

Instrumentation and controls challenges

Juan Casas CERN AT

- 1. Main Challenges for selection, qualification, procurement and commissioning
- 2. LHC Instrumentation for the standard cell: Original P&ID
- 3. LHC Environmental Constraints
- 4. Hardware Selection and Qualification
- 5. Rad-Hard Hardware
- 6. Rad Tol Electronics
- 7. LHC Instrumentation in Operation
- 8. Non Conformities
- 9. LHC Controls
- 10. Conclusion

Main Challenges

- The LHC instrumentation and control is distributed over the 27 km long tunnel and about 30 protected areas; requiring extensive use of fieldbus networks and scattered remote IO.
- The Radiation environment complicates significantly the selection and qualification for the LHC components installed inside the tunnel.
- Cost Mitigation requested to minimize the cabling budget imposing the procurement of radiation tolerant electronics.
- The sheer size of the LHC cryogenics is simply enormous requiring state of the art control systems for feedback closed control loops, monitoring and data storage.
- Requires a robust Quality Assurance policy.
- Automatic procedures for generation of control programs and for commissioning tasks are a necessity.

LHC Standard Cell Intrumentation

Juan Casas

LHC Environmental Constraints

LHC environment is industrial in what concerns: temperature, humidity, electromagnetic noise, ... But very HOSTILE close to the beam in what concerns RADIATION

- > The most stringent LHC requirements are:
 - Radiation Qualification at ambient and <u>cryo</u> conditions for tunnel equipment: sensors, actuators, electronics and fieldbus
 - Temperature Readout at 1.8 K: TARGET: +- 0.01 K (shared between sensors and electronics) over 10 years Measurement uncertainty reduces the control range
 => Cernox from Lake Shore (USA)
 - Capability to performs large series calibrations with unprecedented

- Electrical signals for temperature and pressure sensors: few tens of mV
 required uncertainty on voltage measurement 0.4.% on read
 - required uncertainty on voltage measurement 0.4 % on readout
 - => Resistance Bridge Configuration for RadTol
 - => Require Rad-Tol 14-bit ADC

Rad-Hard/Tol Hardware

Sensor	Location	Qty	Туре		
Lhe Level Gauge	Lhe-II phase Separator, DFB, Stand Alone	528	Superconducting Wire		
	Magnets	520			
Pressure Sensor	Magnets, QRL, DFB	694	Strain Bridge		
Pressure Sensor	RF Cavities	8	Profibus PA		
Thermometers		9564			
	Current Leads	3300	Pt 100		
	QRL, Magnets, RF, etc	5400	Cernox		
	QRL, Magnets, RF, etc	336	Pt 100		
	Electrical Heaters	528	Pt 100 & Type-J thermocouple		
GH/GL/PS Signals	ON-OFF Valves and Pressure Switches	1152	Mechanical Switch		
Actuator	Location	Qty	Туре		
Control Valves	QRL	1436	Profibus PA		
Control Valves	Current Leads	1184	Analogue		
ON-OFF Valves	QRL	374	Pneumatic		
Quench Valves	QRL	342	Pneumatic		
Electrical Heater	All	2462	Electrical resistor		
Electronics	Location	Qty			
Crate (Cabinet)	Under main dipole, protected areas	853	Mechanical Assembly		
Power Source Card		1184			
Temperature -		4502	COTS based Design		
Pressure Card	Crate	4502			
Sc Level Crad	Clate	413			
Digital In Card		317			
FIP comm card		1266			

About 20% of the sensor channels are not equipped with dedicated conditioning electronics; either for redundancy or cost savings.

Juan Casas

Juan Casas

Rad-Hard Hardware: LHe Radiation Tests

Juan Casas

Rad-Hard Hardware : Thermometer Radiation Effects

1st June 2007

- Arc @ dipole: 4 10¹² n/cm2
- Arc @ Quad: 10¹³ n/cm2
- DS: 10¹³ to 10¹⁵ n/cm2
- LSS: > 10¹³ to **VERY HIGH** n/cm2
- Radiation Hardness is better for "amorphous materials"

Radiation Tolerant Electronics shall be used in the LHC tunnel (apart the Long Straight Sections) Why? : Cost of Cabling & Signal Integrity Expected Total Integrated Dose (TID) over a 10 year lifespan: 10 to 50 Gy (5 E11 to 2.5 E12 neutron/cm^2) Although for DS 1 & 5 doses could increase x 40

Radiation causes:

- Shifting of analog electronics characteristics (gain, offset, etc.)
- Single Event Effects (SEE) in digital circuits

Irradiation testing were carried at:

- CERN: TCC2 area (presently dismantled) for LHC like radiation on complete systems
- PSI (CH) and Louvain (BE) for fast particles or SEE on particular Integrated Circuits
- ITN (PT) for neutron damage on analog electronics and subsystems

Rad-Tol Electronics: Front End Design

Analog Readout based on:

