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Recap - Motivation
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● CMS search for Higgs decay 
into tau-tau final state

● Full Run 2 analysis
● Production of many plots with 

data and simulations of signal 
and various background 
contributions

● Obtain the same results in a 
faster and more efficient way 
using modern ROOT facilities 
(RDataFrame vs 
TTree::Draw())

Own 
work



Recap - Orders of Magnitude
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NTuples Histograms Stack Plots

1.1 Tb (main 
NTuples)

120 Gb (friends)
~ Mb ~ Mb

Own 
work



Recap - Orders of Magnitude
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NTuples Histograms Stack Plots

~100 ROOT files, 
100-150 TTrees 

each

~ 3.6 * 105 

histograms
~ 100 stack plots

Own 
work



Programming Model
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Book Results

For every histogram 
that want to produce we 
declare initial dataset, 

cuts, weights and 
systematic variations 
that we want to apply

Optimize 
Computations

Datasets, selections 
and histogram 

productions are treated 
as nodes of a graph. 

The common ones are 
merged to perform 

every action only once

Run 
Computations

The previous graphs 
are converted to the 

language of 
RDataFrame and the 

event loop is run



Programming Model - 1. Book Results
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Book Results

For every histogram 
that want to produce we 
declare initial dataset, 

cuts, weights and 
systematic variations 
that we want to apply

Unit(dataset=dy, selections=[mt, ztt, vbf], histo)
Unit(dataset=dy, selections=[mt, zl], histo)

Dataset - DY Selection - MT Selection - ZTT Selection - VBF Result - 
Histogram

Dataset - DY Selection - MT Selection - ZL Result - 
Histogram



Programming Model - 1. Book Results
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Book Results

For every histogram 
that want to produce we 
declare initial dataset, 

cuts, weights and 
systematic variations 
that we want to apply

Types of systematic variations:
● ChangeDataset

● AddWeight
● ReplaceWeight
● SquareWeight
● RemoveWeight

● AddCut
● RemoveCut



Programming Model - 1. Book Results
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Book Results

For every histogram 
that want to produce we 
declare initial dataset, 

cuts, weights and 
systematic variations 
that we want to apply

Ex: ChangeDataset

var = ChangeDataset("NewName", "NewDirectory")
um.book([zl_unit], [var])

Dataset - DY Selection - MT Selection - ZL Result - 
Histogram

Dataset - 
NewName Selection - MT Selection - ZL Result - 

Histogram



Programming Model - 1. Book Results

9

Book Results

For every histogram 
that want to produce we 
declare initial dataset, 

cuts, weights and 
systematic variations 
that we want to apply

Ex: AddWeight

var = AddWeight("VariationName", Weight("NewWeightExp", 
"NewWeightName"))
um.book([zl_unit], [var])

Dataset - DY Selection - MT Selection - ZL Result - 
Histogram

Dataset - DY Selection - MT Selection - ZL Result - 
Histogram

Selection - 
NewWeightName



Programming Model - 2. Optimize Computations
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Book Results

For every histogram 
that want to produce we 
declare initial dataset, 

cuts, weights and 
systematic variations 
that we want to apply

Optimize 
Computations

Datasets, selections 
and histogram 

productions are treated 
as nodes of a graph. 

The common ones are 
merged to perform 

every action only once

Dataset - DY Selection - MT Selection - ZTT Selection - VBF Result - 
Histogram

Dataset - DY Selection - MT Selection - ZL Result - 
Histogram

Selection - ZTT Selection - VBF Result - 
Histogram

Dataset - DY Selection - MT

Selection - ZL Result - 
Histogram



Programming Model - 3. Run Computations
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Book Results

For every histogram 
that want to produce we 
declare initial dataset, 

cuts, weights and 
systematic variations 
that we want to apply

Run 
Computations

The previous graphs 
are converted to the 

language of 
RDataFrame and the 

event loop is run

● One RDataFrame for each node 
of type ‘dataset’

