

CLIC Project Meeting #35 - April 29, 2020

Prospects on Muon Colliders

On behalf of the CERN Muon Colliders WG

Thanks to fruitful contribution by many colleagues from

MAP, MICE, LEMMA Collaborations and Donatella Lucchesi, Nikolai V. Mokhov, Mark Palmer, Paola Sala, Vladimir Shiltsev, et al.

Muon Collider Working Group

Jean Pierre Delahaye, CERN, Marcella Diemoz, INFN, Italy, Ken Long, Imperial College, UK, Bruno Mansoulie, IRFU, France, Nadia Pastrone, INFN, Italy (chair), Lenny Rivkin, EPFL and PSI, Switzerland, Daniel Schulte, CERN, Alexander Skrinsky, BINP, Russia, Andrea Wulzer, EPFL and CERN

appointed by CERN Directorate in September 2017

to prepare an Input Document to the European Strategy Update

de facto the seed of a renewed on-going international effort

Input Document to EU Strategy Update - Dec 2018: "Muon Colliders," arXiv:1901.06150 [physics.acc-ph] by CERN-WG on Muon Colliders

FINDINGS and RECOMMENDATIONS:

Set-up an international collaboration to promote muon colliders and to organize the effort on the development of both accelerators and detectors and to define the road-map towards a CDR by the next Strategy update

Carry out the R&D program toward the muon collider: RF, magnets, materials, cooling, targets... → SYNERGIES with other Future Colliders

Technically Limited Potential Timeline

Physics Briefing Book arXiv:1910.11775v2 [hep-ex]

Why a multi-TeV Muon Collider?

cost-effective and unique opportunity for lepton colliders @ \sqrt{s} >3 TeV

The luminosity per beam power is independent of collision energy in linear colliders, but increases linearly for muon colliders Full collision energy available for particle production: 14 TeV lepton collisions are comparable to 100 TeV proton collisions for selected new physics process, **if sufficient luminosity is provided** ~ $10^{35}cm^{-2}s^{-1}$

Strong interest to reuse existing facilities and infrastructure (i.e. LHC tunnel) in Europe

Motivation: Higgs potential

M. Chiesa et al. arXiv:2003.13628 [hep-ph]

determine the Higgs potential by measuring trilinear and quadrilinear self coupling

$$V = \frac{1}{2}m_h^2 h^2 + (1 + \frac{k_3}{2})\lambda_{hhh}^{SM}vh^3 + (1 + \frac{k_4}{2})\lambda_{hhhh}^{SM}h^4$$

Trilinear coupling k_3

 \sqrt{s} =10 TeV $\mathcal{L} \sim 2 \cdot 10^{35} cm^{-2} s^{-1}$

20 $ab^{-1} \rightarrow k_3$ sensitivity ~ 3%

Best sensitivity ~ 5% FCC combined arXiv:1905.03764 [hep-ph] Quadrilinear coupling k_4

$$\sqrt{s}$$
=14 TeV $\mathcal{L} \simeq 3 \cdot 10^{35} cm^{-2} s^{-1}$

~30 $ab^{-1} \Rightarrow k_4$ sensitivity few 10%

significantly better than what is currently expected to be attainable at the FCC-hh with a similar luminosity arXiv:1905.03764 [hep-ph]

This just looking at the Higgs sector! Top and new physics sectors also to be scrutinized

A preliminary comparison

Higgs $b\overline{b}$ Couplings Results

Donatella Lucchesi et al. arXiv:2001.04431v2 [hep-ex] accep. JINST

- The instantaneous luminosity, \mathcal{L} , at different \sqrt{s} is taken from MAP
- The acceptance, A, the number of signal events, N, and background, B, are determined with simulation

