
https://root.cern

ROOT
Data Analysis Framework

Redesign of DeclareCppCallable
How to integrate numba as a first-class citizen

Enrico Guiraud and Stefan Wunsch

https://root.cern


Current status

● We allow to decorate Python callables with ROOT.DeclareCppCallable, which jits a 
wrapper function that can be called from C++

● Main use-case is Python based analysis with RDataFrame

● We support a generic implementation or jitting with numba (see next slide)

2

@ROOT.DeclareCppCallable(["float", "int"], "float")
def pypow(x, y):
    return x**y

ROOT.gInterpreter.ProcessLine('cout << "2^3 = " << CppCallable::pypow(2, 3) << endl;')

data = ROOT.RDataFrame(4).Define("x", "(float)rdfentry_")\
                         .Define("xpow2", "CppCallable::pypow(x, 2)")\
                         .AsNumpy()



Numba and generic

● If nothing is specified, e.g., the numba_only flag,
● we try to jit a standalone function with numba (fast and free of locks)
● otherwise warn the user and fall back to a generic wrapper code that calls 

directly into the Python interpreter (slow and protected by locks / GIL)

3

# This is jitted with numba, enforced by the flag (no fallback to the generic wrapper)
@ROOT.DeclareCppCallable(["float", "int"], "float", numba_only=True)
def pypow(x, y):
    return x**y

# This falls back to the generic wrapper calling into the Python interpreter
@ROOT.DeclareCppCallable(["vector<float>", "int"], "float")
def pypowsize(vec, y):
    return vec.size()**y



Where we would like to improve

● Allow to treat RVecs as numpy arrays
● Proof of concept made by Enrico
● Allows to jit the Python callable ...
● … thanks to some numba magic

● Make numba a first-class citizen
● The usage of numba and the fact that 

the code is very efficient is not visible
● Currently the usage of numba is hidden 

behind an invisible logic

● Protect users from using inefficient code 
generated by the generic wrapper
● The feature will be misused!
● Do we really want to allow this?

● Proposal
● Enhance the Numba approach to RVecs
● Covers most use-cases in Python based 

analysis (NanoAOD, analysis ntuples, …)
● Clean, simple, efficient

4

# Decorator only using numba
# - Allows to use fundamental types and RVecs thereof
# - No fallback to any generic and inefficient implementation
# - Add the feature in the Numba namespace of the ROOT module
# - The types of the arguments in the function are now
#   Python/Numpy arrays or fundamental types

@ROOT.Numba.DeclareCppCallable(["RVec<float>", "int"], "float")
def pysumpow(x: numpy.ndarray, y: int):
    return numpy.sum(x)**y

https://gist.github.com/eguiraud/7c7981179d394633a50a906d446f79ef

