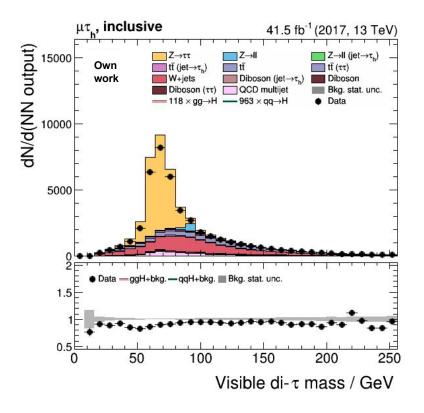


Benchmarking an RDataFrame Complex Analysis

Massimiliano Galli

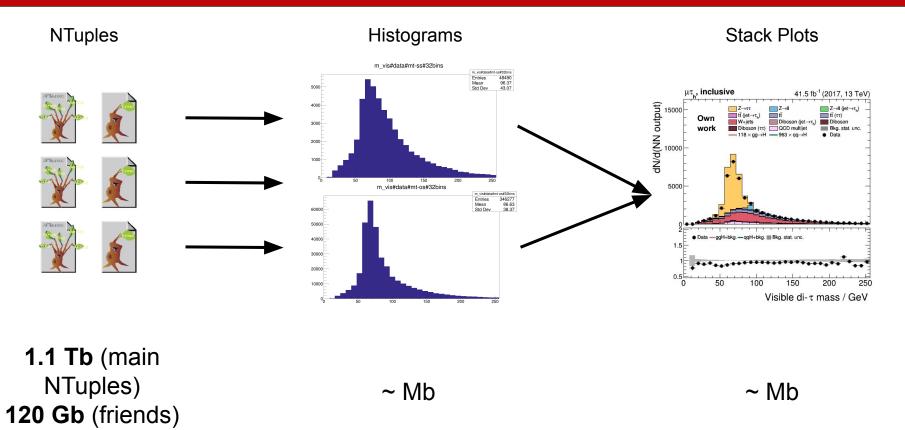
massimiliano.galli@cern.ch

Recap - Motivation

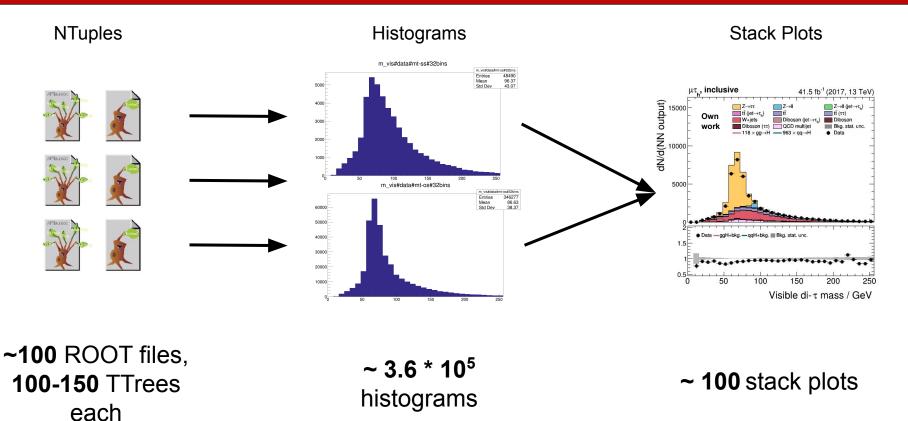


- CMS search for Higgs decay into tau-tau final state
- Full Run 2 analysis
- Production of many plots with data and simulations of signal and various background contributions
- Obtain the same results in a faster and more efficient way using modern ROOT facilities (RDataFrame VS TTree::Draw())

Recap - Orders of Magnitude



Recap - Orders of Magnitude



Book Results

For every histogram that want to produce we declare initial dataset, cuts, weights and systematic variations that we want to apply

