
JANA2: Multi-threaded Event Reconstruction

Nathan Brei, **David Lawrence** Jefferson Lab

April 1, 2020

HSF Framework Working Group

Jefferson Lab

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Apr. 1, 2020

Overview of Jefferson Lab

- Department of Energy National Laboratory with research mission in Nuclear Physics
- In operation since 1995
- Managed for DOE by Jefferson Science Associates, LLC
 - Joint venture of Southeastern Universities Research Association and PAE
- Our primary research tool is CEBAF (Continuous Electron Beam Accelerator Facility) – unique in the world

Jefferson Lab by the numbers:

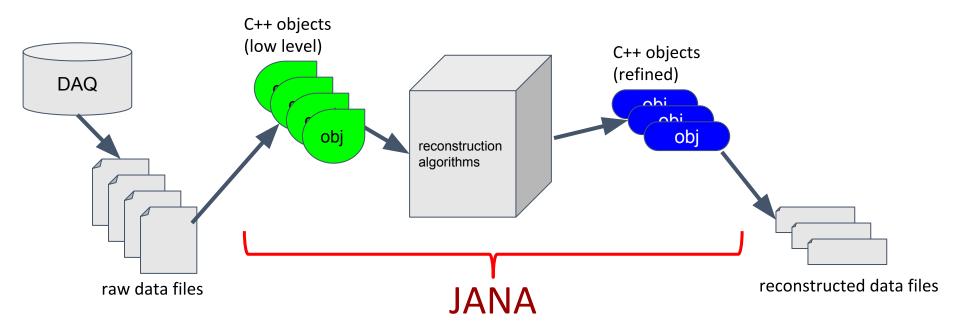
- 700 employees
- FY2018 Budget: \$162.4M
- 169 acre site
- 1,600 Active "User Scientists"
- 27 Joint faculty
- 608 PhDs granted to-date (211 in progress)
- K-12 programs serve more than 13,000 students and 300 teachers annually

GlueX Computing Needs

	2017 (low intensity GlueX)	2018 (low intensity GlueX)	2019 (PrimEx)	2019 (high intensity GlueX)	
Real Data	1.2PB	6.3PB	1.3PB	3.1PB	
MC Data	0.1PB	0.38PB	0.16PB	0.3PB	
Total Data	1.3PB	6.6PB	1.4PB	3.4PB	
Real Data CPU	21.3Mhr	67.2Mhr	6.4Mhr	39.6Mhr	
MC CPU	3.0Mhr	11.3MHr	1.2Mhr	8.0Mhr	
Total CPU	24.3PB	78.4Mhr	7.6Mhr	47.5Mhr	

Anticipate 2018 data will be processed by end of summer 2019

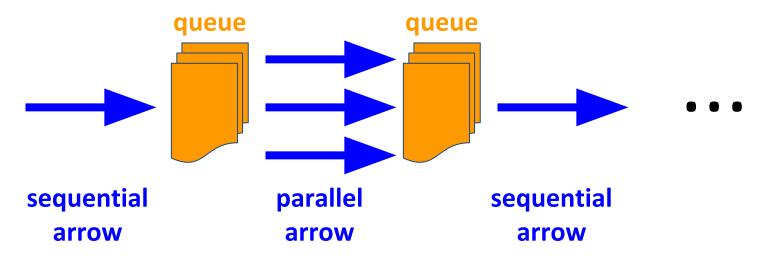
Projection for out-years of GlueX High Intensity running at 32 weeks/year 11/27/18


	Out - years (high intensity GlueX)			
Real Data	16.2PB			
MC Data	1.4PB			
Total Data	17.6PB			
Real Data CPU	125.6Mhr			
MC CPU	36.5Mhr			
Total CPU	162.1Mhr			

