0.033 0.15
151011 BBH 4 58 1128626886.595 24.5 39.9 1.1 16± 1 0.01 0.14

a
Times are given as the linear-free times, that is, the times corresponding to when the waveforms generated by the bank were

orthogonal to the time shift component given the fiducial PSD.
b
The false alarm rates (FAR) given are computed within each bank. The inverse false alarm rate is given in terms of “O1” to reflect the

volumetric weighting of events using the momentary detector sensitivity. Under the approximation of constant sensitivity of the

detectors during the observing runs, the unit “O1” corresponds to roughly 46 days.
c
We found no credible way of computing the probability density of the background distribution at these high SNRs.

d
Estimating pastro for GW151012 required some extrapolation of the background trigger distribution.

e
A new event we are reporting in a companion paper [19].

qc/0405045 [gr-qc].
[18] A. H. Nitz, T. Dent, T. Dal Canton, S. Fairhurst,

and D. A. Brown, Astrophys. J. 849, 118 (2017),
arXiv:1705.01513 [gr-qc].

[19] B. Zackay, T. Venumadhav, L. Dai, J. Roulet, and
M. Zaldarriaga, arXiv e-prints , arXiv:1902.10331 (2019),
arXiv:1902.10331 [astro-ph.HE].

Venumadhav et. al., (2019)
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TABLE I: Events already reported by the LIGO–Virgo Collaboration [2] as detected with our pipeline. The rate distributions
used to compute pastro are shown in Fig. 3. The maximum likelihood rates are Rmax = 8/O2 and 5/O2 in banks BBH 3 and
BBH 4, respectively.

Name Bank GPS timea ⇢2H ⇢2L FAR�1(O2)b W (event)

R(event|N )
(O2) pastro

GW170104 BBH (3,0) 1167559936.582 85.1 104.3 > 2⇥ 104 > 100 > 0.99
GW170809 BBH (3,0) 1186302519.740 40.5 113 > 2⇥ 104 > 100 > 0.99
GW170814 BBH (3,0) 1186741861.519 90.2 170 > 2⇥ 104 > 100 > 0.99
GW170818 BBH (3,0) 1187058327.075 19.4 95.1 1.7c — —c

GW170729 BBH (3,1) 1185389807.311 62.1 53.6 > 2⇥ 104 > 100 > 0.99
GW170823 BBH (3,1) 1187529256.500 46.0 90.7 > 2⇥ 104 > 100 > 0.99

a The times given are the ‘linear-free’ times of the best fit templates in our bank; with this time as the origin, the phase of the template
is orthogonal to shifts in time, given the fiducial PSD.

b The FARs given are computed within each bank; our BBH analysis has 5 chirp-mass banks. The inverse FAR is given in terms of “O2”
to reflect the volumetric weighting of events. Under the approximation of constant sensitivity of the detectors during the observing
run, the unit “O2” corresponds to ⇡ 118 days.

c See discussion in §III.

TABLE II: New events with astrophysical probability > 50% in all of the BBH banks. The rate distributions used to compute
pastro are shown in Fig. 3, the maximum-likelihood rates in banks BBH 3 and BBH 4 are Rmax = 8/O2 and 5/O2, respectively.

Name Bank Mdet(M�) �e↵ z GPS timea ⇢2H ⇢2L FAR�1(O2)b W (event)

R(event|N )
(O2) pastro

GW170121 BBH (3,0) 29+4

�3
�0.3+0.3

�0.3 0.24+0.14
�0.13 1169069154.565 29.4 89.7 2.8⇥ 103 > 30 > 0.99

GW170304 BBH (4,0) 47+8

�7
0.2+0.3

�0.3 0.5+0.2
�0.2 1172680691.356 24.9 55.9 377 13.6 0.985

GW170727 BBH (4,0) 42+6

�6
�0.1+0.3

�0.3 0.43+0.18
�0.17 1185152688.019 25.4 53.5 370 11.8 0.98

GW170425 BBH (4,0) 47+26

�10
0.0+0.4

�0.5 0.5+0.4
�0.3 1177134832.178 28.6 37.5 15 0.65 0.77

GW170202 BBH (3,0) 21.6+4.2
�1.4 �0.2+0.4

�0.3 0.27+0.13
�0.12 1170079035.715 26.5 41.7 6.3 0.25 0.68

GW170403 BBH (4,1) 48+9

�7
�0.7+0.5

�0.3 0.45+0.22
�0.19 1175295989.221 31.3 31.0 4.7 0.23 0.56

a The times given are the ‘linear-free’ times of the best fit templates in our bank; with this time as the origin, the phase of the template
is orthogonal to shifts in time, given the fiducial PSD.

b The FARs given are computed within each bank; our BBH analysis has 5 chirp-mass banks. The inverse FAR is given in terms of “O2”
to reflect the volumetric weighting of events. Under the approximation of constant sensitivity of the detectors during the observing
run, the unit “O2” corresponds to ⇡ 118 days.

distribution has a tail extending to large values for the
masses. Its inferred redshift is large, z ⇠ 0.5.

d. GW170202: This candidate has pastro ⇡ 0.7 and
FAR�1 ⇡ 6O2. The masses and the spins are similar to
those of the heavy LVC BBHs. It is found in the bank
with the largest number of secure detections (BBH 3). It
has a bimodal posterior, in which the solution with lower
masses has a more negative spin, and is located closer.
The inferred redshift is z ⇠ 0.27.

e. GW170403: This candidate has FAR�1 ⇡ 5O2
and pastro ⇡ 0.55; this is close to the threshold pastro =
0.5 to make it into a list of detections (as defined in
Ref. [2]). The inferred redshift is z ⇠ 0.45. Interest-
ingly, the posterior for �e↵ is inconsistent with positive
values.

In addition to these events, we list in Table III the
sub-threshold triggers of our search, defined as those
with 0.1 < pastro < 0.5. The sum of the pastro of the
events in this list exceeds unity; in fact, a candidate
in bank BBH (4,1) has pastro ⇡ 0.45, which is close to
the detection threshold (though it has a relatively high
FAR�1 ⇡ 0.8O2). It is possible that an improved analy-
sis, or rate-estimate, can push some of these candidates
above the detection threshold.

V. SENSITIVITY OF OUR PIPELINE

In the previous section, we described several additional
events we detected that are not in the catalog of events
published by the LVC. All of these events pass the thresh-
olds for detection in Ref. [2] (their FARs are above the
threshold of 1 in 30 days, even accounting for the five
banks in our BBH search, or eleven banks in a hypo-
thetical binary neutron star and neutron-star–black-hole
search [18]). This suggests that our search has a substan-
tially larger sensitive volume.

Figure 5a shows the background triggers we collected
using 20 000 time slides in those BBH sub-banks in which
all the events considered in this work, both from the LVC
and our analysis, reside. This figure does not include
the BBHs from the O1 run (GW150914, GW151012,
GW151216, GW151226), nor GW170608, which was not
included in the bulk data release we analyzed. This figure
is not intended as a demonstration of how we compute
the FAR or pastro for particular events: firstly, it shows
⇢2
H
and ⇢2

L
, i.e., the incoherent H1 and L1 SNR2, while we

compute the FAR using a coherent score that takes into
account the time-delays and the relative phases of the

LVC events: our analysis

LVC analysis
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FIG. 2. Cumulative histograms of search results for the matched-filter searches, plotted versus inverse false-alarm rate. The dashed lines show
the expected background, given the analysis time. Shaded regions denote sigma uncertainty bounds for Poisson uncertainty. The blue dots are
the named gravitational-wave events found by each respective search. Any events with a measured or bounded inverse false alarm rate greater
than 3000 y are shown with an arrow pointing right. Left: PyCBC results. Right: GstLAL results.

FAR [y�1] Network SNR
Event UTC Time PyCBC GstLAL cWB PyCBC GstLAL cWB

GW150914 09:50:45.4 < 1.53 ⇥ 10�5 < 1.00 ⇥ 10�7 < 1.63 ⇥ 10�4 23.6 24.4 25.2
GW151012 09:54:43.4 0.17 7.92 ⇥ 10�3 – 9.5 10.0 –
GW151226 03:38:53.6 < 1.69 ⇥ 10�5 < 1.00 ⇥ 10�7 0.02 13.1 13.1 11.9
GW170104 10:11:58.6 < 1.37 ⇥ 10�5 < 1.00 ⇥ 10�7 2.91 ⇥ 10�4 13.0 13.0 13.0
GW170608 02:01:16.5 < 3.09 ⇥ 10�4 < 1.00 ⇥ 10�7 1.44 ⇥ 10�4 15.4 14.9 14.1
GW170729 18:56:29.3 1.36 0.18 0.02 9.8 10.8 10.2
GW170809 08:28:21.8 1.45 ⇥ 10�4 < 1.00 ⇥ 10�7 – 12.2 12.4 –
GW170814 10:30:43.5 < 1.25 ⇥ 10�5 < 1.00 ⇥ 10�7 < 2.08 ⇥ 10�4 16.3 15.9 17.2
GW170817 12:41:04.4 < 1.25 ⇥ 10�5 < 1.00 ⇥ 10�7 – 30.9 33.0 –
GW170818 02:25:09.1 – 4.20 ⇥ 10�5 – – 11.3 –
GW170823 13:13:58.5 < 3.29 ⇥ 10�5 < 1.00 ⇥ 10�7 2.14 ⇥ 10�3 11.1 11.5 10.8

TABLE I. Search results for the eleven GW events. We report a false-alarm rate for each search that found a given event; otherwise, we display
‘–’. The network SNR for the two matched filter searches is that of the template ranked highest by that search, which is not necessarily the
template with the highest SNR. Moreover, the network SNR is the quadrature sum of the detectors coincident in the highest-ranked trigger; in
some cases, only two detectors contribute, even if all three were operating nominally at the time of that event.

and GW170823. All four are binary black hole events.
As noted in Sec. III, data from O1 was reanalysed because

of improvements in the search pipelines and expansion of the
parameter space searched. For the O2 events already pub-
lished, our reanalysis is motivated by updates to the data it-
self. The noise subtraction procedure [52] that was available
for parameter estimation of three of the published O2 events
was not initially applied to the entire O2 data set, and there-
fore could not be used by searches. Following the procedures
of [51], this noise subtraction was applied to all of O2 and is
reflected in Table I for the four previously published O2 GW
events, as well as the four events presented here for the first
time.

