
Valentin Volkl: Key4HEP & EDM4hep

KEY4HEP & EDM4HEP -
Common Software
for Future Colliders

CLICdp Monthly Meeting - 06.04.2020
Valentin Volkl (CERN)

Valentin Volkl: Key4HEP & EDM4hep

Table of Contents

● Key4HEP - Introduction and motivation

● EDM4HEP - Common Data Model Status

● Technical Implementation with PODIO

● Framework Status

● Software Infrastructure and Organisation

● Packaging: Spack for Key4HEP

2

Valentin Volkl: Key4HEP & EDM4hep

Key4HEP Motivation

● Future detector studies critically rely on well-maintained software stacks to
model detector concepts and to understand a detector’s limitations and
physics reach

● We have a scattered landscape of specific software tools on the one hand
and integrated frameworks tailored for a specific experiment on the other
hand

● Aim at a low-maintenance common stack for FCC, ILC/CLIC, CEPC with
ready to use “plug-ins” to develop detector concepts

● Reached consensus among all communities for future colliders to develop a
common turnkey software stack at recent Future Collider Software
Workshop

● Identified as an important project in the CERN EP R&D initiative

3

https://agenda.infn.it/event/19047/
https://agenda.infn.it/event/19047/
https://cds.cern.ch/record/2649646

Valentin Volkl: Key4HEP & EDM4hep

Transition to Key4HEP: Adiabatic Changes

4

● While transitioning to DD4hep, need to
be able to keep running the
reconstruction

● Switch components one by one,
validate changes
○ Geometry provided by DD4hep, no

changes needed
○ Move framework from Marlin to Gaudi:

wrap existing processors
○ Move from LCIO to EDM4hep
○ Replace wrapped processors with native

Gaudi Algorithms
○ Provide installations (Spack)

Valentin Volkl: Key4HEP & EDM4hep

EDM4HEP - Introduction

● Event Data Model:
○ Describes structure of HEP Data:
○ definitions of objects and how they are grouped
○ technical implementation of persistency and processing

● Can be as simple as “Branch names in ROOT file”
○ But more sophisticated solutions can:

○ provide an application programming interface for HEP
software

○ aid developers in writing more efficient code
○ enable collaboration

5

Valentin Volkl: Key4HEP & EDM4hep

Relation Diagram

6

Code Reference under https://cern.ch/edm4hep

Currently (for the next few weeks) available as a beta version before use in production

https://cern.ch/edm4hep

Valentin Volkl: Key4HEP & EDM4hep

Differences LCIO-EDM4hep

● Technical implementation with
PODIO
○ Via PLCIO (F. Gaede)

● LCRelations replaced by
Associations

● Use of unsigned long for CellIDs
○ Instead of two ints

● Missing RunHeader
○ Needs new functionality in

Podio, will come with next
version

● LCIO→ EDM4hep converter
under development by
colleagues from CEPC

7

Valentin Volkl: Key4HEP & EDM4hep

Technical: PODIO

Adapted from “Podio: recent developments in the Plain Old Data toolkit for HEP”

● PODIO is an Event Data Model toolkit for HEP
○ developed in the Horizon2020 project AIDA2020
○ based on the use of PODs for the event data objects (Plain Old Data objects)

● PODIO originally developed in the context of the FCC study
○ addressing the problem of creating an EDM in a generic way
○ EDM described in yaml, C++ code auto-generated
○ Allowing potential re-use by other HEP groups

● PODIO is used since its first release by the FCC studies (see FCC-EDM)

8

Valentin Volkl: Key4HEP & EDM4hep

PODIO Core Features

● Three layers:
○ User layer (API): collections of EDM object

handles, HitCollection
○ Object layer: transient objects (HitObject)
○ POD layer: persistent information

● Clear ownership: objects owned by
EventStore are persisted, other objects
ref-counted

● Python as a first class citizen
● Different I/O implementations, but

currently only ROOT

9

Valentin Volkl: Key4HEP & EDM4hep

Quick access

How to process a edm4hep ROOT file:

With TTree::Draw:

events->Draw(“MCParticles.momentum.x”)

With ROOTDataFrame:

ROOT::RDataFrame df("events", "edm4hep_events.root");
auto df2 = df.Define("MCParticles_pt", edm4hep::pt, {"MCParticles"});
auto h = df.Histo1D(“MCParticles_pt”); h->Draw();

10

Valentin Volkl: Key4HEP & EDM4hep

Quick access

How to process a edm4hep ROOT file:

With PODIO EventStore: (link to complete example)

auto reader = podio::ROOTReader();
auto store = podio::EventStore();
reader.openFile("edm4hep_events.root");
store.setReader(&reader);
auto& mcps = store.get<edm4hep::MCParticleCollection>("MCParticles");
auto mcp1 = mcps[0];
auto mcp1_daughter = mcp1.getDaughters(0);
...