Jefferson Lab Computing Review

Event size: 12-13kB

JANA's Role in Data Processing

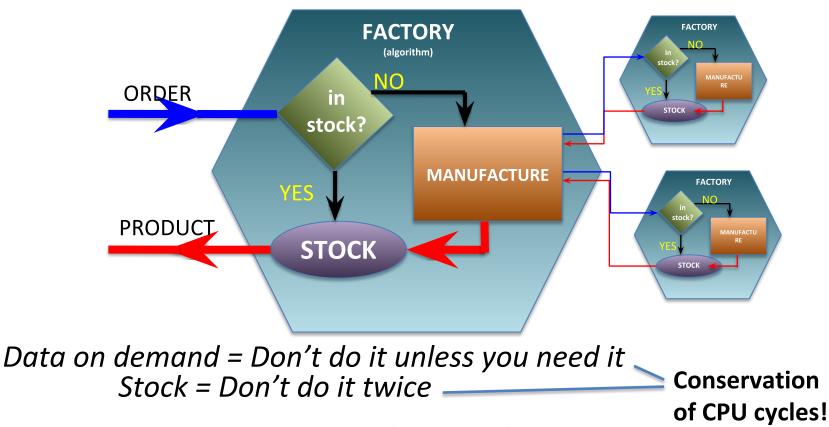


Some Goals of the JANA framework

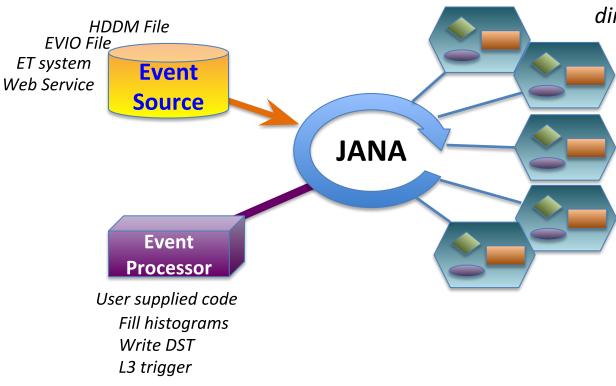
- GLUE
- Provide mechanism for many physicists to contribute code to the full reconstruction program
- Implement multi-threading efficiently external to contributed code
- Provide common mechanisms for accessing job configuration parameters, calibration constants, etc...

JANA2 arrows separate sequential and parallel tasks

- CPU intensive event reconstruction will be done as a parallel arrow
- Other tasks (e.g. I/O) can be done as a sequential arrow
- Fewer locks in user code allows framework to better optimize workflow



Reactive/Dataflow Programming

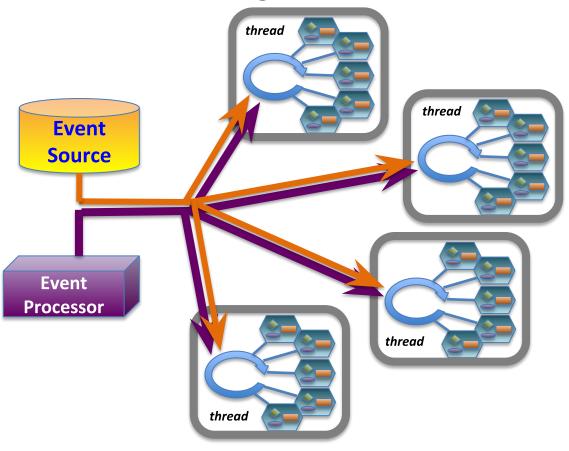

- Data is presented to arrow in the form of a queue
- Arrow transforms data and places it in downstream queue
- Minimal synchronization time spent in accessing queues
- Course tasks within arrow can eliminate most or all other synchronization points

Factory Model

Complete Event Reconstruction in JANA

Framework has a layer that directs object requests to the factory that completes it

> Multiple algorithms (factories) may exist in the same program that produce the same type of data objects


This allows the framework to easily redirect requests to alternate algorithms specified by the user at run time

Multi-threading

 A complete set of factories is assigned to an event giving it exclusive use while that event is processed

 Factories only work with other factories in the same thread eliminating the need for expensive mutex locking within the factories

All events are seen by all
 Event Processors (multiple
 processors can exist in a
 program)

Features maintained from JANA1

- On demand interface
- Plugin support
- Rich configuration parameter feature
- Built-in profiling features
- Automated ROOT tree generation*

