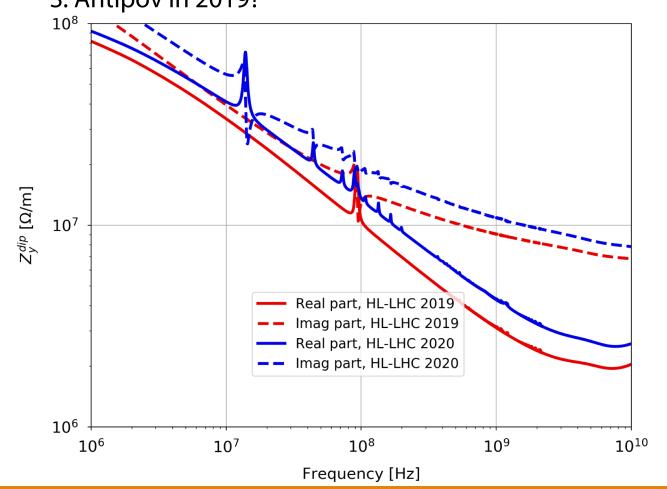
Update on the difference between old and new HL-LHC impedance model

N. Mounet, D. Amorim, S. Antipov, N. Biancacci, X. Buffat, B. Salvant, C. Zannini.

Acknowledgements: R. Bruce, A. Mereghetti, J. Mitchell.

A few more updates to the model

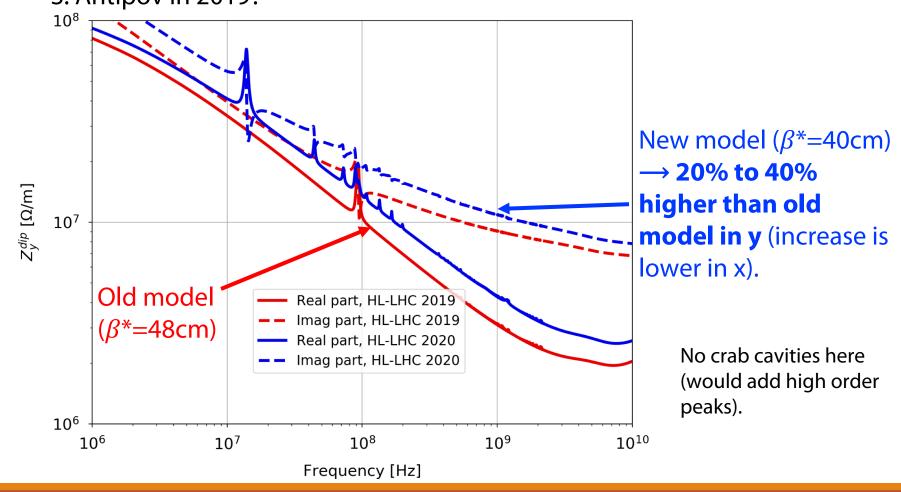
The factors due to the shape and weld of the octagonal triplet beam screens were computed accurately (using CST) by C. Zannini → replace the previous (pessimistic) rough estimates that were used, giving lower factors than these:


Factor	BS88 new (<i>old</i>)	BS101 new (<i>old</i>)	BS121 new (<i>old</i>)	
Long. factor	1.5942 (<i>1.74</i>)	1.36 (<i>1.68</i>)	1.0738 (<i>1.68</i>)	Courtesy
Dip. factor x	0.72855 (<i>1.0</i>)	0.89452 (1.0)	0.8587 (<i>1.0</i>)	C. Zannini
Dip. factor y	1.6422 (2.31)	1.6231 (<i>2.15</i>)	1.3022 (<i>2.15</i>)	

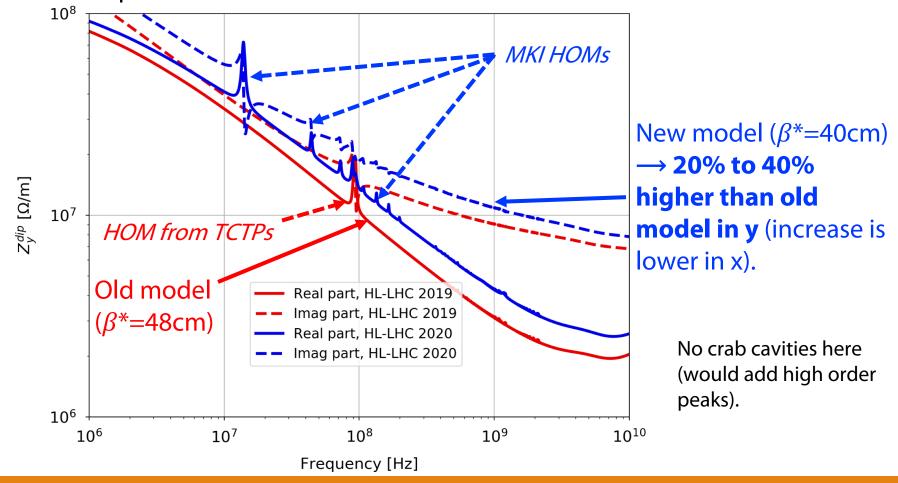
 \rightarrow this has an impact only at low frequencies, so the effect of the change is negligible for any operational configuration with transverse damper.