\sqrt{s}	A	ϵ	L	\mathcal{L}_{int}	σ	N	В	$\frac{\Delta\sigma}{\sigma}$	Δ <u>g_{Hbb}</u> g _{Hbb}
[TeV]	[%]	[%]	$[cm^{-2}s^{-1}]$	$[ab^{-1}]$	[fb]			[%]	[%]
1.5	35	15	$1.25 \cdot 10^{34}$	0.5	203	5500	6700	2.0	1.9
3.0	37	15	$4.4 \cdot 10^{34}$	1.3	324	33000	7700	0.60	1.0
10	39	16	$2 \cdot 10^{35}$	8.0	549	270000	4400	0.20	0.91

	\sqrt{s} [TeV]	\mathcal{L}_{int} [ab ⁻¹]	$\frac{\Delta g_{Hbb}}{g_{Hbb}}$ [%]
	1.5	0.5	1.9
Muon Collider	3.0	1.3	1.0
	10	8.0	0.91
	0.35	0.5	3.0
CLIC	1.4	+1.5	1.0
	3.0	+2.0	0.9

CLIC numbers are obtained with a model-independent multi-parameter fit performed in three stages, taking into account data obtained at the three different energies

Results published as Detector and Physics Performance at a Muon Collider Accepted for publication JINST

Physics at high energy

Multi-TeV energy scale allows to explore physics beyond SM both directly and indirectly

Direct Reach

Andrea Wulzer

Discover Generic EW particles up to mass threshold

exotic (e.g., displaced) or difficult (e.g., compressed) decays to be studied

Muon Collider Luminosity Scaling

D. Schulte

Fundamental limitation Requires emittance preservation and advanced lattice design Applies to MAP scheme

proton (MAP) vs positron (LEMMA) driven muon source

→ need consolidation to overcome technical limitations to reach higher muon intensities

Proton-driven Muon Collider Concept

US Muon Accelerator Program – MAP, launched in 2011, wound down in 2014 MAP developed a proton driver scheme and addressed the feasibility of the novel technologies required for Muon Colliders and Neutrino Factories

Short, intense proton bunches to produce hadronic showers

Pions decay into muons that can be captured

Muon are captured,Acceleration tobunched and then cooledcollision energy

Design is not complete but did not find anything that does not work

No CDR exists No coherent baseline No reliable cost estimate

"Muon Accelerator for Particle Physics," JINST,

https://iopscience.iop.org/journal/1748-0221/page/extraproc46

Collision

Muon Collider Parameters

M. Palmer: <u>https://map.fnal.gov/</u>

Formilab Site Formilab Site									
		Higgs F	Higgs Factory			old Options	Multi-TeV	Baselines	
									Accounts for
		Startup	Production	Higl	h	High			Site Radiation
Parameter	Units	Operation	Operation	Resolu	ition	Luminosity			Mitigation
CoM Energy	TeV	0.126	0.126		0.35	0.35	1.5	3.0	6.0
Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.0017	0 008		0.07	0.6	1.25	4.4	12
Beam Energy Spread	%	0.003	0.004		0.01	0.1	0.1	0.1	0.1
Higgs* or Top ⁺ Production/10 ⁷ sec		3,500*	13,500*	7,	.000+	60,000 ⁺	37,500*	200,000*	820,000*
Circumference	km	0.3	0.3		0.7	0.7	2.5	4.5	6
No. of IPs		1	1		1	1	2	2	2
Repetition Rate	Hz	30	15		15	15	15	12	6
β*	cm	3.3	1.7		1.5	0.5	1 (0.5-2)	0.5 (0.3-3)	0.25
No. muons/bunch	1012	2	4		4	3	2	2	2
No. bunches/beam		1	1		1	1	1	1	1
Norm. Trans. Emittance, ε_{TN}	r mm-rad	0.4	0.2		0.2	0.05	0.025	0.025	0.025
Norm. Long. Emittance, ε_{LN} / π mm		1	1.5		1.5	10	70	70	70
Bunch Length, σ_s	cm	5.6	6.3		0.9	0.5	1	0.5	0.2
Proton Driver Power	MW	4 [‡]	4		4	4	4	4	1.6