For both PyCBC and cWB, the time-shift method of back-
ground estimation may result in only an upper bound on the

false alarm rate, if an event has a larger value of the ranking
statistic than any trigger in the time-shifted background; this
is indicated in Table I. For GW150914 and GW151226, the
bound that PyCBC placed on the FAR in these updated results
is in fact higher than that previously published [1, 2, 4], be-
cause as noted in Sec. III A this search elected to use shorter
periods of time-shifting to better capture the variation in the
detectors’ sensitivities. For GstLAL, the FAR is reported in
Table I as an upper bound of 1.00 ⇥ 10�7 whenever a smaller
number was obtained. This reflects a more conservative noise
hypothesis within the GstLAL analysis, and follows the pro-
cedures and motivations detailed in section IV of [3].

Five of the GW events reported here occurred during Au-
gust 2017, which comprises approximately 10% of the total
observation time. There are ten non-overlapping periods of

(O2 = 118 days)

Abbott et. al., (2018)

Venumadhav et. al., (2019)
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TABLE I: Events already reported by the LIGO–Virgo Collaboration [2] as detected with our pipeline. The rate distributions
used to compute pastro are shown in Fig. 3. The maximum likelihood rates are Rmax = 8/O2 and 5/O2 in banks BBH 3 and
BBH 4, respectively.

Name Bank GPS timea ⇢2H ⇢2L FAR�1(O2)b W (event)

R(event|N )
(O2) pastro

GW170104 BBH (3,0) 1167559936.582 85.1 104.3 > 2⇥ 104 > 100 > 0.99
GW170809 BBH (3,0) 1186302519.740 40.5 113 > 2⇥ 104 > 100 > 0.99
GW170814 BBH (3,0) 1186741861.519 90.2 170 > 2⇥ 104 > 100 > 0.99
GW170818 BBH (3,0) 1187058327.075 19.4 95.1 1.7c — —c

GW170729 BBH (3,1) 1185389807.311 62.1 53.6 > 2⇥ 104 > 100 > 0.99
GW170823 BBH (3,1) 1187529256.500 46.0 90.7 > 2⇥ 104 > 100 > 0.99

a The times given are the ‘linear-free’ times of the best fit templates in our bank; with this time as the origin, the phase of the template
is orthogonal to shifts in time, given the fiducial PSD.

b The FARs given are computed within each bank; our BBH analysis has 5 chirp-mass banks. The inverse FAR is given in terms of “O2”
to reflect the volumetric weighting of events. Under the approximation of constant sensitivity of the detectors during the observing
run, the unit “O2” corresponds to ⇡ 118 days.

c See discussion in §III.

TABLE II: New events with astrophysical probability > 50% in all of the BBH banks. The rate distributions used to compute
pastro are shown in Fig. 3, the maximum-likelihood rates in banks BBH 3 and BBH 4 are Rmax = 8/O2 and 5/O2, respectively.

Name Bank Mdet(M�) �e↵ z GPS timea ⇢2H ⇢2L FAR�1(O2)b W (event)

R(event|N )
(O2) pastro

GW170121 BBH (3,0) 29+4

�3
�0.3+0.3

�0.3 0.24+0.14
�0.13 1169069154.565 29.4 89.7 2.8⇥ 103 > 30 > 0.99

GW170304 BBH (4,0) 47+8

�7
0.2+0.3

�0.3 0.5+0.2
�0.2 1172680691.356 24.9 55.9 377 13.6 0.985

GW170727 BBH (4,0) 42+6

�6
�0.1+0.3

�0.3 0.43+0.18
�0.17 1185152688.019 25.4 53.5 370 11.8 0.98

GW170425 BBH (4,0) 47+26

�10
0.0+0.4

�0.5 0.5+0.4
�0.3 1177134832.178 28.6 37.5 15 0.65 0.77

GW170202 BBH (3,0) 21.6+4.2
�1.4 �0.2+0.4

�0.3 0.27+0.13
�0.12 1170079035.715 26.5 41.7 6.3 0.25 0.68

GW170403 BBH (4,1) 48+9

�7
�0.7+0.5

�0.3 0.45+0.22
�0.19 1175295989.221 31.3 31.0 4.7 0.23 0.56

a The times given are the ‘linear-free’ times of the best fit templates in our bank; with this time as the origin, the phase of the template
is orthogonal to shifts in time, given the fiducial PSD.

b The FARs given are computed within each bank; our BBH analysis has 5 chirp-mass banks. The inverse FAR is given in terms of “O2”
to reflect the volumetric weighting of events. Under the approximation of constant sensitivity of the detectors during the observing
run, the unit “O2” corresponds to ⇡ 118 days.

distribution has a tail extending to large values for the
masses. Its inferred redshift is large, z ⇠ 0.5.

d. GW170202: This candidate has pastro ⇡ 0.7 and
FAR�1 ⇡ 6O2. The masses and the spins are similar to
those of the heavy LVC BBHs. It is found in the bank
with the largest number of secure detections (BBH 3). It
has a bimodal posterior, in which the solution with lower
masses has a more negative spin, and is located closer.
The inferred redshift is z ⇠ 0.27.

e. GW170403: This candidate has FAR�1 ⇡ 5O2
and pastro ⇡ 0.55; this is close to the threshold pastro =
0.5 to make it into a list of detections (as defined in
Ref. [2]). The inferred redshift is z ⇠ 0.45. Interest-
ingly, the posterior for �e↵ is inconsistent with positive
values.

In addition to these events, we list in Table III the
sub-threshold triggers of our search, defined as those
with 0.1 < pastro < 0.5. The sum of the pastro of the
events in this list exceeds unity; in fact, a candidate
in bank BBH (4,1) has pastro ⇡ 0.45, which is close to
the detection threshold (though it has a relatively high
FAR�1 ⇡ 0.8O2). It is possible that an improved analy-
sis, or rate-estimate, can push some of these candidates
above the detection threshold.

V. SENSITIVITY OF OUR PIPELINE

In the previous section, we described several additional
events we detected that are not in the catalog of events
published by the LVC. All of these events pass the thresh-
olds for detection in Ref. [2] (their FARs are above the
threshold of 1 in 30 days, even accounting for the five
banks in our BBH search, or eleven banks in a hypo-
thetical binary neutron star and neutron-star–black-hole
search [18]). This suggests that our search has a substan-
tially larger sensitive volume.

Figure 5a shows the background triggers we collected
using 20 000 time slides in those BBH sub-banks in which
all the events considered in this work, both from the LVC
and our analysis, reside. This figure does not include
the BBHs from the O1 run (GW150914, GW151012,
GW151216, GW151226), nor GW170608, which was not
included in the bulk data release we analyzed. This figure
is not intended as a demonstration of how we compute
the FAR or pastro for particular events: firstly, it shows
⇢2
H
and ⇢2

L
, i.e., the incoherent H1 and L1 SNR2, while we

compute the FAR using a coherent score that takes into
account the time-delays and the relative phases of the
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FIG. 2. Cumulative histograms of search results for the matched-filter searches, plotted versus inverse false-alarm rate. The dashed lines show
the expected background, given the analysis time. Shaded regions denote sigma uncertainty bounds for Poisson uncertainty. The blue dots are
the named gravitational-wave events found by each respective search. Any events with a measured or bounded inverse false alarm rate greater
than 3000 y are shown with an arrow pointing right. Left: PyCBC results. Right: GstLAL results.

FAR [y�1] Network SNR
Event UTC Time PyCBC GstLAL cWB PyCBC GstLAL cWB

GW150914 09:50:45.4 < 1.53 ⇥ 10�5 < 1.00 ⇥ 10�7 < 1.63 ⇥ 10�4 23.6 24.4 25.2
GW151012 09:54:43.4 0.17 7.92 ⇥ 10�3 – 9.5 10.0 –
GW151226 03:38:53.6 < 1.69 ⇥ 10�5 < 1.00 ⇥ 10�7 0.02 13.1 13.1 11.9
GW170104 10:11:58.6 < 1.37 ⇥ 10�5 < 1.00 ⇥ 10�7 2.91 ⇥ 10�4 13.0 13.0 13.0
GW170608 02:01:16.5 < 3.09 ⇥ 10�4 < 1.00 ⇥ 10�7 1.44 ⇥ 10�4 15.4 14.9 14.1
GW170729 18:56:29.3 1.36 0.18 0.02 9.8 10.8 10.2
GW170809 08:28:21.8 1.45 ⇥ 10�4 < 1.00 ⇥ 10�7 – 12.2 12.4 –
GW170814 10:30:43.5 < 1.25 ⇥ 10�5 < 1.00 ⇥ 10�7 < 2.08 ⇥ 10�4 16.3 15.9 17.2
GW170817 12:41:04.4 < 1.25 ⇥ 10�5 < 1.00 ⇥ 10�7 – 30.9 33.0 –
GW170818 02:25:09.1 – 4.20 ⇥ 10�5 – – 11.3 –
GW170823 13:13:58.5 < 3.29 ⇥ 10�5 < 1.00 ⇥ 10�7 2.14 ⇥ 10�3 11.1 11.5 10.8

TABLE I. Search results for the eleven GW events. We report a false-alarm rate for each search that found a given event; otherwise, we display
‘–’. The network SNR for the two matched filter searches is that of the template ranked highest by that search, which is not necessarily the
template with the highest SNR. Moreover, the network SNR is the quadrature sum of the detectors coincident in the highest-ranked trigger; in
some cases, only two detectors contribute, even if all three were operating nominally at the time of that event.

and GW170823. All four are binary black hole events.
As noted in Sec. III, data from O1 was reanalysed because

of improvements in the search pipelines and expansion of the
parameter space searched. For the O2 events already pub-
lished, our reanalysis is motivated by updates to the data it-
self. The noise subtraction procedure [52] that was available
for parameter estimation of three of the published O2 events
was not initially applied to the entire O2 data set, and there-
fore could not be used by searches. Following the procedures
of [51], this noise subtraction was applied to all of O2 and is
reflected in Table I for the four previously published O2 GW
events, as well as the four events presented here for the first
time.