- > Model updated for β^* =40cm
 - \rightarrow settings in # σ depend on β^* in the TCTs and TCLs of IR1/5 and this has some impact (see next slides).
- List of devices included in model summarized in appendix.

The question


Why is the impedance significantly higher with the new HL-LHC impedance model, compared to the previous one computed by S. Antipov in 2019?

No crab cavities here (would add high order peaks).

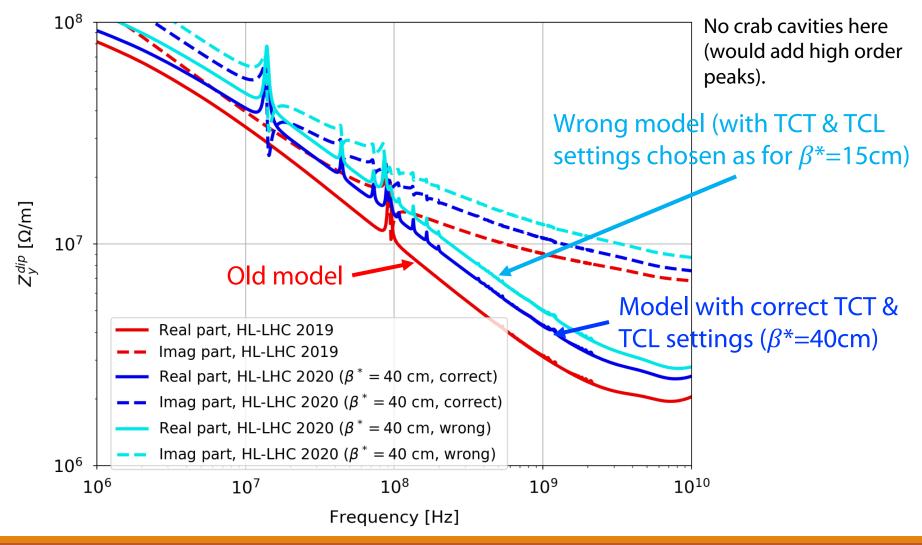

The question

Why is the impedance significantly higher with the new HL-LHC impedance model, compared to the previous one computed by S. Antipov in 2019?

The question

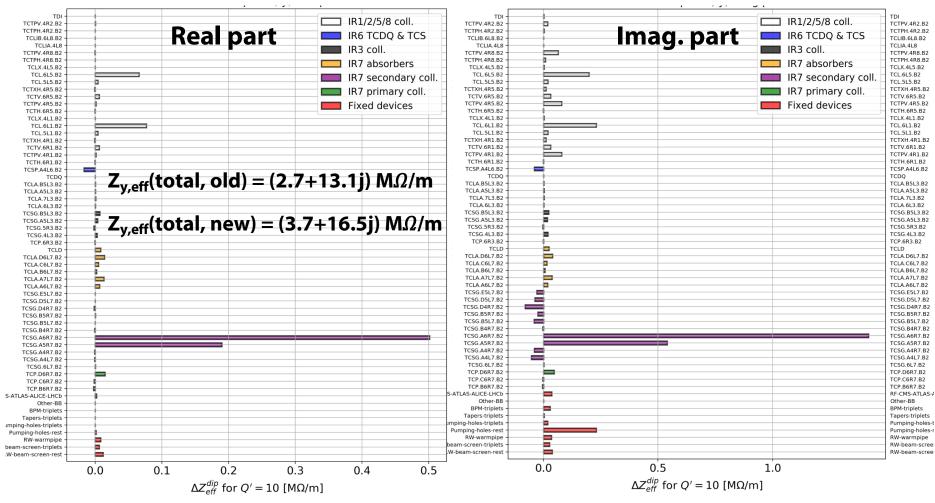
Why is the impedance significantly higher with the new HL-LHC impedance model, compared to the previous one computed by S. Antipov in 2019?