● Support for splitting in jobs and 
sending them to different 
computing environments



Full Systematics Analysis - Data Size
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 18 Gb of 595 Gb

no friends

50 ROOT Files

1174 of 5521 TTrees

~20 of ~550 branches

~4 x 109 events

436 histograms for 1 variable



Benchmark Scenarios

1. Merge common datasets and nodes
2. Multiprocessing
3. Multithreading
4. Many variables scaling

13



1. Merge Common Datasets and Nodes
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No optimization

Merge common datasets

436 datasets

153 datasets

(cfr. In the control plots analysis presented last time we merged 22 into 7)

Current approach: 
436 calls to 
TTree::Draw()

New approach: 153 
RDataFrames



1. Merge Common Datasets and Nodes
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No optimization

Merge common datasets

Merge common datasets + merge 
common selections

~38.55%

~0.12%

It’s thus possible 
to get a huge 

speedup by just 
wisely setup the 

analysis workflow 



2. Multiprocessing
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● 1 channel, 1 variable
● All systematic variations included
● Production of 436 histograms
● Scale from 1 to 128 processes
● Test on machine with 128 (64) logical (physical) cores
● Comparison with the current software (TTree::Draw())
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I/O boundary 
hit?



3. Multithreading

● Enabled with RDataFrame.EnableImplicitMT(N)
● 1 channel, 1 variable, single process
● Production of 436 histograms
● Scale from 1 to 64 threads
● Benchmark speedup
● Benchmark memory footprint and compare to 

multiprocessing
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To be 
investigated

cfr.
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To be 
investigated
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4. Many Variables Scaling

● Single process, single thread
● Inclusive analysis (22 histograms produced for each variable)
● Different number of variables each time
● Benchmarked event loop time scaling, time per single 

histogram, memory footprint
● Comparison with the current software
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● New software is much 
below the linear 
extrapolation line

● More than 7x faster!
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To be 
investigated



Time spent in RDF event-loop

● Follow up to last 
weeks PPP

● Analysis with all 
systematics uses 153 
dataframes

● Measuring time spent 
in RDF event-loop

○ Jitting
○ Actual event-loop
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Discussion

● Drop in scaling with MP: I/O boundary hit?
● Very bad scaling with MT: why?
● Further benchmarking: suggestions?

○ Is it worth combining ROOT MT with Python MP?
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Backup
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def get_nominal_datasets(channel):                                                                                                    
    datasets = dict()
    for key, names in nominal_files.items():
        datasets[key] = dataset_from_nameset(
            key, names, channel + '_nominal', base_file, base_friends)
    return datasets

def get_nominal_units(channel, datasets):
    return {
            (...)
            'ztt' : Unit(datasets['DY'], [channel_selection(channel), DY_process_selection(channel),
                                          ZTT_process_selection(channel)], [histos]
                         ),
            (...)
           }
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● In the case of 
TTree::Draw() the 
time per histogram is 
constant with the 
number of variables



Book Results - Concise and Structured    
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channels = ['mt', ...]

# Book nominal Units  

nominals = {}
nominals['2017'] = {}    
nominals['2017']['datasets'] = {}

# E.g. DY dataset  

dy_dataset = dataset_from_nameset( 'DY', nominal_files[ 'DY'], 'mt_nominal',
    base_file, base_friends)

# nominal_files is placed inside ntuple_config
nominal_files = {    
   (...)                                                                                                                         
   'DY': [
       'DY2JetsToLLM50_RunIIFall17MiniAODv2_PU2017_13TeV_MINIAOD_madgraph-pythia8_ext1-v2',
       'DY2JetsToLLM50_RunIIFall17MiniAODv2_PU2017_13TeV_MINIAOD_madgraph-pythia8_v1',
       'DY3JetsToLLM50_RunIIFall17MiniAODv2_PU2017_13TeV_MINIAOD_madgraph-pythia8_ext1-v1',
       (...)
       ],
    (...)
}