For both PyCBC and cWB, the time-shift method of back-
ground estimation may result in only an upper bound on the

false alarm rate, if an event has a larger value of the ranking
statistic than any trigger in the time-shifted background; this
is indicated in Table I. For GW150914 and GW151226, the
bound that PyCBC placed on the FAR in these updated results
is in fact higher than that previously published [1, 2, 4], be-
cause as noted in Sec. III A this search elected to use shorter
periods of time-shifting to better capture the variation in the
detectors’ sensitivities. For GstLAL, the FAR is reported in
Table I as an upper bound of 1.00 ⇥ 10�7 whenever a smaller
number was obtained. This reflects a more conservative noise
hypothesis within the GstLAL analysis, and follows the pro-
cedures and motivations detailed in section IV of [3].

Five of the GW events reported here occurred during Au-
gust 2017, which comprises approximately 10% of the total
observation time. There are ten non-overlapping periods of

(O2 = 118 days)

Abbott et. al., (2018)

Venumadhav et. al., (2019)
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TABLE I: Events already reported by the LIGO–Virgo Collaboration [2] as detected with our pipeline. The rate distributions
used to compute pastro are shown in Fig. 3. The maximum likelihood rates are Rmax = 8/O2 and 5/O2 in banks BBH 3 and
BBH 4, respectively.

Name Bank GPS timea ⇢2H ⇢2L FAR�1(O2)b W (event)

R(event|N )
(O2) pastro

GW170104 BBH (3,0) 1167559936.582 85.1 104.3 > 2⇥ 104 > 100 > 0.99
GW170809 BBH (3,0) 1186302519.740 40.5 113 > 2⇥ 104 > 100 > 0.99
GW170814 BBH (3,0) 1186741861.519 90.2 170 > 2⇥ 104 > 100 > 0.99
GW170818 BBH (3,0) 1187058327.075 19.4 95.1 1.7c — —c

GW170729 BBH (3,1) 1185389807.311 62.1 53.6 > 2⇥ 104 > 100 > 0.99
GW170823 BBH (3,1) 1187529256.500 46.0 90.7 > 2⇥ 104 > 100 > 0.99

a The times given are the ‘linear-free’ times of the best fit templates in our bank; with this time as the origin, the phase of the template
is orthogonal to shifts in time, given the fiducial PSD.

b The FARs given are computed within each bank; our BBH analysis has 5 chirp-mass banks. The inverse FAR is given in terms of “O2”
to reflect the volumetric weighting of events. Under the approximation of constant sensitivity of the detectors during the observing
run, the unit “O2” corresponds to ⇡ 118 days.

c See discussion in §III.

TABLE II: New events with astrophysical probability > 50% in all of the BBH banks. The rate distributions used to compute
pastro are shown in Fig. 3, the maximum-likelihood rates in banks BBH 3 and BBH 4 are Rmax = 8/O2 and 5/O2, respectively.

Name Bank Mdet(M�) �e↵ z GPS timea ⇢2H ⇢2L FAR�1(O2)b W (event)

R(event|N )
(O2) pastro

GW170121 BBH (3,0) 29+4

�3
�0.3+0.3

�0.3 0.24+0.14
�0.13 1169069154.565 29.4 89.7 2.8⇥ 103 > 30 > 0.99

GW170304 BBH (4,0) 47+8

�7
0.2+0.3

�0.3 0.5+0.2
�0.2 1172680691.356 24.9 55.9 377 13.6 0.985

GW170727 BBH (4,0) 42+6

�6
�0.1+0.3

�0.3 0.43+0.18
�0.17 1185152688.019 25.4 53.5 370 11.8 0.98

GW170425 BBH (4,0) 47+26

�10
0.0+0.4

�0.5 0.5+0.4
�0.3 1177134832.178 28.6 37.5 15 0.65 0.77

GW170202 BBH (3,0) 21.6+4.2
�1.4 �0.2+0.4

�0.3 0.27+0.13
�0.12 1170079035.715 26.5 41.7 6.3 0.25 0.68

GW170403 BBH (4,1) 48+9

�7
�0.7+0.5

�0.3 0.45+0.22
�0.19 1175295989.221 31.3 31.0 4.7 0.23 0.56

a The times given are the ‘linear-free’ times of the best fit templates in our bank; with this time as the origin, the phase of the template
is orthogonal to shifts in time, given the fiducial PSD.

b The FARs given are computed within each bank; our BBH analysis has 5 chirp-mass banks. The inverse FAR is given in terms of “O2”
to reflect the volumetric weighting of events. Under the approximation of constant sensitivity of the detectors during the observing
run, the unit “O2” corresponds to ⇡ 118 days.

distribution has a tail extending to large values for the
masses. Its inferred redshift is large, z ⇠ 0.5.

d. GW170202: This candidate has pastro ⇡ 0.7 and
FAR�1 ⇡ 6O2. The masses and the spins are similar to
those of the heavy LVC BBHs. It is found in the bank
with the largest number of secure detections (BBH 3). It
has a bimodal posterior, in which the solution with lower
masses has a more negative spin, and is located closer.
The inferred redshift is z ⇠ 0.27.

e. GW170403: This candidate has FAR�1 ⇡ 5O2
and pastro ⇡ 0.55; this is close to the threshold pastro =
0.5 to make it into a list of detections (as defined in
Ref. [2]). The inferred redshift is z ⇠ 0.45. Interest-
ingly, the posterior for �e↵ is inconsistent with positive
values.

In addition to these events, we list in Table III the
sub-threshold triggers of our search, defined as those
with 0.1 < pastro < 0.5. The sum of the pastro of the
events in this list exceeds unity; in fact, a candidate
in bank BBH (4,1) has pastro ⇡ 0.45, which is close to
the detection threshold (though it has a relatively high
FAR�1 ⇡ 0.8O2). It is possible that an improved analy-
sis, or rate-estimate, can push some of these candidates
above the detection threshold.

V. SENSITIVITY OF OUR PIPELINE

In the previous section, we described several additional
events we detected that are not in the catalog of events
published by the LVC. All of these events pass the thresh-
olds for detection in Ref. [2] (their FARs are above the
threshold of 1 in 30 days, even accounting for the five
banks in our BBH search, or eleven banks in a hypo-
thetical binary neutron star and neutron-star–black-hole
search [18]). This suggests that our search has a substan-
tially larger sensitive volume.

Figure 5a shows the background triggers we collected
using 20 000 time slides in those BBH sub-banks in which
all the events considered in this work, both from the LVC
and our analysis, reside. This figure does not include
the BBHs from the O1 run (GW150914, GW151012,
GW151216, GW151226), nor GW170608, which was not
included in the bulk data release we analyzed. This figure
is not intended as a demonstration of how we compute
the FAR or pastro for particular events: firstly, it shows
⇢2
H
and ⇢2

L
, i.e., the incoherent H1 and L1 SNR2, while we

compute the FAR using a coherent score that takes into
account the time-delays and the relative phases of the

(O2 = 118 days)
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FIG. 1. Left: BNS range for each instrument during O2. The break at week 3 was for the 2016 end-of-year holidays. There was an additional
break in the run at week 23 to make improvements to instrument sensitivity. The Montana earthquake’s impact on the LHO instrument
sensitivity can be seen at week 31. Virgo joined O2 in week 34. Right: Amplitude spectral density of the total strain noise of the Virgo, LHO
and LLO detectors. The curves are representative of the best performance of each detector during O2.

taking into account better calibration models obtained from
post-run measurements and subtraction of frequency noise.
The reprocessing included a time dependence for the noise
subtraction and for the determination of the finesse of the cav-
ities. The final uncertainties are 5.1% in amplitude and 2.3
degrees in phase [65]. The Virgo calibration has an additional
uncertainty of 20 �s originating from the time stamping of the
data.

During O2 the individual LIGO detectors had duty factors
of ⇠60% with a LIGO network duty factor of ⇠45%. Times
with significant instrumental disturbances are flagged and re-
moved, resulting in 118 days of data suitable for coincident
analysis [66]. Of this data 15 days were collected in coin-
cident operation with Virgo, which after joining O2 operated
with a duty factor of ⇠80%. Times with excess instrumen-
tal noise, which is not expected to render the data unusable
are also flagged [66]. Individual searches may then decide to
include or not include such times in their final results.