The importance of TCTs & TCLs

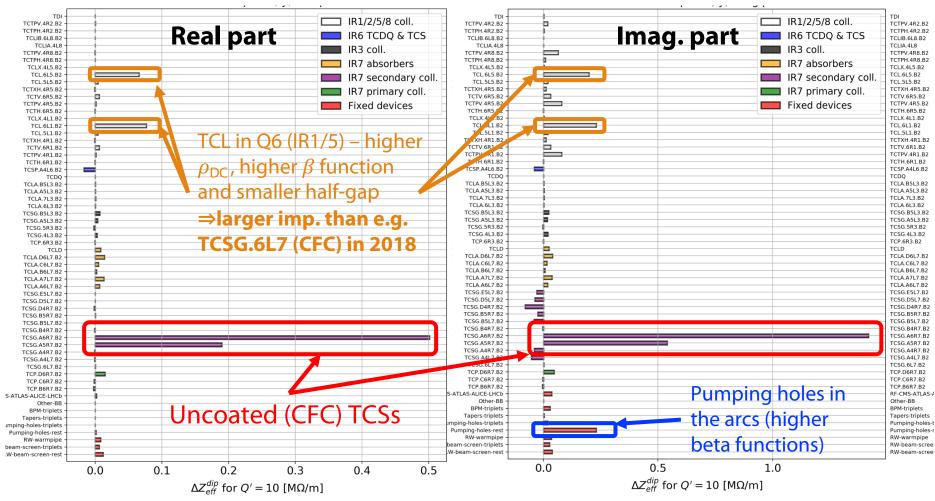

> Collimator settings (σ computed with $\varepsilon = 2.5 \ \mu$ m.rad) at top energy – for two different β^*

Collimators	Half-gap [# σ] $eta^*=$ 15cm	Half-gap [# σ] $eta^*=$ 40cm
TCP/TCS/TCLA(D) IR7	6.7 / 9.1 / 12.7 (16.6)	6.7 / 9.1 / 12.7 (16.6)
TCP/TCS/TCLA IR3	17.7 / 21.3 / 23.7	17.7 / 21.3 / 23.7
TCDQ/TCS IR6	10.1	10.1
TCT IR1/5	10.4	16.4
TCL (IR1/5) Q4/Q5/Q6	14.2	22.4
TCT IR2/8	43.8 / 17.7	35.5 / 17.7

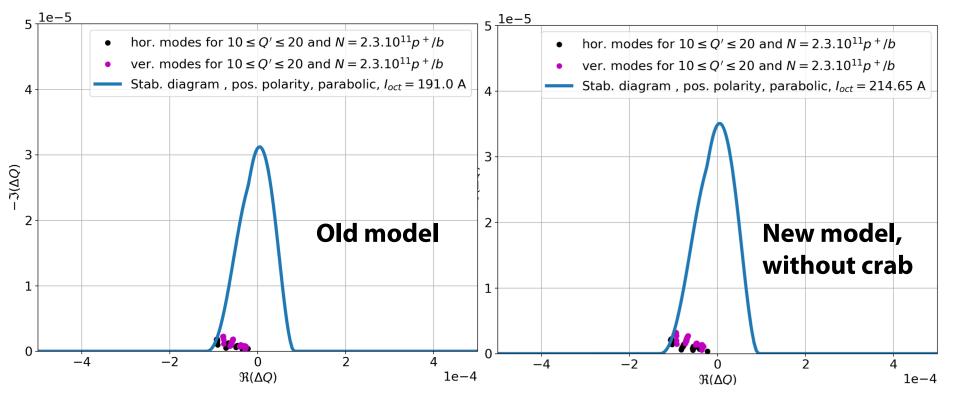
Note: injection protection collimators are always in parking position at top energy.