Optimize Computations

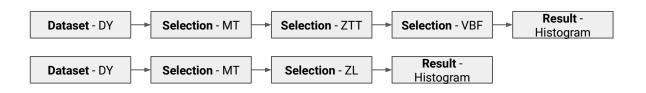
Datasets, selections and histogram productions are treated as nodes of a graph. The common ones are merged to perform every action only once

Run Computations

The previous graphs are converted to the language of RDataFrame and the event loop is run

Book Results

For every histogram that want to produce we declare initial dataset, cuts, weights and systematic variations that we want to apply Unit(dataset=dy, selections=[mt, ztt, vbf], histo)
Unit(dataset=dy, selections=[mt, z1], histo)



Programming Model - 1. Book Results

Book Results

For every histogram that want to produce we declare initial dataset, cuts, weights and systematic variations that we want to apply Types of systematic variations:

- ChangeDataset
- AddWeight
- ReplaceWeight
- SquareWeight
- RemoveWeight
- AddCut
- RemoveCut

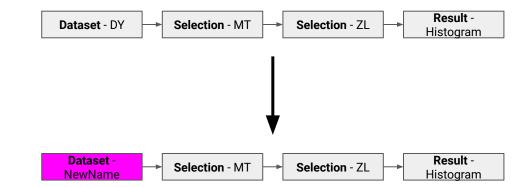
Programming Model - 1. Book Results

Book Results

For every histogram that want to produce we declare initial dataset, cuts, weights and systematic variations that we want to apply

Ex: ChangeDataset

```
var = ChangeDataset("NewName", "NewDirectory")
um.book([zl_unit], [var])
```



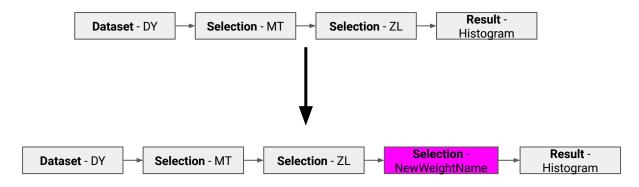
Programming Model - 1. Book Results

Book Results

For every histogram that want to produce we declare initial dataset, cuts, weights and systematic variations that we want to apply

Ex: AddWeight

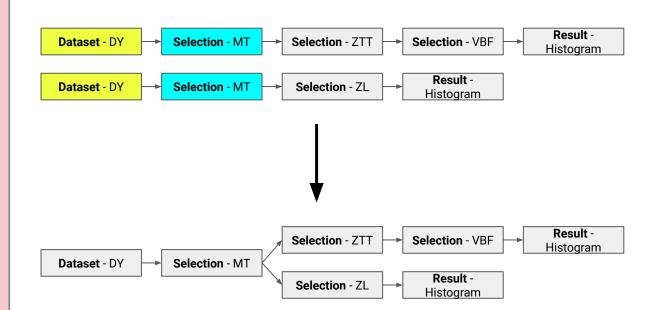
```
var = AddWeight("VariationName", Weight("NewWeightExp",
"NewWeightName"))
um.book([zl_unit], [var])
```



Programming Model - 2. Optimize Computations

Optimize Computations

Datasets, selections and histogram productions are treated as nodes of a graph. The common ones are merged to perform every action only once

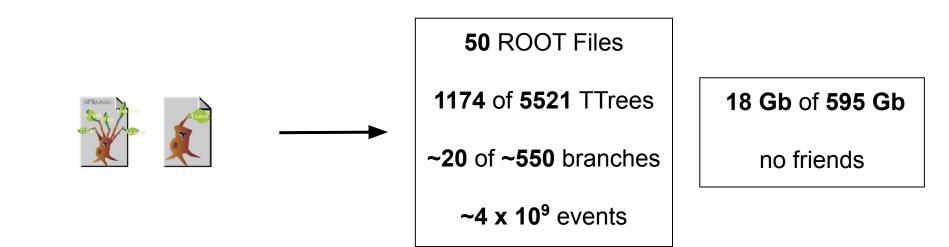


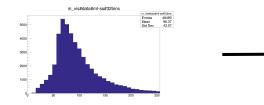
Run Computations

The previous graphs are converted to the language of RDataFrame and the event loop is run