III. SEARCHES

The search results presented in the next section were ob-
tained by two di↵erent, largely independent matched-filter
searches, PyCBC and GstLAL, and the burst search cWB.
Because of the sensitivity imbalance between the Advanced
Virgo detector as compared to the two Advanced LIGO de-
tectors, neither PyCBC nor cWB elected to analyse data from
Virgo. GstLAL, however, included Virgo into its search dur-
ing the month of August. The two matched-filter searches
assume sources that can be modeled by general relativity, and
in particular, quasi-circular binaries whose spin angular mo-
menta are either aligned or anti-aligned with their orbital an-
gular momenta. They are still capable, however, of detect-
ing many systems that exhibit precession [67]. In contrast,
the cWB search relies on no specific physical models of the
source waveform, though in results presented here it did im-
pose a restriction that signals were “chirping” in the time-

frequency plane. We therefore refer to it as weakly modeled.
In the remainder of this section, we present a brief descrip-
tion of each of these searches, summarizing both the parame-
ter space searched, and improvements made since their use in
O1 [4].

A. The PyCBC Search

A pipeline to search for GWs from CBCs was constructed
using the PyCBC software package [7, 8]. This analysis
performs direct matched filtering of the data against a bank
of template waveforms to calculate the signal-to-noise ratio
(SNR) for each combination of detector, template waveform
and coalescence time [68]. Whenever the local maximum of
this SNR time-series was larger than a threshold of 5.5, the
pipeline produced a single-detector trigger associated with the
detector, the parameters of the template and the coalescence
time. In order to suppress triggers caused by high-amplitude
noise transients (“glitches”), two signal-based vetoes may be
calculated [69, 70]. Using the SNR, the results of these two
vetoes, and a fitting and smoothing procedure designed to en-
sure that the rate of single-detector triggers is approximately
constant across the search parameter space, a single-detector
rank % was calculated for each single-detector trigger [71].

After generating triggers in the Hanford and Livingston de-
tectors as described above, PyCBC found two-detector coin-
cidences by requiring a trigger from each detector associated
with the same template and with coalescence times within
15 ms of each other. This time window accounts for the max-
imum light-travel time between LHO and LLO as well as the
uncertainty in the inferred coalescence time at each detec-
tor. Coincident triggers were assigned a ranking statistic that
approximates the relative likelihood of obtaining the event’s
measured trigger parameters in the presence of a GW signal
vs. in the presence of noise alone [71]. The detailed construc-
tion of this network statistic, as well as the single-detector
rank %, are improved from the corresponding statistics used in
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FIG. 1. Left: BNS range for each instrument during O2. The break at week 3 was for the 2016 end-of-year holidays. There was an additional
break in the run at week 23 to make improvements to instrument sensitivity. The Montana earthquake’s impact on the LHO instrument
sensitivity can be seen at week 31. Virgo joined O2 in week 34. Right: Amplitude spectral density of the total strain noise of the Virgo, LHO
and LLO detectors. The curves are representative of the best performance of each detector during O2.

taking into account better calibration models obtained from
post-run measurements and subtraction of frequency noise.
The reprocessing included a time dependence for the noise
subtraction and for the determination of the finesse of the cav-
ities. The final uncertainties are 5.1% in amplitude and 2.3
degrees in phase [65]. The Virgo calibration has an additional
uncertainty of 20 �s originating from the time stamping of the
data.

During O2 the individual LIGO detectors had duty factors
of ⇠60% with a LIGO network duty factor of ⇠45%. Times
with significant instrumental disturbances are flagged and re-
moved, resulting in 118 days of data suitable for coincident
analysis [66]. Of this data 15 days were collected in coin-
cident operation with Virgo, which after joining O2 operated
with a duty factor of ⇠80%. Times with excess instrumen-
tal noise, which is not expected to render the data unusable
are also flagged [66]. Individual searches may then decide to
include or not include such times in their final results.

III. SEARCHES

The search results presented in the next section were ob-
tained by two di↵erent, largely independent matched-filter
searches, PyCBC and GstLAL, and the burst search cWB.
Because of the sensitivity imbalance between the Advanced
Virgo detector as compared to the two Advanced LIGO de-
tectors, neither PyCBC nor cWB elected to analyse data from
Virgo. GstLAL, however, included Virgo into its search dur-
ing the month of August. The two matched-filter searches
assume sources that can be modeled by general relativity, and
in particular, quasi-circular binaries whose spin angular mo-
menta are either aligned or anti-aligned with their orbital an-
gular momenta. They are still capable, however, of detect-
ing many systems that exhibit precession [67]. In contrast,
the cWB search relies on no specific physical models of the
source waveform, though in results presented here it did im-
pose a restriction that signals were “chirping” in the time-

frequency plane. We therefore refer to it as weakly modeled.
In the remainder of this section, we present a brief descrip-
tion of each of these searches, summarizing both the parame-
ter space searched, and improvements made since their use in
O1 [4].

A. The PyCBC Search

A pipeline to search for GWs from CBCs was constructed
using the PyCBC software package [7, 8]. This analysis
performs direct matched filtering of the data against a bank
of template waveforms to calculate the signal-to-noise ratio
(SNR) for each combination of detector, template waveform
and coalescence time [68]. Whenever the local maximum of
this SNR time-series was larger than a threshold of 5.5, the
pipeline produced a single-detector trigger associated with the
detector, the parameters of the template and the coalescence
time. In order to suppress triggers caused by high-amplitude
noise transients (“glitches”), two signal-based vetoes may be
calculated [69, 70]. Using the SNR, the results of these two
vetoes, and a fitting and smoothing procedure designed to en-
sure that the rate of single-detector triggers is approximately
constant across the search parameter space, a single-detector
rank % was calculated for each single-detector trigger [71].

After generating triggers in the Hanford and Livingston de-
tectors as described above, PyCBC found two-detector coin-
cidences by requiring a trigger from each detector associated
with the same template and with coalescence times within
15 ms of each other. This time window accounts for the max-
imum light-travel time between LHO and LLO as well as the
uncertainty in the inferred coalescence time at each detec-
tor. Coincident triggers were assigned a ranking statistic that
approximates the relative likelihood of obtaining the event’s
measured trigger parameters in the presence of a GW signal
vs. in the presence of noise alone [71]. The detailed construc-
tion of this network statistic, as well as the single-detector
rank %, are improved from the corresponding statistics used in

arxiv: 1811.12907



Solution: Follow up single detector triggers

1. Collect all triggers of interest (TOI), which are 
veto-passing L1 triggers with , and  
best-fit 


2. Make a list of glitches ( ) that are not  
declared GW events


3. Rank TOI by number of similar glitches  
(quantified by match between templates),  
and 


4. Look for evidence from H1 




5. Understand distributions of  in the null  
hypothesis ( ) using time slides


6. Understand distributions of  in the signal 
hypothesis ( ) using injections

ρ2
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ρ2
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Summary

• The availability of the LIGO data gives the community an opportunity to try new 
ideas and propose new methods. We are very grateful to the LVC


• We have developed a new pipeline and tried to incorporate several new elements: 
a new geometric template bank algorithm, PSD drift correction, aggressive data 
masking and hole filling, objective vetoing of triggers, coherent combination of 
detectors, etc


• We achieve a significant improvement in sensitive volume


• We have one new event in O1, and six new events in O2 above the thresholds for 
detection as defined by the LVC


• We see a rapidly spinning merger in O1, and a negatively spinning merger in O2 
(at the 96% confidence level)


• Working on the rates, and implications for the astrophysical population
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Binary evolution?

Chemically homogenous evolution?

Few-body interactions in the field?

Globular clusters?

Nuclear star clusters?

AGN disks?

Primordial black holes?
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Re-weighted SNR

hsjhiðtÞ≡ 4Re
Z

∞
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~sðfÞ ~h#ðfÞ
SnðfÞ

e2πiftdf; ðA2Þ

hc and hs are the normalized orthogonal sine and cosine
parts of the template, and ~aðfÞ is used to denote the Fourier
transform of the time domain quantity aðtÞ. Here, SnðfÞ
denotes the one-sided average power spectral density of the
detector noise. The waveform components hc and hs are
normalized such that the expected value of hsjhs;ci2ðtÞ in
stationary, Gaussian noise is unity [95]. The analyses
identify times when the matched-filter SNR achieves a
local maximum and store each of these as a trigger. The
analyses search only stretches of data longer than a
minimum duration, to ensure that the detectors are operat-
ing stably. The choice is different in the two analyses and
reduces the available data of 48.6 days to 46.1 days for the
PyCBC analysis and 48.3 days for the GstLAL analysis.
To suppress large SNR values caused by non-Gaussian

detector noise, the analyses perform additional tests to
quantify the agreement between the data and the template.
These tests are different in the two analyses and are
discussed in their respective subsections below. Both
analyses enforce coincidence between detectors by select-
ing trigger pairs that occur within a 15-ms window and
come from the same template. The 15-ms window is
determined by the 10-ms intersite propagation time plus
5 ms for uncertainty in accurately determining the mea-
sured arrival time of weak signals. A detection statistic for
each coincident event is derived as a function of the SNR
observed in each detector, the value of the signal consis-
tency tests, and details of the template.
The significance of a candidate event is determined by

comparing it to the search background. From this, we are
able to determine the rate at which detector noise produces
events with a detection-statistic value equal to or higher
than the candidate event (the FAR). Estimating this back-
ground is challenging for two reasons: First, the detector
noise is nonstationary and non-Gaussian; therefore, its
properties must be empirically determined. Second, it is
not possible to shield the detector from gravitational waves
to directly measure a signal-free background. The specific
procedure used to estimate the background is different for
the two analyses, as described in detail below.
The results of the independent analyses are two separate

lists of candidate events, with each candidate event
assigned a p-value and FAR. Candidate events with low
FARs are identified as possible gravitational-wave signals
for further investigation.