[#] Could begin operation with Project X Stage II beam

Exquisite Energy Resolution Allows Direct Measurement of Higgs Width Success of advanced cooling concepts ⇔ several × 10³² Site Radiation mitigation with depth and lattice design: ≤ 10 TeV

Cooling: The Emittance Path

MICE – transverse 4D cooling

MICE collaboration *Nature* 578 (2020) 7793, 53-59

Key components developments

MERIT @ CERN High power liquid mercury target

FNAL Breakthrough in HTS cables

NHFML 32 T solenoid with lowtemperature HTS

MuCool: >50 MV/m in 5 T field

FNAL 12 T/s HTS 0.6 T max

Recent LEMMA effort

M.Antonelli, M.E.Biagini, M.Boscolo, S.Guiducci, P.Raimondi, A.Variola et al.

Asymmetric collisions $e^+e^- \rightarrow \mu^+\mu^-$ at the $\mu^+\mu^-$ threshold ($\sqrt{s} \approx 0.212$ GeV)

- maximize $\mu^+\mu^-$ pairs production cross section
- minimize the $\mu^+\mu^-$ beam angular divergence and energy spread

Extremely promising:

muons produced with low emittance → "no/low cooling" needed

But difficult:

- ✓ **low** production **cross section**: maximum $\sigma(e^+e^- \rightarrow \mu^+\mu^-) \sim 1 \,\mu b$
- high heat load and stress in μ production target
- ✓ synchrotron power O(100 MW) ← available 45 GeV positron sources

→ need consolidation to overcome technical limitations to reach higher muon intensities

Muon Beams Induced Background

On-going simulations and studies for mitigation even with existing/future tunnels 16

300

Neutrino Radiation Hazard

On-going simulations and studies for mitigation even with existing/future tunnels

be verified

Conclusions

A Muon Collider has the potential to largely extend the energy frontier:

- ➔ an immense physics reach
- → detector studies with beam induced background recently proved physics feasible
- → a possibly affordable cost and power consumption exploiting existing tunnels

MAP studies addressed design issues from muon production to final acceleration:

- → proton driver option can be used NOW as baseline for a CDR @ 3 and 10 TeV
- → however a 6D cooling TEST FACILITY is MANDATORY to demonstrate feasibility
 - Opportunity for particle physics with intense stored muon beam

A new idea not requiring 6D cooling – **LEMMA** – could represent an appealing scheme:

→ further studies and solid R&D program needed for such positron driven option

Recent Tentative Target Parameters

D. Schulte – CERN Muon Collider Meeting <u>https://indico.cern.ch/event/886491/</u>

Parameter	Unit	3 TeV	3 TeV [*]	10 TeV	10 TeV*	14 TeV	14 TeV*
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	1.8	20	20	40	40
Ν	10 ¹²	-2 -2.2	_2_ 2.2	1.8	1.8	1.8	1.8
f _r	Hz	-6- 5	35 29	-4-5	-10- 12	-4-5	-79
P _{beam}	MW	5.8 5.3	34 -32	12.8 -14.4	32 -35	18 –20	32 -37
С	km	4.5	26.7	10	26.7	14	26.7
	Т	7	1.2	10.5	3.9	10.5	5.5
ε	MeV m	7.5	7.5	7.5	7.5	7.5	7.5
σ _E / Ε	%	0.1	0.1	0.1	0.1	0.1	0.1
σ _z	mm	5	5	1.5	1.5	1.07	1.07
β	mm	5	5	1.5	1.5	1.07	1.07
3	μm	25	25	25	25	25	25
σ _{x,y}	μm	3.0	3.0	0.9	0.9	0.63	0.63