- 1. a comparison bridge providing excellent performance against TID and temperature effects
- 2. a quarter micron ASIC using IBM technology
- 3. COTS for OP-Amps, ADCs, DACs and passive components
- 4. Anti-fuse FPGAs with triplicated logic
- 5. Micro FIP C131 WorldFIP bus controller

Digital Circuits are sensitive to SEE and "most" SEE can be corrected by using appropriate algorithms

SEE Effects probability depend "0" to "1" or "1" to "0"

All circuits are degraded by Total Integrated Dose (TID) The most "fragile" circuit used is the ADC that limits the Radiation Tolerance to about 400 Gy

Tests are done with very high dose rates

=> Annealing may improve the actual radiation tolerance of the electronics

Juan Casas

LHC Instrumentation in Operation: LHC Thermometry in Sector 78

Juan Casas

LHC Instrumentation in Operation: LHe-II Thermometry

LHC cell: "Isothermal" over 107m

 \Rightarrow Temperature reproducibility typ. Better than 0.01 K

In-situ calibration is unfeasible within the control requirements (0.01 K)

1st June 2007

Data from 25 April 2007 03:00 AM

Non Conformities

Non conformities can occur at any step from delivery to commissioning.

- LHe level gauges and pressure transducers: forbidden internal wire insulation material found during destructive sample tests
 - => All the production was repaired
- LHe level gauges fabrication tolerances are worse than expected as found by X-ray tests and field measurements
- Apart thermometers and heater all instruments can be replaced
 => 100% operational status can be obtained
- Temperature sensors are fragile and damage rate depend on the mechanical complexity of the sensor "host": For the cold-masses and QRL the rate of damaged sensors are respectively 3% and <1%</p>
- Unforeseen operational status during software commissioning can also damage equipment: one such event concerned the accidental powering of electrical heaters

Overall non conformities are well under control and the present status for the instrumentation is adequate for the LHC operation.

LHC Controls

The LHC control is based in the UNICOS framework, it provides:

- 1. the Programmable Logic Controllers (PLC) and associated hardware
- 2. Programming rules and code library for common objects (valves, analog inputs, etc)
- 3. Automated tools for writing control code
- 4. Gateways based in an industrial pc for WorldFIP based signal conditioners
- 5. Control level communication via Ethernet between gateways <-> PLC and PLC <-> PLC
- 6. Event driven communication protocol between PLC <-> SCADA
- 7. SCADA based in PVSS with generic widgets, look and feel and shared data server.

The control system is:

- clustered (refrigerators, interconnection boxes, cold-compressors, etc)
- distributed (tunnel, over 3.3 km for each sector)

WorldFIP gateways provide the instrumentation engineer with a dedicated diagnostics and configuration interface

LHC Controls: Channel Count

	Tunnel	4.5 Refrigerator	Cold Compressor	QUI	Common	TOTAL
Analog Inputs	12136	5216	2640	1128	216	21336
Analog Outputs	4856	1140	608	292	112	7008
Digital Inputs	4536	8100	3984	1144	592	18356
Digital Outputs	1568	956	1184	232	272	4212
Closed Loop Controllers	3680	548	328	100	48	4704

The Control system for the LHC cryogenics (excluding the refrigerators for the LHC experiments) is huge with more than 60'000 IO channels.

- The tunnel represent about 50% of the analog channels and about 75% of the closed control loops.
- At a refrigerator point it is installed: a cluster of PLCs (each dealing with a cryogenic sub-system) that communicate via a technical Ethernet network and share the SCADA system
- Hardware requirements are different for clustered and distributed controls. Clustered systems are delivered with a complete instrumentation ready to be connected to the respective PLC inputs/outputs

55616

LHC Controls: Architecture

LHC Controls: Tunnel Architecture

Juan Casas

LHC Controls: Tunnel Software Generation

We rely extensively on databases for (1) manufacturing files for the Rad-Tol hardware and (2) software production.

Databases provide a robust environment to improve coherence between software parameters, actual equipment characteristics (type, calibration,..) and SCADA The main drawback is that minor modifications are very cumbersome

Juan Casas

Conclusions

1st June 2007

The instrumentation and control system has been commissioned for sector 78 and for the QRL in sector 81.

The thermometer channels performance is within the expectations in spite of a very ambitious goal in what concern targeted uncertainty and large scale deployment. Previously, such an uncertainty was obtained within a laboratory environment or with a much smaller facility.

The QA procedures for main component manufacturing permit to track the correspondence between main assembly and sensor serial number; this is required for individually calibrated instruments.

The control system is operational: for the first sector it has been able to cope with all the controlled variables but as any new project there are still some bugs to be corrected in order to improve the overall performance.

The database environment used for defining the control system is very reliable and it provides a robust frame for long term operation and the related maintenance tasks. However in the initial commissioning phase it lengthens significantly small corrections or improvements as many pieces of code need to be created and then loaded into the controllers.

The next challenges are to verify the performance of the instrumentation in what concerns immunity against electromagnetic noise when all LHC systems are operational and against the background radiation that will be present once the particles beam starts circulating.