11

https://github.com/HSF/EDM4hep/blob/master/test/read_events.cc

Valentin Volkl: Key4HEP & EDM4hep

Quick access

How to process a edm4hep ROOT file:

With PODIO EventStore, Python:

from EventStore import EventStore
store = EventStore(“edm4hep_events.root”)
for i, event in enumerate(store):
 particles = store.get(“MCParticles”)
 for p in particles:
 print p.momentum()

12

Valentin Volkl: Key4HEP & EDM4hep

Gaudi/Marlin Wrapper

Apart from some naming conventions, very similar ideas in the two frameworks

● To start using Gaudi: use a generic wrapper around the processors
● Prototype: https://github.com/andresailer/GMP
● Read LCIO files and pass the LCIO::Event to our processors
● Currently working on moving the MarlinWrapper from a proof of concept to

being more widely usable

13

Marlin Gaudi

language C++ C++

Working unit Processor Algorithm

Configuration Language XML Python

Set-up function init initialize

Working function process execute

Wrap-up function end finalize

Transient Data Format LCIO anything

Converter from Marlin
to Gaudi steering file
available

https://github.com/andresailer/GMP

Valentin Volkl: Key4HEP & EDM4hep

Key4HEP Core Framework components

Meanwhile, developments on core functionality of the Gaudi-based framework:

● K4FWCore:
○ Data Service for Podio Collections
○ Overlay for backgrounds
○ https://github.com/key4hep/K4FWCore

● K4-project-template
○ Template repository showing how to build new components on top of

the core Key4HEP framework
○ https://github.com/key4hep/k4-project-template

14

https://github.com/key4hep/K4FWCore
https://github.com/key4hep/k4-project-template

Valentin Volkl: Key4HEP & EDM4hep

Software Infrastructure

● Regular meetings
○ https://indico.cern.ch/category/11461/

● Docpages
○ https://cern.ch/key4hep (main documentation site))
○ https://cern.ch/edm4hep (doxygen code reference)

● Modern CMake Configuration
● Automated Builds and Continuous Integration

○ Use of SPACK package manager

● Distribution via CVMFS
○ /cvmfs/sw.hsf.org/
○ /cvmfs/sw-nightlies.hsf.org

15

https://indico.cern.ch/category/11461/
https://cern.ch/key4hep
https://cern.ch/edm4hep

Valentin Volkl: Key4HEP & EDM4hep

CVMFS directory tree

/cvmfs/sw.hsf.org/key4hep/
|-- releases/ $LCG_version / $platform / $pkgname-$spackhash / (bin …)
|-- views / $K4_version / $platform / (bin include share … init.sh)
|-- setup.sh
|-- contrib

/cvmfs/sw-nightlies.hsf.org/key4hep/
|-- nightlies/ $timestamp / $platform / $pkgname-$spackhash / (bin …)
|-- views / $timestamp / $platform / (bin include share … init.sh)
|-- setup.sh
|-- contrib

16

Valentin Volkl: Key4HEP & EDM4hep

CVMFS directory tree:

Try it out on lxplus:

source /cvmfs/sw-nightlies.hsf.org/key4hep/setup.sh

And use it to run a simulation:

ddsim --compactFile
/cvmfs/sw-nightlies.hsf.org/key4hep/views/latest/x86_64-cent
os7-gcc8-opt/DDDetectors/compact/SiD.xml -N 10 -G
--gun.particle pi+ --outputFile my_edm4hep.root
--part.userParticleHandler=''

17

Valentin Volkl: Key4HEP & EDM4hep

Spack for Key4HEP

● Spack is a package manager
○ Does not replace CMake, Autotools, …
○ Comparable to apt, yum, homebrew, ...

○ But not tied to operating system
○ And no central repository for binaries!

● Originally written for/by HPC community
○ Emphasis on dealing with multiple configurations of the same packages

○ Different versions, compilers, external library versions …
○ … may coexist on the same system

○ Spec: Syntax to describe package version configuration and dependencies

● Repository added with Key4HEP package recipes

18

git clone https://github.com/spack/spack.git
git clone https://github.com/key4hep/k4-spack.git
alias spack='python $PWD/spack/bin/spack'
spack repo add k4-spack
install the meta-package for the key4hep-stack
spack install key4hep-stack

http://spack.io

Valentin Volkl: Key4HEP & EDM4hep

Conclusion

● Given the general agreement on moving to a common
HEP software stackfrom future experiments

● Support joint developments between STC/SCT, and also
FCC, ILC/CLIC,muon collider, CEPC

● Common detector geometry descriptions in DD4HEP

● Common event data model EDM4HEP

● Glue it all together with Gaudi in KEY4HEP

19

Valentin Volkl: Key4HEP & EDM4hep

A typical HEP Software Stack

● Interfaces to tracking and reconstruction
libraries (PandoraPFA, ACTS

● (More or less) experiment specific event
datamodel libraries

● Experiment core orchestration layer,
whichcontrols everything else: Marlin,
Gaudi,CMSSW, AliRoot

● Packages used by many experiments:
DD4hep, Pythia, . . .

● Usual core libraries (ROOT, Geant4,
CLHEP,. . .)

● Non-HEP libraries: boost, python, cmake. .
.

20

Valentin Volkl: Key4HEP & EDM4hep

Interoperability

● Level 0 - Common Data Formats
○ Allows interoperability between different programs, even running on different hardware
○ E.g.: HepMC event records, LCIO, GDML, ALFA Messages

● Level 1 - Callable Interfaces
○ Basic calling interfaces defined by the programming languages, language calls possible
○ Can be dependent on the compiler and language version
○ Details are important: error/exception handling, thread safety, dependencies, runtime setup

● Level 2 - Introspection Capabilities
○ Software elements to facilitate the interaction of objects in a generic manner: Dictionaries,

Scripting interfaces
○ E.g.: PyROOT to interact with any ROOT (C++) class via the python interpreter

● Level 3 - Component Model
○ Software components of a common framework offer maximum re-use
○ Standard way to configure components, logging, object lifetime and ownership, plug-in

mechanism
○ Requires adoption of single framework

21

The right interoperability point between packages varies, but choosing it
correctly provides great quality of life for developers and users