Features Added in JANA2

- Better use of "modern" C++ features
 - thread model via C++ language (introduced in c++11)
 - lock guards
 - shared pointers
 - lambda functions
- Generalized use of threads (pool)
 - multiple queues
 - arrows (sequential or parallel)
- NUMA awareness
- Python API (both embedded and as an extension)

What the user needs to know:

auto tracks = jevent->Get<DTrack>();

for(auto t : tracks){

// ... do something with const DTrack* t

vector<const *DTrack> tracks

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Apr. 1, 2020

Data on Demand => Software Trigger

Event by event decision on whether to activate a factory:

```
Software triggers
may have multiple
"keep" or
"discard"
conditions that
may be probed in
order of CPU cost
```

}

```
// Getting hit objects is cheap so we check that first
auto NcaloHits = jevent->Get<CaloHit>().size();
if( NcaloHits>minCaloHits ){
```

```
keep_event = true;
```

// Tracks factory only activated if not already keeping event
}else if(jevent->Get<Tracks>().size() > minTrackHits) {

```
keep_event = true;
```

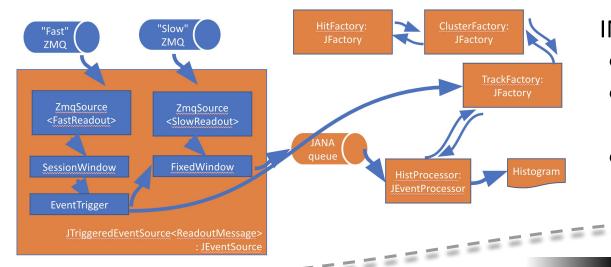
If an alternate factory is desired: (i.e. algorithm)

auto tracks = jevent->Get<DTrack>("MyTest");

or, even better

set configuration parameter: **DTrack:DEFTAG=MyTest**

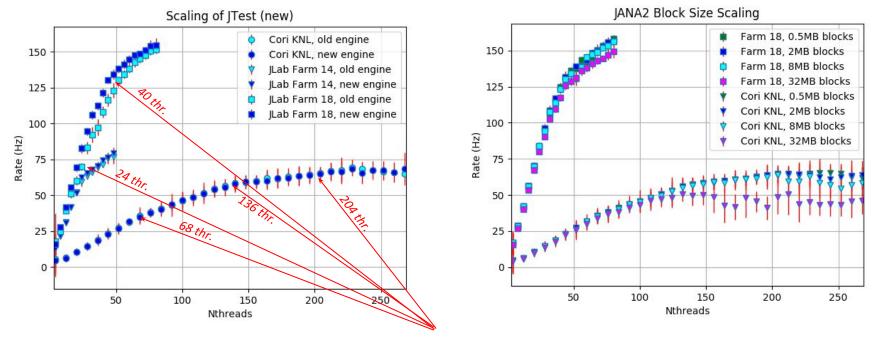
- Configuration parameters are set at run time
- NAME:DEFTAG is special and tells JANA to re-route ALL requests for objects of type NAME to the specified factory.


"Event" Reconstruction

- Physics requires studying a single reaction at a time
- High speed (=high statistics) leads to overlapping reactions in time
- "Event" here really means a slice of time
 - Traditional electronic trigger = single reaction
 - Streaming readout = potentially many reactions

Streaming Readout

INDRA-ASTRA initiative:


- Software trigger
- Multi-flavored stream merging
- Event building

Support for Heterogeneous Hardware

- Sub-event level parallelism
 - \circ $\,$ Run ML on GPU or TPU $\,$

JANA2 Scaling Tests (JLab + NERSC)