- One RDataFrame for each node of type 'dataset'
- Support for splitting in jobs and sending them to different computing environments

Full Systematics Analysis - Data Size

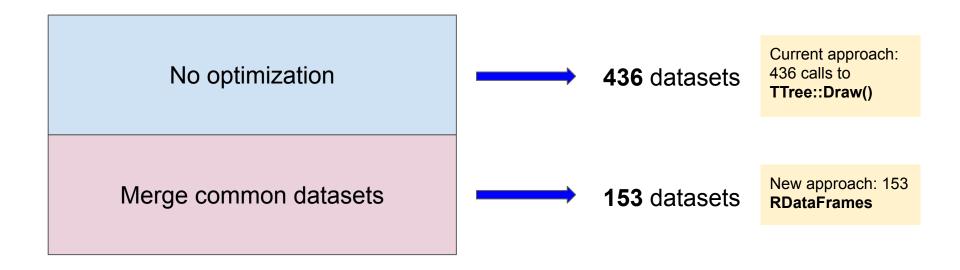




436 histograms for 1 variable

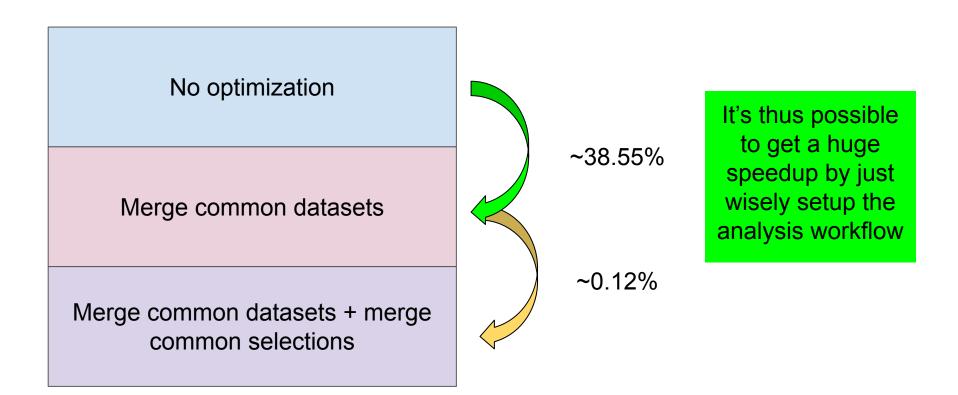
- 1. Merge common datasets and nodes
- 2. Multiprocessing
- 3. Multithreading
- 4. Many variables scaling

1. Merge Common Datasets and Nodes



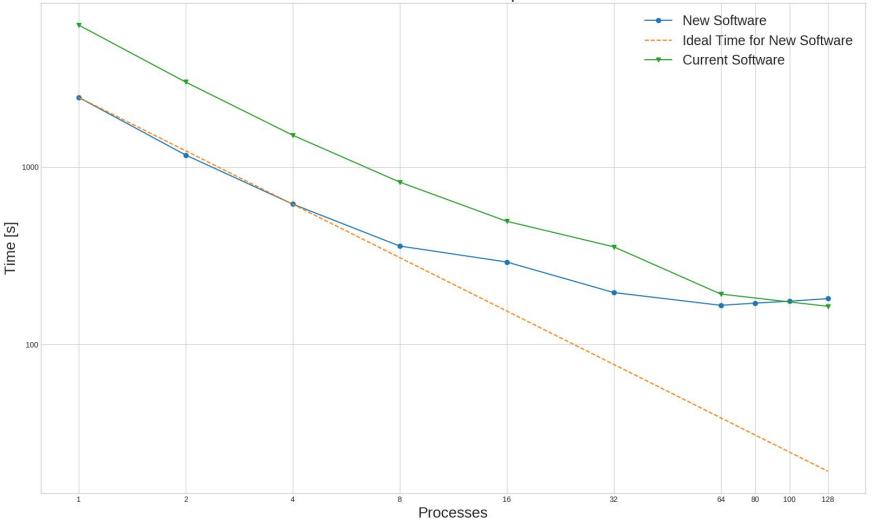
(cfr. In the control plots analysis presented last time we merged 22 into 7)

