
Massimiliano Galli massimiliano.galli@cern.ch

Benchmarking an RDataFrame
Complex Analysis

Recap - Motivation

2

● CMS search for Higgs decay
into tau-tau final state

● Full Run 2 analysis
● Production of many plots with

data and simulations of signal
and various background
contributions

● Obtain the same results in a
faster and more efficient way
using modern ROOT facilities
(RDataFrame vs
TTree::Draw())

Own
work

Recap - Orders of Magnitude

3

NTuples Histograms Stack Plots

1.1 Tb (main
NTuples)

120 Gb (friends)
~ Mb ~ Mb

Own
work

Recap - Orders of Magnitude

4

NTuples Histograms Stack Plots

~100 ROOT files,
100-150 TTrees

each

~ 3.6 * 105

histograms
~ 100 stack plots

Own
work

Programming Model

5

Book Results

For every histogram
that want to produce we
declare initial dataset,

cuts, weights and
systematic variations
that we want to apply

Optimize
Computations

Datasets, selections
and histogram

productions are treated
as nodes of a graph.

The common ones are
merged to perform

every action only once

Run
Computations

The previous graphs
are converted to the

language of
RDataFrame and the

event loop is run

Programming Model - 1. Book Results

6

Book Results

For every histogram
that want to produce we
declare initial dataset,

cuts, weights and
systematic variations
that we want to apply

Unit(dataset=dy, selections=[mt, ztt, vbf], histo)
Unit(dataset=dy, selections=[mt, zl], histo)

Dataset - DY Selection - MT Selection - ZTT Selection - VBF Result -
Histogram

Dataset - DY Selection - MT Selection - ZL Result -
Histogram

Programming Model - 1. Book Results

7

Book Results

For every histogram
that want to produce we
declare initial dataset,

cuts, weights and
systematic variations
that we want to apply

Types of systematic variations:
● ChangeDataset

● AddWeight
● ReplaceWeight
● SquareWeight
● RemoveWeight

● AddCut
● RemoveCut

Programming Model - 1. Book Results

8

Book Results

For every histogram
that want to produce we
declare initial dataset,

cuts, weights and
systematic variations
that we want to apply

Ex: ChangeDataset

var = ChangeDataset("NewName", "NewDirectory")
um.book([zl_unit], [var])

Dataset - DY Selection - MT Selection - ZL Result -
Histogram

Dataset -
NewName Selection - MT Selection - ZL Result -

Histogram

Programming Model - 1. Book Results

9

Book Results

For every histogram
that want to produce we
declare initial dataset,

cuts, weights and
systematic variations
that we want to apply

Ex: AddWeight

var = AddWeight("VariationName", Weight("NewWeightExp",
"NewWeightName"))
um.book([zl_unit], [var])

Dataset - DY Selection - MT Selection - ZL Result -
Histogram

Dataset - DY Selection - MT Selection - ZL Result -
Histogram

Selection -
NewWeightName

Programming Model - 2. Optimize Computations

10

Book Results

For every histogram
that want to produce we
declare initial dataset,

cuts, weights and
systematic variations
that we want to apply

Optimize
Computations

Datasets, selections
and histogram

productions are treated
as nodes of a graph.

The common ones are
merged to perform

every action only once

Dataset - DY Selection - MT Selection - ZTT Selection - VBF Result -
Histogram

Dataset - DY Selection - MT Selection - ZL Result -
Histogram

Selection - ZTT Selection - VBF Result -
Histogram

Dataset - DY Selection - MT

Selection - ZL Result -
Histogram

Programming Model - 3. Run Computations

11

Book Results

For every histogram
that want to produce we
declare initial dataset,

cuts, weights and
systematic variations
that we want to apply

Run
Computations

The previous graphs
are converted to the

language of
RDataFrame and the

event loop is run

● One RDataFrame for each node
of type ‘dataset’

● Support for splitting in jobs and
sending them to different
computing environments

Full Systematics Analysis - Data Size

12

 18 Gb of 595 Gb

no friends

50 ROOT Files

1174 of 5521 TTrees

~20 of ~550 branches

~4 x 109 events

436 histograms for 1 variable

Benchmark Scenarios

1. Merge common datasets and nodes
2. Multiprocessing
3. Multithreading
4. Many variables scaling

13

1. Merge Common Datasets and Nodes

14

No optimization

Merge common datasets

436 datasets

153 datasets

(cfr. In the control plots analysis presented last time we merged 22 into 7)

Current approach:
436 calls to
TTree::Draw()

New approach: 153
RDataFrames

1. Merge Common Datasets and Nodes

15

No optimization

Merge common datasets

Merge common datasets + merge
common selections

~38.55%

~0.12%

It’s thus possible
to get a huge

speedup by just
wisely setup the

analysis workflow

2. Multiprocessing

16

● 1 channel, 1 variable
● All systematic variations included
● Production of 436 histograms
● Scale from 1 to 128 processes
● Test on machine with 128 (64) logical (physical) cores
● Comparison with the current software (TTree::Draw())

17

18

I/O boundary
hit?

3. Multithreading

● Enabled with RDataFrame.EnableImplicitMT(N)
● 1 channel, 1 variable, single process
● Production of 436 histograms
● Scale from 1 to 64 threads
● Benchmark speedup
● Benchmark memory footprint and compare to

multiprocessing

19

20

To be
investigated

cfr.

21

To be
investigated

22

4. Many Variables Scaling

● Single process, single thread
● Inclusive analysis (22 histograms produced for each variable)
● Different number of variables each time
● Benchmarked event loop time scaling, time per single

histogram, memory footprint
● Comparison with the current software

23

24

● New software is much
below the linear
extrapolation line

● More than 7x faster!

25

To be
investigated

Time spent in RDF event-loop

● Follow up to last
weeks PPP

● Analysis with all
systematics uses 153
dataframes

● Measuring time spent
in RDF event-loop

○ Jitting
○ Actual event-loop

26

Discussion

● Drop in scaling with MP: I/O boundary hit?
● Very bad scaling with MT: why?
● Further benchmarking: suggestions?

○ Is it worth combining ROOT MT with Python MP?

27

28

Backup

29

def get_nominal_datasets(channel):
 datasets = dict()
 for key, names in nominal_files.items():
 datasets[key] = dataset_from_nameset(
 key, names, channel + '_nominal', base_file, base_friends)
 return datasets

def get_nominal_units(channel, datasets):
 return {
 (...)
 'ztt' : Unit(datasets['DY'], [channel_selection(channel), DY_process_selection(channel),
 ZTT_process_selection(channel)], [histos]
),
 (...)
 }

30

31

● In the case of
TTree::Draw() the
time per histogram is
constant with the
number of variables

Book Results - Concise and Structured

32

channels = ['mt', ...]

Book nominal Units

nominals = {}
nominals['2017'] = {}
nominals['2017']['datasets'] = {}

E.g. DY dataset

dy_dataset = dataset_from_nameset('DY', nominal_files['DY'], 'mt_nominal',
 base_file, base_friends)

nominal_files is placed inside ntuple_config
nominal_files = {
 (...)
 'DY': [
 'DY2JetsToLLM50_RunIIFall17MiniAODv2_PU2017_13TeV_MINIAOD_madgraph-pythia8_ext1-v2',
 'DY2JetsToLLM50_RunIIFall17MiniAODv2_PU2017_13TeV_MINIAOD_madgraph-pythia8_v1',
 'DY3JetsToLLM50_RunIIFall17MiniAODv2_PU2017_13TeV_MINIAOD_madgraph-pythia8_ext1-v1',
 (...)
],
 (...)
}

