FoCal calorimetry introduction

Gert-Jan Nooren

30 mar 20

FoCal detector for direct photons originating in the QGP

- \otimes there are other particles:
 - charged hadrons, mostly pions
 - muons and electrons
 - neutral particles
- $\ensuremath{\mathfrak{S}}$ there are other photons
 - scattering and radiation in the medium
 - idem in ALICE materials
 - from decay, mostly π^0

particle interactions (1)

- particle loses energy, is absorbed, particles created
- particle changes direction
- neutral particles
 - nuclear interactions
 - photons: photo absorption, compton scattering, pair production

particle interactions (2)

- particle loses energy, is absorbed, particles created
- particle changes direction

- charged particles
 - nuclear interactions
 - electromagnetic interactions:
 - at high momentum: radiative losses
 - energy loss via collisions "ionisation"

energy loss via collisions and radiation

E.M. cascade "shower"

J. C. Street, Journ.FranklinInstitute 227, 6 (1939), 765

The arrangement of apparatus for the study of shower processes. The cloud chamber is expanded immediately following a coincident discharge of the Geiger counters.

Wilson cloud chamber with stereocamera triggered by Geiger tubes

Nikhef displays working cloud chamber in central hall

simple E.M. shower model of Heitler (1953)

- particle number doubles at each interaction
 e → e + γ and γ → e⁻ + e⁺
 ⇒ N(t) = 2^t
- > average particle energy $\langle E \rangle = E_0 / N(t) = E_0 / 2^t$
- multiplication stops when $\langle E \rangle = E_c$ (critical energy)
- ➤ this depth is shower maximum $E_0 / 2^t = E_c$ $\Rightarrow t_{max} = 2\log(E_0 / E_c)$ $\Rightarrow N(t_{max}) = E_0 / E_c$

after shower maximum particle energy < critical energy

- average particle energy decreases photons 'lose energy' via Compton scattering electrons lose energy via ionization
- number of particles decreases slowly:

 $\gamma \rightarrow e^- + e^+$ continues until 1.022 MeV, and $e^+ \rightarrow \gamma + \gamma$ in electric field of nucleus photons lost via photo-effect electrons finally captured

longitudinal profile E.M.

best fit of signal profiles, no theory!

$$\frac{dN}{dt} = N_0 b \frac{(bt)^{a-1} exp(-bt)}{\Gamma(a)}$$

 $t_{\rm max} = {}^{2}\log(E_0/E_{\rm c}) - 0.5 = (a-1)/b \ b \approx 0.5$

hadronic showers

small interaction probability

very diverse shapes, extreme cases:

- pion can lose its charge in first collision π^+ + $A^Z \rightarrow \pi^0$ + A^{Z+1} π^0 decays to photons ($c\tau$ = 26 nm) \rightarrow EM shower
- pion leads to spallation of a nucleus → many neutrons escape from detector → low energy deposit

how to extract the signal

absorbing medium produces signal

homogeneous calorimeter

- semiconductor of heavy material direct electrical signal Ge ($X_0 = 2,3$ cm)
- scintillator of heavy material needs photodetector NaI ($X_0 = 2,6$ cm) ALICE PHOS, CMS ECAL: PbWO₄ ($X_0 = 0.9$ cm)
- © best resolution
- no spatial information

how to extract the signal

separated functions: absorber + detector sampling calorimeter ALICE EMCAL: layers of Pb ($X_0 = 0,6$ cm) and scintillator FoCal: layers of W ($X_0 = 0,35$ cm) and silicon

signal development different from homogeneous calorimeter

gammaspectrum ⁴⁰K E_{γ} = 1.461 MeV

- no showering: $E_c = 18 \text{ MeV}$
- pair production, Compton scattering, photo-effect

EMCAL

- absorber 1.44 mm Pb
- scintillator 1.76 mm plastic
- 77 layers 25 cm 20 X₀
- fibers + APD

PHOS

- crystal coupled to APD
- 18 cm 20 X₀

PbWO₄

what is measured?

A energy / analog

- amount of light from scintillator
- charge from PIN detector
 OR
- D number of particles / digital
 - count hits from pixel detector

Particle Data Book at http://pdg.lbl.gov/

analog

digital

iigitai

spontaneous hits

large signal, linearity

smallest signal

saturation

FoCal

FoCal digital prototype as proof-of-principle

assembly without cooling

beam direction

simulated response (GEANT)

5 GeV/*c* pion, 5 GeV/*c* electron, 10 GeV/*c* muon (Blenkers, 2012)

measured response 244 GeV/c

Figure 3.1: Typical events display for 244 GeV EM shower in top and side view (a, b), for a hadronic shower in top and side view (c, d) and for a track in top and side view (e, f).

FoCal

real life data

part of the detector is not working (correctly) varies over experiments and even runs

30 mar 20

• ALPIDE