1. Merge Common Datasets and Nodes

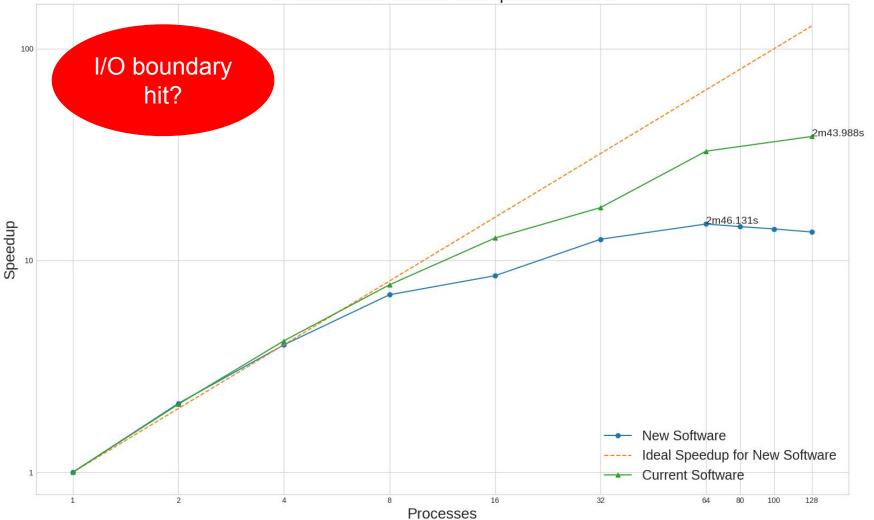


- 1 channel, 1 variable
- All systematic variations included
- Production of 436 histograms
- Scale from 1 to 128 processes
- Test on machine with 128 (64) logical (physical) cores
- Comparison with the current software (TTree::Draw())

All variations included - Multiple Processes



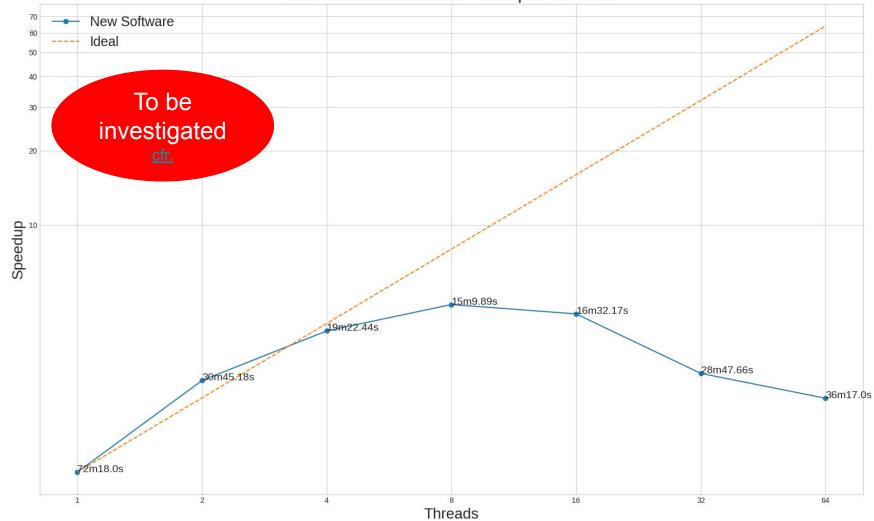
All variations included - Multiple Processes



