Beam-beam induced crabbing

X. Buffat

HL-LHC WP2 meeting 21.04.2020

Content
, A pesssimistic model based on a simplified incoherent 6D beam-beam kick using the two particle model
, Coherent kick based on Hirata's 6D approach
, Results for the HL-LHC at start and end of collision

Two particle model :

 (Incoherent)Reducing the distribution of N particles into two point-like particles:

$$
N_{0}=\frac{N}{2}, \quad z_{0}=\int_{0}^{\infty} \frac{z}{\sqrt{2 \pi} \sigma_{z}} e^{-\frac{z^{2}}{2 \sigma_{z}^{2}}} \approx \frac{\sigma_{z}}{\sqrt{2 \pi}}
$$

Two particle model :

 (Incoherent)Reducing the distribution of N particles into two point-like particles:

$$
N_{0}=\frac{N}{2}, \quad z_{0}=\int_{0}^{\infty} \frac{z}{\sqrt{2 \pi} \sigma_{z}} e^{-\frac{z^{2}}{2 \sigma_{z}^{2}}} \approx \frac{\sigma_{z}}{\sqrt{2 \pi}}
$$

Two particle model :

 (Incoherent)Reducing the distribution of N particles into two point-like particles:

$$
N_{0}=\frac{N}{2}, \quad z_{0}=\int_{0}^{\infty} \frac{z}{\sqrt{2 \pi} \sigma_{z}} e^{-\frac{z^{2}}{2 \sigma_{z}^{2}}} \approx \frac{\sigma_{z}}{\sqrt{2 \pi}}
$$

Two particle model : (Incoherent)

Reducing the distribution of N particles into two point-like particles:

$$
N_{0}=\frac{N}{2}, \quad z_{0}=\int_{0}^{\infty} \frac{z}{\sqrt{2 \pi} \sigma_{z}} e^{-\frac{z^{2}}{2 \sigma_{z}^{2}}} \approx \frac{\sigma_{z}}{\sqrt{2 \pi}}
$$

Two particle model : (Incoherent)

Reducing the distribution of N particles into two point-like particles:

$$
N_{0}=\frac{N}{2}, \quad z_{0}=\int_{0}^{\infty} \frac{z}{\sqrt{2 \pi} \sigma_{z}} e^{-\frac{z^{2}}{2 \sigma_{z}^{2}}} \approx \frac{\sigma_{z}}{\sqrt{2 \pi}}
$$

Two particle model :

 (Incoherent)Reducing the distribution of N particles into two point-like particles:

$$
N_{0}=\frac{N}{2}, \quad z_{0}=\int_{0}^{\infty} \frac{z}{\sqrt{2 \pi} \sigma_{z}} e^{-\frac{z^{2}}{2 \sigma_{z}^{2}}} \approx \frac{\sigma_{z}}{\sqrt{2 \pi}}
$$

> Neglecting the phase advance between the collision point and the IP, as well as the synchro-beam mapping:

$$
\max \Delta x^{\prime} \approx 0.9 \frac{N_{0} r_{p}}{\gamma \sigma}
$$

Two particle model :

 (Incoherent)Reducing the distribution of N particles into two point-like particles:

$$
N_{0}=\frac{N}{2}, \quad z_{0}=\int_{0}^{\infty} \frac{z}{\sqrt{2 \pi} \sigma_{z}} e^{-\frac{z^{2}}{2 \sigma_{z}^{2}}} \approx \frac{\sigma_{z}}{\sqrt{2 \pi}}
$$

- Neglecting the phase advance between the collision point and the IP, as well as the synchro-beam mapping:

$$
\max \Delta x^{\prime} \approx 0.9 \frac{N_{0} r_{p}}{\gamma \sigma}, \max \Delta x=\Delta x^{\prime} \frac{\sqrt{\beta(s) \beta^{*}}}{2 \sin (\pi Q)}
$$

, The maximum beam-beam induced crab angle is:

$$
\max \phi=\arctan \left(\frac{\max \Delta x}{z_{0}}\right)
$$

Two particle model :

 (Incoherent)Reducing the distribution of N particles into two point-like particles:

$$
N_{0}=\frac{N}{2}, \quad z_{0}=\int_{0}^{\infty} \frac{z}{\sqrt{2 \pi} \sigma_{z}} e^{-\frac{z^{2}}{2 \sigma_{z}^{2}}} \approx \frac{\sigma_{z}}{\sqrt{2 \pi}}
$$

- Neglecting the phase advance between the collision point and the IP, as well as the synchro-beam mapping:

$$
\max \Delta x^{\prime} \approx 0.9 \frac{N_{0} r_{p}}{\gamma \sigma}, \max \Delta x=\Delta x^{\prime} \frac{\sqrt{\beta(s) \beta^{*}}}{2 \sin (\pi Q)}
$$

, The maximum beam-beam induced crab angle is:

$$
\max \phi=\arctan \left(\frac{\max \Delta x}{z_{0}}\right)
$$

$$
\approx 0.9 \sqrt{\frac{\pi}{2}} \frac{N r_{p}}{\gamma \sigma \sigma_{z}} \frac{\sqrt{\beta(s) \beta^{*}}}{2 \sin \pi Q}
$$

Using Hirata's model

- Due to the non-linearity of the beam-beam force (in all d.o.f.) the transverse kick is not linear with the longitudinal position (\sim CC RF curvature)
- We use an average of the beambeam kick over a 6D distribution of particle (i.e. coherent kick, but a not self-consistent treatment)*

Dependence on the crossing angle

$$
\beta^{*}=60 \mathrm{~cm}
$$

, The maximum of crab angle is expressed with the β^{*} such that it can be compared to the CC induced angle

> The analytical estimation is quite pessimistic as expected

- A crab angle of maximum 5 rad can be expected due to the crossing angle
- The contribution from beam-beam is reduced by the CC induced crabbing
- If needed, the contribution from beam-beam and the CC non-closure can be disentangled outside of the IR given that they are out of phase (given the proper hardware, i.e. well placed head-tail monitors)

Dependence on the β^{*}

- Similar conclusions may be drawn for lower β^{*}, in spite of the hourglass effect