1. PyCBC analysis

The PyCBC analysis is described in detail in Refs. [2–4],
and the configuration used to analyze the first 16 days of O1
data, containing GW150914, is described in Ref. [44].
Following the observation of GW150914, some improve-
mentsweremade to the analysis, as we better understood the

Advanced LIGO data. All changes were tested and tuned
only on backgrounddata, prior to being incorporated into the
analysis. These changes do not affect the significance bound
of GW150914. Consequently, we chose to present the full
results, on the final calibrated data, using the improved
analysis. Here, we provide a brief overview of the analysis,
including details of changes made following the discovery
of GW150914.
In the PyCBC analysis, a trigger is stored when the

maximum of the SNR time series is above the threshold of
5.5 (chosen as a compromise between a manageable trigger
rate and assurance that no real event will be missed), with a
maximum of one trigger stored in a 1-s window (reduced
from 4 s in the previous analysis). A χ2 statistic is computed
to distinguish between astrophysical signals and noise
transients. This result tests whether the signal power in a
number of nonoverlapping frequency bands is consistent
with that expected from the waveform template [14]. The χ2

test is written explicitly as

χ2r ¼
p

2p−2

Xp

i¼1

!
ρi −

ρ
p

"
2

; ðA3Þ

where p denotes the number of frequency bands—
constructed such that the expected signal power in each
band is equal—and ρi is the matched-filter SNR in the ith
frequency band. For data containing only Gaussian noise,
or Gaussian noise and a signal exactly matching the
template waveform, the expected value of this statistic will
be 1. For data containing non-Gaussian artefacts, or a signal
not matching well with the template waveform, this value
will be elevated. Each trigger is then ranked according to a
combination of the SNR and the χ2 test, namely,

ρ̂ ¼
#
ρ½ð1þ ðχ2rÞ3Þ=2'−1=6 if χ2r > 1

ρ if χ2r ≤1.
ðA4Þ

The number of frequency bands p used to compute the χ2

signal-based veto [14] was optimized using data from the
first month of O1. An improved background rejection was
found when adopting the following, template-dependent
expression for the number of χ2 bands,

p ¼ 1.75 ×
!
fpeak
1 Hz

−60

"
1=2

; ðA5Þ

where fpeak is the frequency corresponding to the maxi-
mum amplitude of the template waveform using the models
described in Ref. [8], and p is rounded to the nearest
integer. This choice was adopted for the full O1 analysis
presented here, where all waveforms have peak frequencies
greater than 60 Hz.
Loud and short instrumental transients are identified and

excised from the data, as part of the data conditioning prior
to SNR computation. In this analysis, we compute a
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hc and hs are the normalized orthogonal sine and cosine
parts of the template, and ~aðfÞ is used to denote the Fourier
transform of the time domain quantity aðtÞ. Here, SnðfÞ
denotes the one-sided average power spectral density of the
detector noise. The waveform components hc and hs are
normalized such that the expected value of hsjhs;ci2ðtÞ in
stationary, Gaussian noise is unity [95]. The analyses
identify times when the matched-filter SNR achieves a
local maximum and store each of these as a trigger. The
analyses search only stretches of data longer than a
minimum duration, to ensure that the detectors are operat-
ing stably. The choice is different in the two analyses and
reduces the available data of 48.6 days to 46.1 days for the
PyCBC analysis and 48.3 days for the GstLAL analysis.
To suppress large SNR values caused by non-Gaussian

detector noise, the analyses perform additional tests to
quantify the agreement between the data and the template.
These tests are different in the two analyses and are
discussed in their respective subsections below. Both
analyses enforce coincidence between detectors by select-
ing trigger pairs that occur within a 15-ms window and
come from the same template. The 15-ms window is
determined by the 10-ms intersite propagation time plus
5 ms for uncertainty in accurately determining the mea-
sured arrival time of weak signals. A detection statistic for
each coincident event is derived as a function of the SNR
observed in each detector, the value of the signal consis-
tency tests, and details of the template.
The significance of a candidate event is determined by

comparing it to the search background. From this, we are
able to determine the rate at which detector noise produces
events with a detection-statistic value equal to or higher
than the candidate event (the FAR). Estimating this back-
ground is challenging for two reasons: First, the detector
noise is nonstationary and non-Gaussian; therefore, its
properties must be empirically determined. Second, it is
not possible to shield the detector from gravitational waves
to directly measure a signal-free background. The specific
procedure used to estimate the background is different for
the two analyses, as described in detail below.
The results of the independent analyses are two separate

lists of candidate events, with each candidate event
assigned a p-value and FAR. Candidate events with low
FARs are identified as possible gravitational-wave signals
for further investigation.

1. PyCBC analysis

The PyCBC analysis is described in detail in Refs. [2–4],
and the configuration used to analyze the first 16 days of O1
data, containing GW150914, is described in Ref. [44].
Following the observation of GW150914, some improve-
mentsweremade to the analysis, as we better understood the

Advanced LIGO data. All changes were tested and tuned
only on backgrounddata, prior to being incorporated into the
analysis. These changes do not affect the significance bound
of GW150914. Consequently, we chose to present the full
results, on the final calibrated data, using the improved
analysis. Here, we provide a brief overview of the analysis,
including details of changes made following the discovery
of GW150914.
In the PyCBC analysis, a trigger is stored when the

maximum of the SNR time series is above the threshold of
5.5 (chosen as a compromise between a manageable trigger
rate and assurance that no real event will be missed), with a
maximum of one trigger stored in a 1-s window (reduced
from 4 s in the previous analysis). A χ2 statistic is computed
to distinguish between astrophysical signals and noise
transients. This result tests whether the signal power in a
number of nonoverlapping frequency bands is consistent
with that expected from the waveform template [14]. The χ2

test is written explicitly as
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where p denotes the number of frequency bands—
constructed such that the expected signal power in each
band is equal—and ρi is the matched-filter SNR in the ith
frequency band. For data containing only Gaussian noise,
or Gaussian noise and a signal exactly matching the
template waveform, the expected value of this statistic will
be 1. For data containing non-Gaussian artefacts, or a signal
not matching well with the template waveform, this value
will be elevated. Each trigger is then ranked according to a
combination of the SNR and the χ2 test, namely,

ρ̂ ¼
#
ρ½ð1þ ðχ2rÞ3Þ=2'−1=6 if χ2r > 1

ρ if χ2r ≤1.
ðA4Þ

The number of frequency bands p used to compute the χ2

signal-based veto [14] was optimized using data from the
first month of O1. An improved background rejection was
found when adopting the following, template-dependent
expression for the number of χ2 bands,

p ¼ 1.75 ×
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where fpeak is the frequency corresponding to the maxi-
mum amplitude of the template waveform using the models
described in Ref. [8], and p is rounded to the nearest
integer. This choice was adopted for the full O1 analysis
presented here, where all waveforms have peak frequencies
greater than 60 Hz.
Loud and short instrumental transients are identified and

excised from the data, as part of the data conditioning prior
to SNR computation. In this analysis, we compute a
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parts of the template, and ~aðfÞ is used to denote the Fourier
transform of the time domain quantity aðtÞ. Here, SnðfÞ
denotes the one-sided average power spectral density of the
detector noise. The waveform components hc and hs are
normalized such that the expected value of hsjhs;ci2ðtÞ in
stationary, Gaussian noise is unity [95]. The analyses
identify times when the matched-filter SNR achieves a
local maximum and store each of these as a trigger. The
analyses search only stretches of data longer than a
minimum duration, to ensure that the detectors are operat-
ing stably. The choice is different in the two analyses and
reduces the available data of 48.6 days to 46.1 days for the
PyCBC analysis and 48.3 days for the GstLAL analysis.
To suppress large SNR values caused by non-Gaussian

detector noise, the analyses perform additional tests to
quantify the agreement between the data and the template.
These tests are different in the two analyses and are
discussed in their respective subsections below. Both
analyses enforce coincidence between detectors by select-
ing trigger pairs that occur within a 15-ms window and
come from the same template. The 15-ms window is
determined by the 10-ms intersite propagation time plus
5 ms for uncertainty in accurately determining the mea-
sured arrival time of weak signals. A detection statistic for
each coincident event is derived as a function of the SNR
observed in each detector, the value of the signal consis-
tency tests, and details of the template.
The significance of a candidate event is determined by

comparing it to the search background. From this, we are
able to determine the rate at which detector noise produces
events with a detection-statistic value equal to or higher
than the candidate event (the FAR). Estimating this back-
ground is challenging for two reasons: First, the detector
noise is nonstationary and non-Gaussian; therefore, its
properties must be empirically determined. Second, it is
not possible to shield the detector from gravitational waves
to directly measure a signal-free background. The specific
procedure used to estimate the background is different for
the two analyses, as described in detail below.
The results of the independent analyses are two separate

lists of candidate events, with each candidate event
assigned a p-value and FAR. Candidate events with low
FARs are identified as possible gravitational-wave signals
for further investigation.