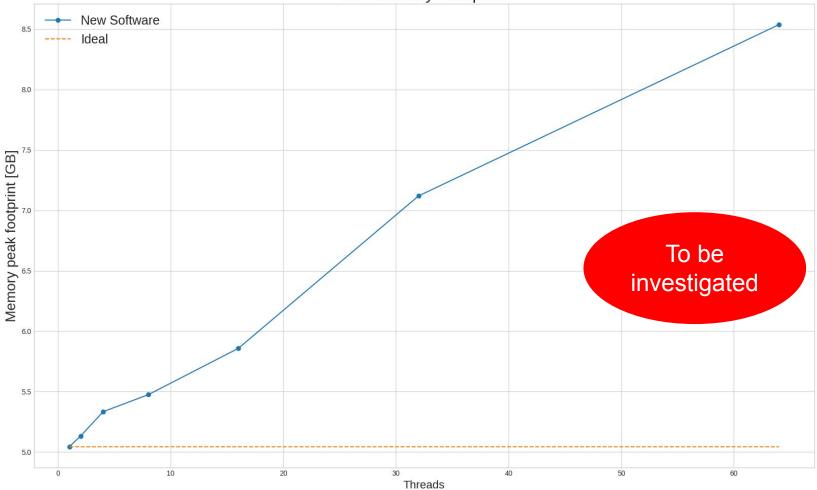
3. Multithreading

- **Enabled with** RDataFrame.EnableImplicitMT(N)
- 1 channel, 1 variable, single process
- Production of 436 histograms
- Scale from 1 to 64 threads
- Benchmark speedup
- Benchmark memory footprint and compare to multiprocessing

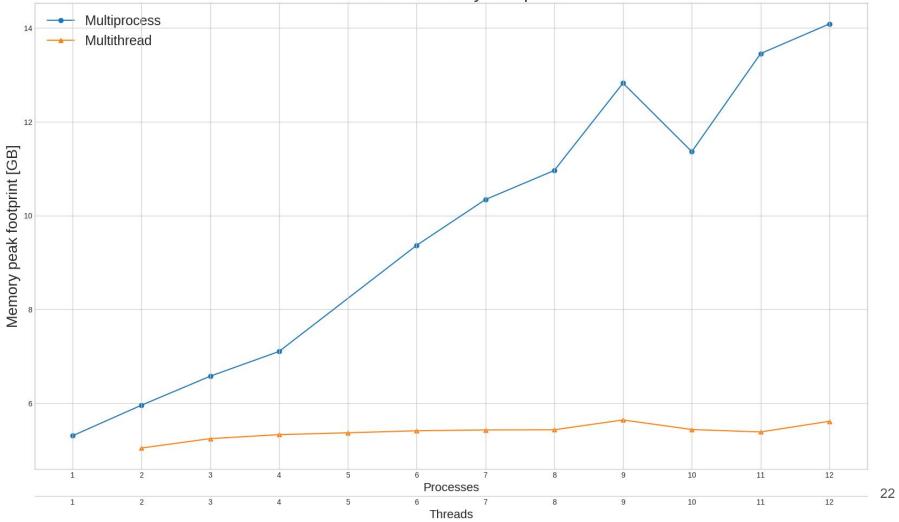
All variations included - Multiple Threads