The importance of TCTs & TCLs

Impact of TCT & TCL settings on impedance:

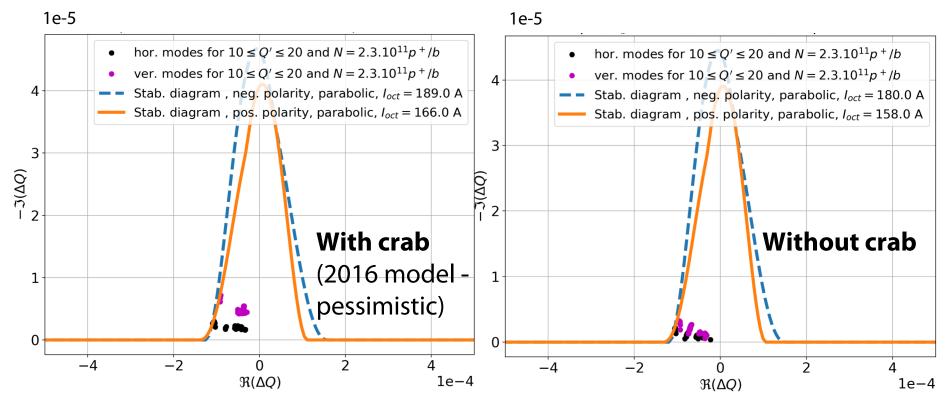

Impedance contributions between old and new models

> Difference in effective impedance (vertical, Q'=10) in single bunch, between old (β^* =48cm) and new (β^* =40cm, no crab) model:


Impedance contributions between old and new models

> Difference in effective impedance (vertical, Q'=10) in single bunch, between old (β^* =48cm) and new (β^* =40cm) model:

Overall impact of new model on stability


Modes inside the stability diagram (N_b=2.3e11 p+/b, 25ns beam, ε =2.1 μ m, $4\sigma_{RMS}$ =1.2ns, 100 turns damper, taking all modes for 10<Q'<20, **no factor 2**), using the same optics (β^* =48cm, no ATS) to get the octupolar tune spread:

 \Rightarrow The impact on stability is ~13% -- the increase of tune shifts for the most critical plane (horizontal) is lower than for the other one.

Impact of the crab cavities

> Modes inside the stability diagram (N_b=2.3e11 p+/b, 25ns beam, ε =2.1 μ m, $4\sigma_{RMS}$ =1.2ns, 100 turns damper, taking all modes for 10<Q'<20, **no factor 2**):

⇒ Despite a quite significant effect on imaginary tune shifts, the impact of crab cavities on stability is small (<10A, i.e. 5%) – note that here, **teleindex~2** as the v1.4 optics with β^* =40cm are used.

Conclusions

- Most significant changes of the impedance model w.r.t. the 2019 one:
 - □ the 2 uncoated secondary collimators,
 - to a lesser extent, the TCLs in Q6 IR1/5 (more resistive, closer, higher beta functions, than in old model),
 - to a lesser extent, the pumping holes in the arcs (higher beta functions in the arcs with 40cm optics).
 - \Rightarrow impact on impedance from +20% to +40%,
 - \Rightarrow overall impact on stability threshold +13% (adding +5% more with crab cavities).
- Crab cavities have a significant effect on imaginary tune shifts but overall a small impact on stability thresholds (conform to specifications).

HL-LHC impedance model

- > Changes w.r.t. the LHC that are **included** in the HL model:
 - Collimator at almost full upgrade (jaws of 2 TCPs and all but 2 TCSs in IR7 replaced by Mo-graphite ones, Mo-coated for the TCSs); some TCTs in Cu-coated copper-diamond; tungsten TCLD absorber in IR7,
 - ✓ Updated collimator tapers,
 - ✓ Beta functions in the arcs and triplets (optics v1.4),
 - ✓ TDIS (with graphite, Ti₆Al₄V and CuCr1Zr),
 - ✓ New MKI-cool 4 of them,
 - New octogonal beam screens in triplets, with up-to-date dimensions, aC-coating, 75K copper, pumping holes and welds (accurate weld & shape factors from C. Zannini),
 - ✓ Updated experimental chambers (ATLAS & CMS),
 - ✓ Tapers and BPMs in the triplets region,
 - ✓ Crab cavities,
 - ✓ Deformable RF-fingers, VAX and Y-chambers in triplet region.

HL-LHC impedance model

- Modifications that are not (yet) in the model:
 - X VELO,
 - **X** experimental chambers ALICE and LHCb, possibly also CMS,
 - **X** new instrumentation,
 - **X** possible aC-coating in some sectors,
 - **X** possible additional collimators in IR1 & 5, TCLD in IR2 (in parking for protons) and updated design of all tertiaries and TCLs, old CFC collimators in parking?
 - X crab cavities HOMs as measured in real cavities,
 - **X** electron lens and crystal collimators (recently added to baseline),
 - X new roman pots,
 - X "SMOG3" in LHCb.