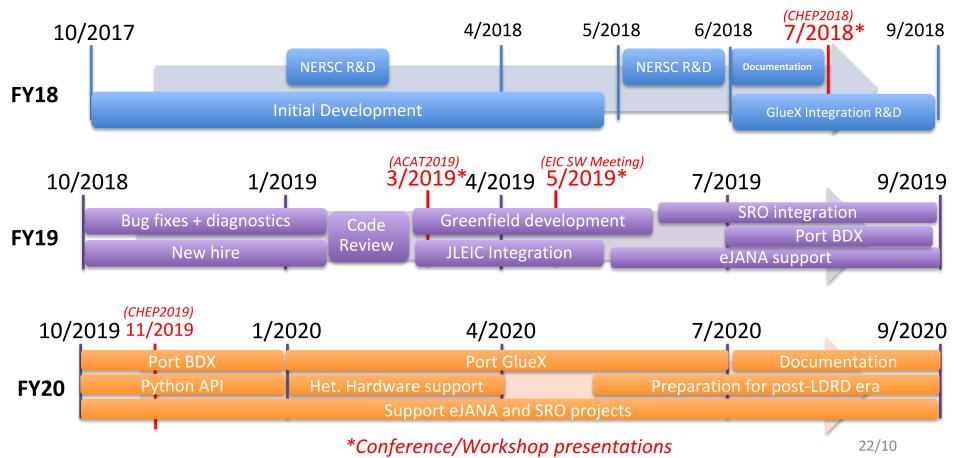
kinks indicate hardware boundaries

TOPOLOGY STATUS Thread team size [count]: Total uptime [s]: Completed events [count]: Completed events [count]: Completed events [count]: Completed events [count]: Completed events [count]: Sequential bottleneck [Hz]: Parallel bottleneck [Hz]: Efficiency [01]:	4 50.09 0.5002 587 14 11.7 335 11.9 0.986								
Name	Status	Туре	Par	Threads	Chunk	Thresh	Pending	+ Completed	
dummy_evt_src processors	Running Running	Source Sink	F	0 4	16 1	500	81	672 587	
Name	Avg latency [ms/event]			Queue latency [ms/visit]		Queue visits [count]		eue overhead [01]	
dummy_evt_src processors	2.98 337	1.03 321		0.00415 0.00883		42 1450		8.71e-05 6.48e-05	
ID Last arrow name I	+ Useful time [ms]	e Retry time [ms]		Idle time [ms]	Scher	duler time Sche [ms]		eduler visits [count]	
 P processors 1 processors 2 processors 3 processors 	+ 623 622 668 734		0 0 0	0 0 0		0.000570 0.000624 0.000553 0.000553		76 138 131 125	

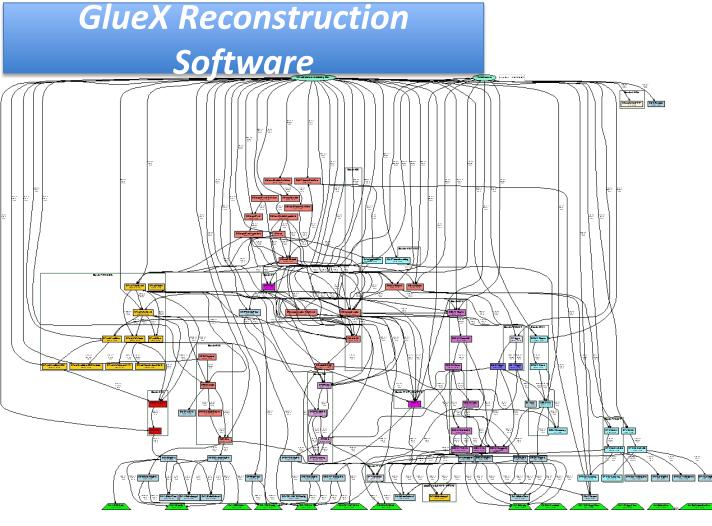
JANA2 now has much better built-in diagnostics compared to the original JANA.

This helps pinpoint bottlenecks, especially in more complex systems

Summary


- JANA2 is:
 - C++ multi-threaded event processing framework
 - Reactive/dataflow programming model
 - arrow/queue architecture
 - On Demand algorithm activation
 - factory model (lockless!)
 - software trigger
 - builds on >10 years experience with JANA1
 - Python interface (embedded and extension)
- Follow project on github:

https://github.com/JeffersonLab/JANA2


Backups

Schedule

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Apr. 1, 2020

Automatic call graph generation using janadot plugin