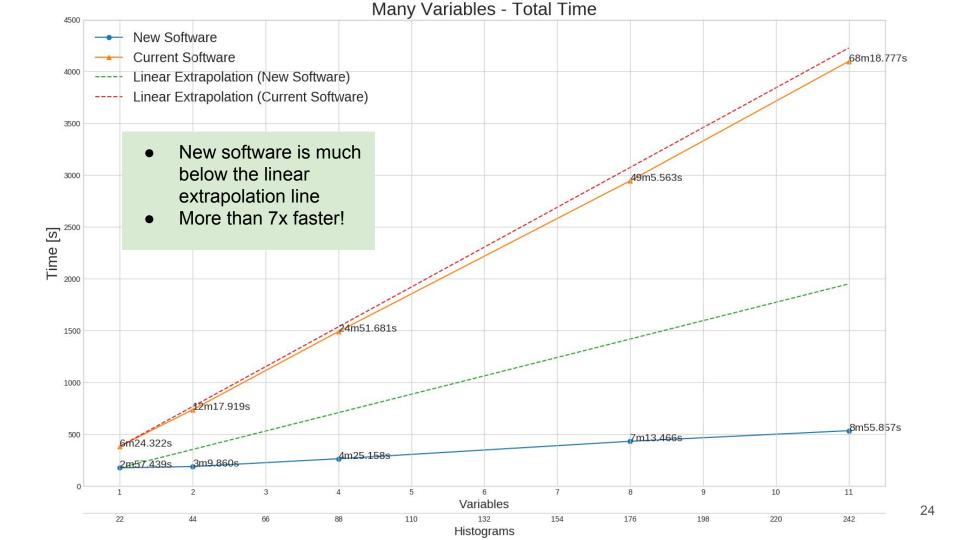
MT-Memory Footprint

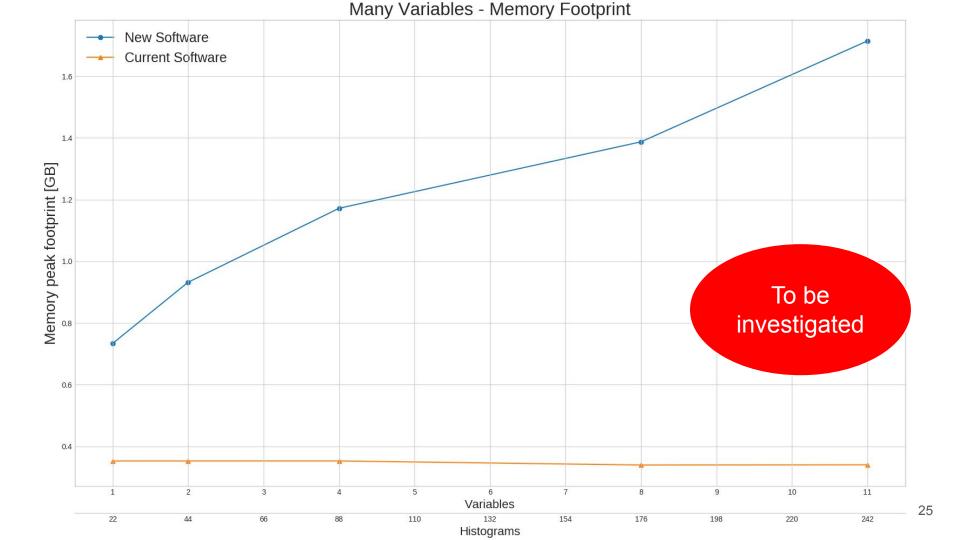


MP/MT - Memory Footprint



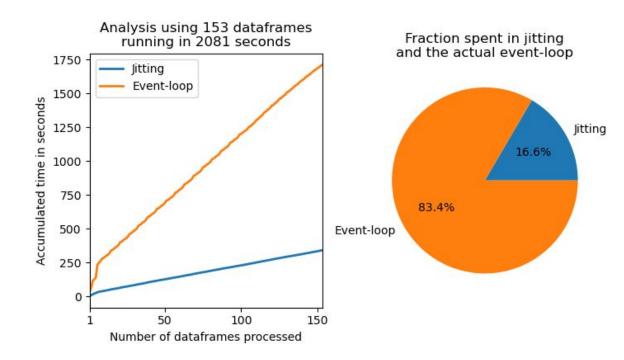
- Single process, single thread
- Inclusive analysis (22 histograms produced for each variable)
- Different number of variables each time
- Benchmarked event loop time scaling, time per single histogram, memory footprint
- Comparison with the current software