1. PyCBC analysis

The PyCBC analysis is described in detail in Refs. [2–4],
and the configuration used to analyze the first 16 days of O1
data, containing GW150914, is described in Ref. [44].
Following the observation of GW150914, some improve-
mentsweremade to the analysis, as we better understood the

Advanced LIGO data. All changes were tested and tuned
only on backgrounddata, prior to being incorporated into the
analysis. These changes do not affect the significance bound
of GW150914. Consequently, we chose to present the full
results, on the final calibrated data, using the improved
analysis. Here, we provide a brief overview of the analysis,
including details of changes made following the discovery
of GW150914.
In the PyCBC analysis, a trigger is stored when the

maximum of the SNR time series is above the threshold of
5.5 (chosen as a compromise between a manageable trigger
rate and assurance that no real event will be missed), with a
maximum of one trigger stored in a 1-s window (reduced
from 4 s in the previous analysis). A χ2 statistic is computed
to distinguish between astrophysical signals and noise
transients. This result tests whether the signal power in a
number of nonoverlapping frequency bands is consistent
with that expected from the waveform template [14]. The χ2

test is written explicitly as

χ2r ¼
p

2p−2

Xp

i¼1

!
ρi −

ρ
p

"
2

; ðA3Þ

where p denotes the number of frequency bands—
constructed such that the expected signal power in each
band is equal—and ρi is the matched-filter SNR in the ith
frequency band. For data containing only Gaussian noise,
or Gaussian noise and a signal exactly matching the
template waveform, the expected value of this statistic will
be 1. For data containing non-Gaussian artefacts, or a signal
not matching well with the template waveform, this value
will be elevated. Each trigger is then ranked according to a
combination of the SNR and the χ2 test, namely,

ρ̂ ¼
#
ρ½ð1þ ðχ2rÞ3Þ=2'−1=6 if χ2r > 1

ρ if χ2r ≤1.
ðA4Þ

The number of frequency bands p used to compute the χ2

signal-based veto [14] was optimized using data from the
first month of O1. An improved background rejection was
found when adopting the following, template-dependent
expression for the number of χ2 bands,

p ¼ 1.75 ×
!
fpeak
1 Hz

−60

"
1=2

; ðA5Þ

where fpeak is the frequency corresponding to the maxi-
mum amplitude of the template waveform using the models
described in Ref. [8], and p is rounded to the nearest
integer. This choice was adopted for the full O1 analysis
presented here, where all waveforms have peak frequencies
greater than 60 Hz.
Loud and short instrumental transients are identified and

excised from the data, as part of the data conditioning prior
to SNR computation. In this analysis, we compute a
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hc and hs are the normalized orthogonal sine and cosine
parts of the template, and ~aðfÞ is used to denote the Fourier
transform of the time domain quantity aðtÞ. Here, SnðfÞ
denotes the one-sided average power spectral density of the
detector noise. The waveform components hc and hs are
normalized such that the expected value of hsjhs;ci2ðtÞ in
stationary, Gaussian noise is unity [95]. The analyses
identify times when the matched-filter SNR achieves a
local maximum and store each of these as a trigger. The
analyses search only stretches of data longer than a
minimum duration, to ensure that the detectors are operat-
ing stably. The choice is different in the two analyses and
reduces the available data of 48.6 days to 46.1 days for the
PyCBC analysis and 48.3 days for the GstLAL analysis.
To suppress large SNR values caused by non-Gaussian

detector noise, the analyses perform additional tests to
quantify the agreement between the data and the template.
These tests are different in the two analyses and are
discussed in their respective subsections below. Both
analyses enforce coincidence between detectors by select-
ing trigger pairs that occur within a 15-ms window and
come from the same template. The 15-ms window is
determined by the 10-ms intersite propagation time plus
5 ms for uncertainty in accurately determining the mea-
sured arrival time of weak signals. A detection statistic for
each coincident event is derived as a function of the SNR
observed in each detector, the value of the signal consis-
tency tests, and details of the template.
The significance of a candidate event is determined by

comparing it to the search background. From this, we are
able to determine the rate at which detector noise produces
events with a detection-statistic value equal to or higher
than the candidate event (the FAR). Estimating this back-
ground is challenging for two reasons: First, the detector
noise is nonstationary and non-Gaussian; therefore, its
properties must be empirically determined. Second, it is
not possible to shield the detector from gravitational waves
to directly measure a signal-free background. The specific
procedure used to estimate the background is different for
the two analyses, as described in detail below.
The results of the independent analyses are two separate

lists of candidate events, with each candidate event
assigned a p-value and FAR. Candidate events with low
FARs are identified as possible gravitational-wave signals
for further investigation.

1. PyCBC analysis

The PyCBC analysis is described in detail in Refs. [2–4],
and the configuration used to analyze the first 16 days of O1
data, containing GW150914, is described in Ref. [44].
Following the observation of GW150914, some improve-
mentsweremade to the analysis, as we better understood the

Advanced LIGO data. All changes were tested and tuned
only on backgrounddata, prior to being incorporated into the
analysis. These changes do not affect the significance bound
of GW150914. Consequently, we chose to present the full
results, on the final calibrated data, using the improved
analysis. Here, we provide a brief overview of the analysis,
including details of changes made following the discovery
of GW150914.
In the PyCBC analysis, a trigger is stored when the

maximum of the SNR time series is above the threshold of
5.5 (chosen as a compromise between a manageable trigger
rate and assurance that no real event will be missed), with a
maximum of one trigger stored in a 1-s window (reduced
from 4 s in the previous analysis). A χ2 statistic is computed
to distinguish between astrophysical signals and noise
transients. This result tests whether the signal power in a
number of nonoverlapping frequency bands is consistent
with that expected from the waveform template [14]. The χ2

test is written explicitly as

χ2r ¼
p

2p−2

Xp

i¼1

!
ρi −

ρ
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"
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where p denotes the number of frequency bands—
constructed such that the expected signal power in each
band is equal—and ρi is the matched-filter SNR in the ith
frequency band. For data containing only Gaussian noise,
or Gaussian noise and a signal exactly matching the
template waveform, the expected value of this statistic will
be 1. For data containing non-Gaussian artefacts, or a signal
not matching well with the template waveform, this value
will be elevated. Each trigger is then ranked according to a
combination of the SNR and the χ2 test, namely,

ρ̂ ¼
#
ρ½ð1þ ðχ2rÞ3Þ=2'−1=6 if χ2r > 1

ρ if χ2r ≤1.
ðA4Þ

The number of frequency bands p used to compute the χ2

signal-based veto [14] was optimized using data from the
first month of O1. An improved background rejection was
found when adopting the following, template-dependent
expression for the number of χ2 bands,

p ¼ 1.75 ×
!
fpeak
1 Hz

−60

"
1=2

; ðA5Þ

where fpeak is the frequency corresponding to the maxi-
mum amplitude of the template waveform using the models
described in Ref. [8], and p is rounded to the nearest
integer. This choice was adopted for the full O1 analysis
presented here, where all waveforms have peak frequencies
greater than 60 Hz.
Loud and short instrumental transients are identified and

excised from the data, as part of the data conditioning prior
to SNR computation. In this analysis, we compute a
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Figure 1: Histograms of single detector PyCBC triggers from the Livingston (L1)
detector. These triggers were generated using data from September 12
to October 20, 2015. These histograms contain triggers from the entire
template bank, but exclude any triggers found in coincidence between the
two detectors. (1a) A histogram of single detector triggers in SNR. The tail
of this distribution extends beyond SNR = 100. (1b) A histogram of single
detector triggers in re-weighted SNR. The chi-squared test down-weights the
long tail of SNR triggers in the re-weighted SNR distribution. The triggers
found using only the Hanford detector have a similar distribution.
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Figure 1: Histograms of single detector PyCBC triggers from the Livingston (L1)
detector. These triggers were generated using data from September 12
to October 20, 2015. These histograms contain triggers from the entire
template bank, but exclude any triggers found in coincidence between the
two detectors. (1a) A histogram of single detector triggers in SNR. The tail
of this distribution extends beyond SNR = 100. (1b) A histogram of single
detector triggers in re-weighted SNR. The chi-squared test down-weights the
long tail of SNR triggers in the re-weighted SNR distribution. The triggers
found using only the Hanford detector have a similar distribution.
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hc and hs are the normalized orthogonal sine and cosine
parts of the template, and ~aðfÞ is used to denote the Fourier
transform of the time domain quantity aðtÞ. Here, SnðfÞ
denotes the one-sided average power spectral density of the
detector noise. The waveform components hc and hs are
normalized such that the expected value of hsjhs;ci2ðtÞ in
stationary, Gaussian noise is unity [95]. The analyses
identify times when the matched-filter SNR achieves a
local maximum and store each of these as a trigger. The
analyses search only stretches of data longer than a
minimum duration, to ensure that the detectors are operat-
ing stably. The choice is different in the two analyses and
reduces the available data of 48.6 days to 46.1 days for the
PyCBC analysis and 48.3 days for the GstLAL analysis.
To suppress large SNR values caused by non-Gaussian

detector noise, the analyses perform additional tests to
quantify the agreement between the data and the template.
These tests are different in the two analyses and are
discussed in their respective subsections below. Both
analyses enforce coincidence between detectors by select-
ing trigger pairs that occur within a 15-ms window and
come from the same template. The 15-ms window is
determined by the 10-ms intersite propagation time plus
5 ms for uncertainty in accurately determining the mea-
sured arrival time of weak signals. A detection statistic for
each coincident event is derived as a function of the SNR
observed in each detector, the value of the signal consis-
tency tests, and details of the template.
The significance of a candidate event is determined by

comparing it to the search background. From this, we are
able to determine the rate at which detector noise produces
events with a detection-statistic value equal to or higher
than the candidate event (the FAR). Estimating this back-
ground is challenging for two reasons: First, the detector
noise is nonstationary and non-Gaussian; therefore, its
properties must be empirically determined. Second, it is
not possible to shield the detector from gravitational waves
to directly measure a signal-free background. The specific
procedure used to estimate the background is different for
the two analyses, as described in detail below.
The results of the independent analyses are two separate

lists of candidate events, with each candidate event
assigned a p-value and FAR. Candidate events with low
FARs are identified as possible gravitational-wave signals
for further investigation.

