

LHC experiment cryogenics

Cooling methods of the large superconducting magnets for LHC experiments

Goran Perinić, AT-ECR

Contents

From 1877 to 2007

➤ ATLAS-CS, -BT, -ECT and CMS –

What is similar?

➤ ATLAS-CS, -BT, -ECT and CMS –

What is different?

Geneva 1877

(1845-1916)

Goran Perinić, AT-ECR

l'Oxygène (1878)

CERN – BEBC to LEP

BEBC (1972)

OMEGA (1973)

ISR (1976)

immersion

61 mm

immersion

supercritical He with re-cooling

with No-1118 mm

Ø 1.5

Goran Perinić, AT-ECR

CERN – BEBC to LEP

Dipole (1978)

M1-EHS (1980)

ALEPH (1987)

1) F.C.B.C. 2) COILS 3) IRON YOKE 4) EXPANSION SYSTEM multifilament superconductor

18 mm

forced 2-phase flow

immersion

thermosiphon

Goran Perinić, AT-ECR

Goran Perinić, AT-ECR

What is similar? I

- composite Al-stabilized conductors
- indirect cooling via the coil support
- operation temperature 4.5-4.8K
- cool-down with a maximum temperature gradient of 40K

What is similar? II

30.05.2007

materials and bonding

Coil support	AI 5083 H321	AI 5083	AI 5083	AI 5083
Cooling	AI 6060 T5	AI 6063	Al 1070	AI 6061 T4
channels	welded on	welded on	glued on	glued on
Shield	AI 3003 H22	AI	AI 3003 H22	AI 5083
Shield cooling channels	Al 6082	Al 6063	Al 1070	Al 1070
	welded on	welded on	welded on	welded on

Where are the differences? I

the helium circulation \succ

CMS

details in presentation by P. Bredy

5.3 m

ATLAS-CS

thermosiphon

forced 2-phase flow + thermosiphon up to 7g/s driven by refrigerator

common forced 2-phase flow BT 700 g/s + ECT 2 x 250 g/s driven by helium pump

Goran Perinić, AT-ECR

Where are the differences? II

> the helium circulation

	CMS	ATLAS-CS	ATLAS-BT/ECT
static heat load	180 W	11 W	BT 8x 80 W+
			ECT 2x 200W
max. height difference	12 m	13 m	20 m
cooling pipe dimensions	🖸 14 / 20 mm	© 18 / 24 mm	BT 🖸 14 / 20 mm
			ECT 🛈 15.7 /24 mm
phase separator vol.	800	280 I	4600 I
LHe inventory – phase sep.	150 I	180 I	2700 I
LHe inventory – cool. pipes	355 I	30 I	BT 800 I + ECT 500 I

Goran Perinić, AT-ECR

Where are the differences? III

the helium circulation

	CMS	ATLAS-CS	ATLAS-BT/ECT
① p ₁ ; T ₁ ;	1,25 bar; 4,4 K (sat.)	1,35 bar; 4,5 K (2-ph.)	1,7 bar; 4,65 K (subc.)
X ₁	0 %	5 %	0 %
mass flow	<u>200-400 g/s</u>	< 7 g/s	700 g/s + 500 g/s
2 p ₂ ; T ₂ ;	1,25 bar; 4,4 K (2-ph.)	1,3 bar; 4,5 K	1,67 bar; 4,8 K
X ₂	up to 10 %	<u>up to 33 %</u>	<u>up to 8 %</u>

values variate in dependency of the heat load (static load, dynamic load)

Goran Perinić, AT-ECR

Conclusion

Four new superconducting magnets have been built for the LHC experiments <u>thanks to</u> an extensive <u>collaboration</u> in between <u>CERN</u>, <u>external institutes and industrial</u> <u>suppliers</u>. The new magnets surpass anything built before at CERN and elsewhere.

The magnet cooling methods have been chosen in dependency of the magnet design. They represent a consistent development of the technologies and experiences gained from previous projects at CERN.

The cooling systems have been designed and built for the long term operation.

Collaboration and Suppliers

- ATLAS collaboration
- CEA Saclay, Gif-sur-Yvette, France
- CERN, Geneva, Switzerland
- CMS collaboration
- INFN, Genova, Italy
- KEK, Tsukuba, Ibaraki, Japan
- ➢ INFN-LASA, Milan, Italy
- JINR Dubna
- ➢ NIKHEF, The Netherlands
- Rutherford Appleton Laboratory, Chilton, Didcot, UK
- probably incomplete

- Alstom Switzerland
- Ansaldo
- Austrian Aerospace
- Criotec Impianti
- EAS (VAC)
- Felguera CM
- Furukawa Co. Ltd.
- ➢ Hatehof
- Hitachi Co. Ltd.
- Nihon Sanso Co. Ltd.
- Outokumpu (EM)
- Schelde Exotech
- Taiyo Keisoku Co. Ltd.
- > Technicatome
- > Toshiba Co. Ltd.
- Yokogawa AIM Co. Ltd.
- Zanon Spa
- probably incomplete