Adjust for staging, G = 1 MV from 1.5 to 5 TeV, or 1.3 MV from 1.5 TeV to 7 TeV

*Use of LHC tunnel for collider

Next steps

Muon Colliders is a unique opportunity at the high-energy frontier

- Several teams from different countries already contributed to present knowledge
- The on-going work is fostering the preparation of an organized study:
 - identification of feasibility issues and potential incremental steps
 - resurrect studies of Muon Colliders taking advantage of the enormous progress already done
 - identify resources required to address most critical issues
 - launch international collaboration on Muon Colliders covering Physics, Detector and Accelerator
- Synergies with other future accelerators can be easily identified for example on:
 - high field magnets and fast ramping magnets with efficient energy recovery
 - efficient RF power production and high field cavities
 - robust targets
 - techniques for the large acceptance, rapid acceleration (RLA, LEMMA and other applications)

A strong recommendation for a vigorous R&D on Muon Colliders would be key to enforce the international collaboration needed to promote the development of such a novel and promising project for the future of High Energy Physics

Thanks to all who contributed

Past experiences and new ideas discussed at the joint ARIES Workshop July 2-3, 2018 – Università di Padova – Orto Botanico

https://indico.cern.ch/event/719240

Preparatory meeting to review progress for the ESPPU Simposium April 10-11, 2019 – CERN – Council Room

https://indico.cern.ch/event/801616

Future Plans @ CERN October 9-11, 2019

https://indico.cern.ch/event/845054/

ECFA – Novel Accelerator Technologies @ CERN November 14, 2019

https://indico.cern.ch/event/847002/

Muon Collider General Meeting – remote March 31, April 1-2, 2020 https://indico.cern.ch/event/886491/

extras

Briefing Book Tentative Timeline (2019)

		CDRs				TDRs				ally limite			Imite	
R&D d	etectors	Prototy	/pes			Lar	Large Proto/Slice test					chni	cann	
MDI & detector simulatio]							1	ee		
1	3	D	7	Ø	6	10	7	12	13	14	15	16	17	year
Limited O Mainly p design And som hardware compone	Limited Cost Mainly paper design And some hardware component R&D			or te otype sour	or test Higher co technical design otypes Significan sources Significan			cost cal cant ces	ost for I Higher cost for prepar ation			Full pro	l ject	
Design	/ models	Protot	Prototypes / t. f. comp				. Prototypes / pre			/ pre	-seri	es		
Ready to decide on test facility Cost scale known			Ready to con to collider Cost know			ommit Ready to constru			l o ct					

Target Parameter Examples

	Muon Collid	er Paramete	ers M	s M. Palmer: <u>https://map.fn</u>			
		<u>Higgs</u>		<u>Multi-T</u>	eV		
					Accounts for		
		Production		Site Radiat			
Parameter	Units	Operation			Mitiaation	L	
CoM Energy	TeV	0.126	1.	3.0	6.0		
Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.008	1.25	5 4.4	12		
Beam Energy Spread	%	0.004	0.2	. 0.1	0.1		
Higgs Production/10 ⁷ sec		13,500	37,500	200,000	820,000		
Circumference	km	0.3	2.5	6 4.5	6		
No. of IPs		1		2 2	2		
Repetition Rate	Hz	15	1.	5 12	6		
β*	cm	1.7	1 (0.5-2)	0.5 (0.3-3)	0.25		
No. muons/bunch	10 ¹²	4		2 2	2		
Norm. Trans. Emittance, ϵ_{TN}	π mm-rad	0.2	0.025	0.025	0.025		
Norm. Long. Emittance, ϵ_{LN}	π mm-rad	1.5	7) 70	70		
Bunch Length, σ_s	cm	6.3		L 0.5	0.2		
Proton Driver Power	MW	4		1 4	1.6		
Wall Plug Power	MW	200	216	5 230	270		

Even at 6 TeV above target luminosity with reasonable power consumption But have to confirm power consumption estimates

e-groups towards an international collaboration

E-group: MUONCOLLIDER-DETECTOR-PHYSICS MUST-phydet@cern.ch

> E-group: *MUONCOLLIDER-FACILITY* MUST-mac@cern.ch