Time spent in RDF event-loop

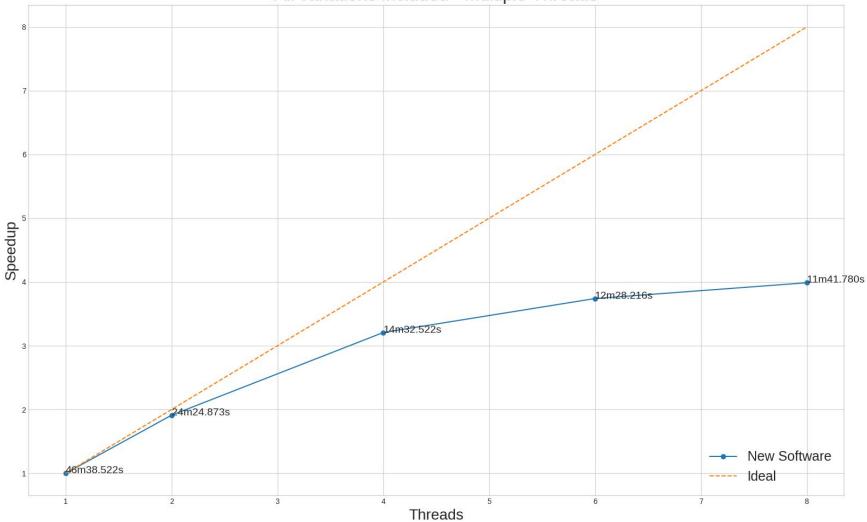
- Follow up to last weeks PPP
- Analysis with all systematics uses 153 dataframes
- Measuring time spent in RDF event-loop
 - Jitting
 - Actual event-loop



- Drop in scaling with MP: I/O boundary hit?
- Very bad scaling with MT: why?
- Further benchmarking: suggestions?
 - Is it worth combining ROOT MT with Python MP?

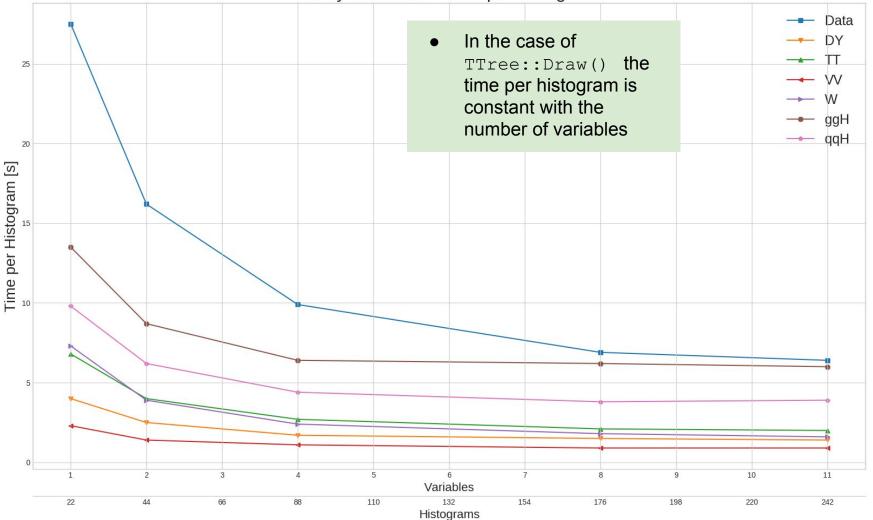
Backup

```
def get_nominal_datasets(channel):
    datasets = diot()
    for key, names in nominal_files.items():
        datasets[key] = dataset_from_nameset(
            key, names, channel + '_nominal', base_file, base_friends)
    return datasets
```



All variations included - Multiple Threads

Many Variables - Time per histogram



Book Results - Concise and Structured

```
channels = ['mt', ...]
# Book nominal Units
nominals = \{\}
nominals['2017'] = {}
nominals['2017']['datasets'] = {}
# E.g. DY dataset
dy dataset = dataset from nameset( 'DY', nominal files['DY'], 'mt nominal',
    base file, base friends)
# nominal files is placed inside ntuple config
nominal files = {
   (...)
   'DY': [
      'DY2JetsToLLM50 RunIIFall17MiniAODv2 PU2017 13TeV MINIAOD madgraph-pythia8 ext1-v2'
      'DY2JetsToLLM50 RunIIFall17MiniAODv2 PU2017 13TeV MINIAOD madgraph-pythia8 v1'
      'DY3JetsToLLM50 RunIIFall17MiniAODv2 PU2017 13TeV MINIAOD madgraph-pythia8 ext1-v1'
      (...)
```

],