1. PyCBC analysis

The PyCBC analysis is described in detail in Refs. [2–4],
and the configuration used to analyze the first 16 days of O1
data, containing GW150914, is described in Ref. [44].
Following the observation of GW150914, some improve-
mentsweremade to the analysis, as we better understood the

Advanced LIGO data. All changes were tested and tuned
only on backgrounddata, prior to being incorporated into the
analysis. These changes do not affect the significance bound
of GW150914. Consequently, we chose to present the full
results, on the final calibrated data, using the improved
analysis. Here, we provide a brief overview of the analysis,
including details of changes made following the discovery
of GW150914.
In the PyCBC analysis, a trigger is stored when the

maximum of the SNR time series is above the threshold of
5.5 (chosen as a compromise between a manageable trigger
rate and assurance that no real event will be missed), with a
maximum of one trigger stored in a 1-s window (reduced
from 4 s in the previous analysis). A χ2 statistic is computed
to distinguish between astrophysical signals and noise
transients. This result tests whether the signal power in a
number of nonoverlapping frequency bands is consistent
with that expected from the waveform template [14]. The χ2

test is written explicitly as

χ2r ¼
p
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Xp

i¼1

!
ρi −

ρ
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where p denotes the number of frequency bands—
constructed such that the expected signal power in each
band is equal—and ρi is the matched-filter SNR in the ith
frequency band. For data containing only Gaussian noise,
or Gaussian noise and a signal exactly matching the
template waveform, the expected value of this statistic will
be 1. For data containing non-Gaussian artefacts, or a signal
not matching well with the template waveform, this value
will be elevated. Each trigger is then ranked according to a
combination of the SNR and the χ2 test, namely,

ρ̂ ¼
#
ρ½ð1þ ðχ2rÞ3Þ=2'−1=6 if χ2r > 1

ρ if χ2r ≤1.
ðA4Þ

The number of frequency bands p used to compute the χ2

signal-based veto [14] was optimized using data from the
first month of O1. An improved background rejection was
found when adopting the following, template-dependent
expression for the number of χ2 bands,

p ¼ 1.75 ×
!
fpeak
1 Hz

−60

"
1=2

; ðA5Þ

where fpeak is the frequency corresponding to the maxi-
mum amplitude of the template waveform using the models
described in Ref. [8], and p is rounded to the nearest
integer. This choice was adopted for the full O1 analysis
presented here, where all waveforms have peak frequencies
greater than 60 Hz.
Loud and short instrumental transients are identified and

excised from the data, as part of the data conditioning prior
to SNR computation. In this analysis, we compute a
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hc and hs are the normalized orthogonal sine and cosine
parts of the template, and ~aðfÞ is used to denote the Fourier
transform of the time domain quantity aðtÞ. Here, SnðfÞ
denotes the one-sided average power spectral density of the
detector noise. The waveform components hc and hs are
normalized such that the expected value of hsjhs;ci2ðtÞ in
stationary, Gaussian noise is unity [95]. The analyses
identify times when the matched-filter SNR achieves a
local maximum and store each of these as a trigger. The
analyses search only stretches of data longer than a
minimum duration, to ensure that the detectors are operat-
ing stably. The choice is different in the two analyses and
reduces the available data of 48.6 days to 46.1 days for the
PyCBC analysis and 48.3 days for the GstLAL analysis.
To suppress large SNR values caused by non-Gaussian

detector noise, the analyses perform additional tests to
quantify the agreement between the data and the template.
These tests are different in the two analyses and are
discussed in their respective subsections below. Both
analyses enforce coincidence between detectors by select-
ing trigger pairs that occur within a 15-ms window and
come from the same template. The 15-ms window is
determined by the 10-ms intersite propagation time plus
5 ms for uncertainty in accurately determining the mea-
sured arrival time of weak signals. A detection statistic for
each coincident event is derived as a function of the SNR
observed in each detector, the value of the signal consis-
tency tests, and details of the template.
The significance of a candidate event is determined by

comparing it to the search background. From this, we are
able to determine the rate at which detector noise produces
events with a detection-statistic value equal to or higher
than the candidate event (the FAR). Estimating this back-
ground is challenging for two reasons: First, the detector
noise is nonstationary and non-Gaussian; therefore, its
properties must be empirically determined. Second, it is
not possible to shield the detector from gravitational waves
to directly measure a signal-free background. The specific
procedure used to estimate the background is different for
the two analyses, as described in detail below.
The results of the independent analyses are two separate

lists of candidate events, with each candidate event
assigned a p-value and FAR. Candidate events with low
FARs are identified as possible gravitational-wave signals
for further investigation.

1. PyCBC analysis

The PyCBC analysis is described in detail in Refs. [2–4],
and the configuration used to analyze the first 16 days of O1
data, containing GW150914, is described in Ref. [44].
Following the observation of GW150914, some improve-
mentsweremade to the analysis, as we better understood the

Advanced LIGO data. All changes were tested and tuned
only on backgrounddata, prior to being incorporated into the
analysis. These changes do not affect the significance bound
of GW150914. Consequently, we chose to present the full
results, on the final calibrated data, using the improved
analysis. Here, we provide a brief overview of the analysis,
including details of changes made following the discovery
of GW150914.
In the PyCBC analysis, a trigger is stored when the

maximum of the SNR time series is above the threshold of
5.5 (chosen as a compromise between a manageable trigger
rate and assurance that no real event will be missed), with a
maximum of one trigger stored in a 1-s window (reduced
from 4 s in the previous analysis). A χ2 statistic is computed
to distinguish between astrophysical signals and noise
transients. This result tests whether the signal power in a
number of nonoverlapping frequency bands is consistent
with that expected from the waveform template [14]. The χ2

test is written explicitly as

χ2r ¼
p

2p−2

Xp

i¼1

!
ρi −
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where p denotes the number of frequency bands—
constructed such that the expected signal power in each
band is equal—and ρi is the matched-filter SNR in the ith
frequency band. For data containing only Gaussian noise,
or Gaussian noise and a signal exactly matching the
template waveform, the expected value of this statistic will
be 1. For data containing non-Gaussian artefacts, or a signal
not matching well with the template waveform, this value
will be elevated. Each trigger is then ranked according to a
combination of the SNR and the χ2 test, namely,

ρ̂ ¼
#
ρ½ð1þ ðχ2rÞ3Þ=2'−1=6 if χ2r > 1

ρ if χ2r ≤1.
ðA4Þ

The number of frequency bands p used to compute the χ2

signal-based veto [14] was optimized using data from the
first month of O1. An improved background rejection was
found when adopting the following, template-dependent
expression for the number of χ2 bands,

p ¼ 1.75 ×
!
fpeak
1 Hz

−60

"
1=2

; ðA5Þ

where fpeak is the frequency corresponding to the maxi-
mum amplitude of the template waveform using the models
described in Ref. [8], and p is rounded to the nearest
integer. This choice was adopted for the full O1 analysis
presented here, where all waveforms have peak frequencies
greater than 60 Hz.
Loud and short instrumental transients are identified and

excised from the data, as part of the data conditioning prior
to SNR computation. In this analysis, we compute a

BINARY BLACK HOLE MERGERS IN THE FIRST … PHYS. REV. X 6, 041015 (2016)

041015-23

Data Quality for CBC Searches in O1 14

50 100 150 200 250 300 350 400
L1 single detector SNR

10�1

100

101

102

103

104

105

106

107

108

109

N
um

b
er

of
T
ri

gg
er

s

(a)

(b)

Figure 1: Histograms of single detector PyCBC triggers from the Livingston (L1)
detector. These triggers were generated using data from September 12
to October 20, 2015. These histograms contain triggers from the entire
template bank, but exclude any triggers found in coincidence between the
two detectors. (1a) A histogram of single detector triggers in SNR. The tail
of this distribution extends beyond SNR = 100. (1b) A histogram of single
detector triggers in re-weighted SNR. The chi-squared test down-weights the
long tail of SNR triggers in the re-weighted SNR distribution. The triggers
found using only the Hanford detector have a similar distribution.
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Figure 1: Histograms of single detector PyCBC triggers from the Livingston (L1)
detector. These triggers were generated using data from September 12
to October 20, 2015. These histograms contain triggers from the entire
template bank, but exclude any triggers found in coincidence between the
two detectors. (1a) A histogram of single detector triggers in SNR. The tail
of this distribution extends beyond SNR = 100. (1b) A histogram of single
detector triggers in re-weighted SNR. The chi-squared test down-weights the
long tail of SNR triggers in the re-weighted SNR distribution. The triggers
found using only the Hanford detector have a similar distribution.

1. Keeps glitches in

2. Touches the Gaussian part

3. At low SNR, the distribution is not  

Gaussian even after, are glitches really  
this frequent?

O1: Abbott et. al. (2017)
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FIG. 2: (Color online) Interferometer Antenna Response for (+) polarization [left], (⇥) polarization [middle], and unpolarized
waves [right]. Color indicates increasing sensitivity from indigo to red.

of cosmic expansion in the early universe could produce
a spectrum of gravitational radiation. (Allen, 1988) later
derived the full spectrum of gravitational waves expected
from a standard inflationary universe scenario. This
model predicts a nearly white spectrum (in units of en-
ergy) in the frequency band from 10�15�1010 Hz (Turner,
1997). This radiation from the early universe would
travel to our detectors with very little scattering along
the way giving us a direct measurement of the state of
the universe at a time which is less than 10�30 s after the
Big Bang (Weinberg, 2004). A review of prospects for
detecting this inflationary background as well as possible
astrophysical foregrounds is given in (Allen, 1997).

There are two observational constraints on the cos-
mological background of gravitational waves. The rel-
ative abundances of the light elements in the universe
today constrains tightly any deviations from the stan-
dard model in Big Bang Nucleosynthesis (BBN) (Peebles,
1993). An excess of gravitational radiation at the time
of BBN would change the expansion rate of the universe.
The BBN model places an upper limit of ⇠ 10�5 (in
units of the closure density of the universe) on the en-
ergy in this primordial gravitational radiation. Certain
exotic theories of the early universe predict higher fre-
quency gravitational radiation (Mandic and Buonanno,
2006; Woodard et al., 2011); for some of those models, a
recent search using the LIGO detectors makes a slightly
tighter bound (Abbott et al., 2009) than from the BBN

model.

III. ALTERNATIVES TO INTERFEROMETRIC
DETECTION

A. Acoustic Detectors

Attempts to make a direct detection of gravitational
radiation started 50 years ago with Joseph Weber (We-
ber, 1960, 1970). Weber’s claims of detection were never
confirmed (Brown et al., 1982; Douglass et al., 1975;
Kafka and Schnupp, 1978); a review of these confirmation
e↵orts is given in (Tyson and Gi↵ard, 1978).
Nevertheless, the excitement generated in the early

1970’s led, in the following years, to the development of
an active worldwide network of acoustic ’bar’ detectors
with an ever increasing astrophysical reach. By the end
of the 20th century, the bars had reached strain sensitiv-
ities of 3� 7⇥ 10�19 for ⇠ 1ms bursts (Ju et al., 2000).
A summary of the sensitivity of these detectors is shown
in Table I.

B. Pulsar Timing

In the late 1970’s, Sazhin (Sazhin, 1978) and De-
tweiler (Detweiler, 1979) pointed out that the regular
pulse periods of radio pulsars could be used to search for

Adhikari, R., (2013)
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FIG. 1. Upper panels show the whitened strains around the trigger time of GWT151216 in LIGO Hanford/Livingston detectors
(light colored curves). Overplotted are the maximum likelihood fits using the spin-aligned IMRPhenomD waveforms (dark colored
curves). Lower panels show the corresponding spectrograms. Note that the best-fit gravitational waveform accumulates nearly
the entire signal-to-noise in the frequency range [30, 300]Hz.

orientation has an isotropic distribution, and the wave
arrival time is random. The expected merger rate as a
function of the redshift is not known. We assume the lu-
minosity distance has a prior distribution P (DL) / D2

L
up to 10Gpc, which corresponds to a constant merger
rate per unit volume in a Euclidean space.

For the intrinsic parameters, we assign uniform priors
to both component masses m1 and m2 (in the detec-
tor frame) within [2, 250]M�. We restrict the detector-
frame chirp mass Mdet = (1 + z) (m1 m2)3/5/(m1 +
m2)1/5 to the range [10, 40]M�, and restrict the mass
ratio q = m1/m2 to q < 18. For the aligned spins, we
consider two prior choices:

1. Isotropic spin prior: For either binary component,
the (dimensionless) spin vector � is isotropically
oriented, and the spin magnitude |�| is drawn from
a flat distribution within [0, �max]. The aligned
component �z is then extracted and passed to the
waveform model.

2. Flat �e↵ prior: Both aligned spin components
�1z and �2z are allowed to be in the range
[��max, �max]. For given components masses, we
assign a joint prior for the aligned spin components

P (�1z,�2z) d�1z d�2z / d�1z d�2z (1)

⇥
(
1, |�e↵ | 6 �max

m1�m2
M ,

1�(m1�m2)/M
1�|�eff |/�max

, |�e↵ | > �max
m1�m2

M .

where M = m1 + m2 is the total mass and
the e↵ective aligned spin parameter is given by
�e↵ = (m1 �1z + m2 �2z)/M . This prior is de-
signed such that �e↵ is uniformly distributed within
[��max, �max].

In order to include highly spinning waveforms, we choose
�max = 0.99.
The isotropic spin prior strongly penalizes configura-

tions in which the two black holes have high and aligned
spins. On the other hand, the flat �e↵ prior is more ag-
nostic in the sense that to leading order �e↵ is the only
spin parameter that determines the phasing of the grav-
itational waveform. We would like to examine how the
results of parameter estimation di↵er between these two
spin prior choices.
In Figure 2, we compare the posterior distributions for

Mdet, q and �e↵ assuming the two di↵erent spin priors.
With the isotropic spin prior, the most probable value
for �e↵ is around 0.55, which is already higher than the
values observed in previous LIGO BBH events. To match
this spin value, the binary needs to substantially asym-
metric with q ⇠ 2 � 3. However, the isotropic spin prior
is highly peaked at small values of �e↵ and is severely
suppressed at �e↵ ⇠ 0.55. This suggests that the even
higher values may be penalized by the prior rather than
by the data itself. With the flat �e↵ prior, a higher value
for the aligned spin �e↵ ⇡ 0.8 is indeed measured, which
requires both black holes to be fast spinning and aligned.

4

Flat �e↵

prior
Isotropic spin

prior

Chirp mass Mdet 31+2
�3 M� 29+2

�2 M�

Primary mass m1 31+13
�6 M� 38+11

�11 M�

Secondary mass m2 21+5
�6 M� 16+6

�3 M�

Mass ratio m1/m2 1.5+1.4
�0.4 2.4+1.4

�1.1

Total mass M 52+9
�6 M� 54+10

�8 M�

Primary aligned spin �1z 0.86+0.12
�0.27 0.73+0.18

�0.28

Secondary aligned spin �2z 0.79+0.19
�0.65 0.30+0.51

�0.46

E↵ective aligned spin �e↵ 0.81+0.15
�0.21 0.60+0.16

�0.18

Cosine of inclination | cos ◆| 0.81+0.18
�0.52 0.81+0.18

�0.51

Luminosity distance DL 2.4+1.2
�1.1 Gpc 2.1+1.0

�0.9 Gpc

Source redshift z 0.43+0.17
�0.17 0.38+0.15

�0.15

TABLE I. Source properties for GWT151216 : we give un-
certainties encompassing the 90% credible intervals in the
posterior distribution under two di↵erent assumptions about
the prior distribution of black hole spins. Parameter estima-
tions were performed with the spin-aligned waveform model
IMRPhenomD. All masses are quoted in the source frame except
that the chirp mass Mdet is quoted in the detector frame.

IMRPhenomPv2, but pass zeros for the in-plane com-
ponents.

If the spin-precessing waveform genuinely fits the data
better than the non-precessing waveform does, the con-
trol test should yield a di↵erent result.

The leading e↵ect of spin-orbit precession can be cap-
tured by a single parameter �p, which is defined to be [8]

�p := max
�
A1 |�1,?| m2

1, A2 |�2,?| m2
2

�
/(A1 m

2
1).(3)

where A1 = 2 + 3/(2 q) and A2 = 2 + (3 q)/2, and �1?
and �2? are the spin vectors perpendicular to the orbital
plane, for the primary and the secondary respectively.

Figure 3 shows the posterior distributions for �p de-
rived from our spin-precessing analysis. The posterior
distribution appears significantly narrower than the prior
distribution. However, the control test yields nearly the
same posterior distribution. This implies the absence
of direct information about spin-orbit precession in the
likelihood. Rather, the posterior distribution di↵ers from
the prior distribution because the data tightly constrain
�e↵ which then restricts the allowed values of �p due to
physical constraints on the spins. The maximum like-
lihood improves by about one unit for IMRPhenomPv2
compared to IMRPhenomD; this is however merely worth
mentioning since the former takes more free parameters
than the latter does. Based on the result that analyses
using IMRPhenomPv2 and using IMRPhenomD yield consis-
tent posterior distributions for the masses, the aligned
spin components, and the extrinsic parameters (with the
same choice of priors), we conclude that no precession
signal is detected. This is consistent with the parameter

FIG. 3. Prior and posterior distributions for the e↵ec-
tive spin-precession parameter �p obtained using the spin-
precessing IMRPhenomPv2 waveform model. We compare the
result obtained using the complete waveform model (ma-
genta) and the result obtained by artificially passing zero in-
plane spin components to the waveform generation routine
(green). We also quote the median and the 90% credible un-
certainty range for �p derived using the complete waveform
model.

inference results that the aligned spins are high, leaving
little room for large in-plane spin components.
In the parameter analysis of GW151226 for which a

non-zero �e↵ ⇡ 0.2 was measured, it was similarly re-
ported that the posterior distribution for �p di↵ers no-
ticeably from the prior [10]. We point out that this was
also resultant from correlated priors for �e↵ and �p rather
than from genuine precession signals in the data.

IV. POSSIBLE FORMATION CHANNELS

A number of formation channels for binary black hole
mergers have previously been suggested. They may come
from isolated massive star binaries that evolve through
the classic common envelope phase [11–26], or through
a phase of chemically homogeneous evolution [27–29].
They may e�ciently form through few-body interactions
at the core of dense stellar environments, such as old
globular clusters [30–38], young open clusters [39–42], or
nuclear clusters at the center of galaxies [43, 44]. The
mergers may be assisted by a nearby supermassive black
hole [45], by its accretion disk [46–48], or by a tertiary
stellar companion [49–52]. The black holes may also be
the remnants of Population III stars [53, 54] or form in
the primordial universe [55–63]. Mass and spin measure-
ments are crucial to di↵erentiate between formation sce-
narios [64].
Assuming the flat �e↵ prior, we infer that GWT151216

has component masses that are similar to those of the

• Highest spinning system so far. 

• In terms of mass it is unremarkable

• Far away due to its low SNR and high spin

• Consistent with both BHs spinning rapidly but not with only the secondary 

spinning fast.
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