

Cryogenics for ATLAS and CMS Experimets

N. Delruelle on behalf of AT-ECR group

➢Basic choices prior tendering

≻Helium refrigerators

Proximity cryogenics

Conclusions

Introduction (1)

- Magnet system = 1 supercond. solenoid
 => magnetic field for inner tracker and muon chambers.
- ≻<u>ATLAS</u>
 - Magnet system =
 - 1 supercond. solenoid => longitudinal field for inner tracker

+

3 toroid magnets => tangential field for muon spectrometers

Introduction (2)

Introduction (3)

N.Delruelle (CERN)

31-May-2007

Basic choices prior tendering

>Helium refrigerators

Proximity cryogenics

Conclusions

Common philosophy for CMS_ATLAS

- Magnet system sub-divided into 3 parts:
 - –Internal cryo = cooling circuits for coils and magnet thermal shields
 - Proximity cryo = auxiliary equipment for the magnet operation (phase separator, current leads, helium pump and distribution valves)
 - -External cryo = production and control of the helium cooling power (refrigerators and transfer lines)

• Use of LN₂ precooler for 300K-100K cool-down, then expansion turbines for steady-state.

Why?

To avoid over-dimensioning of refrigerators for only 2-3 weeks of cool-down per year.

- Thermal shields cooled with He turbines.
- "Sufficient" buffer volume with LHe to always ensure a "slow dump" of magnet (5 hours for CMS, 2 hours for ATLAS), even in case of refrigerator stop (power failure, etc.)

Common components for CMS-ATLAS

• Use of screw- (and not piston-) compressors for the refrigerators.

Why?

- Smaller, less noisy, over lubricated, lower operating temperature (=>no oil-change), lower vibration level => lower maintenance costs.
- Higher pressure ratios per unit.
- Use of gas-bearing expansion turbines (and not oil-lubricated).

Why?

- Maintenance-free with MTBF ~ 40'000 hours.
- No pollution of the expanded fluid.

Specific features of CMS magnet

Requirements	Solenoid	
Isothermal load at 4.5K	800 W	
Non-isothermal load 60K-80K	4′500 W	
Liquefaction load	4 g/s	
Cool-down time for 300K -> 100K	2 weeks	

Simple cylindrical piping distribution for solenoid
 => <u>Thermosiphon cooling</u> is possible.

31-May-2007

Specific features of ATLAS magnets

Requirements	Solenoid	Barrel	End Caps	Prox. + Ext. cryogenics
Isothermal load at 4.5K	80 W	660 W	360 W	1′300 W
Non-isothermal load 40K-80K	500 W	6′600 W	4′500 W	1′900 W
Liquefaction load	0.8 g/s	3.4 g/s	6.8 g/s	
Cool-down time for 300K -> 100K	3 weeks			

- Re-use of existing 6 kW@4.5K fridge
 - But insufficient for:
 - reasonable cool-down time of magnets;
 - thermal shields loads between 40K-80K.
 - => second refrigerator needed and used for:
 - cool-down from 300K to 100K (boosted with LN₂);
 - shields operation.
- Complex piping distribution for 3 toroids
 => use of one centrifugal pump providing 1'200 g/s (~10 L/s) of saturated He.
 - Two-phase stability if:
 - mass flow rate/area > 4 $g.s^{-1}.cm^{-2}$
 - vapour mass fraction at coils outlet < 10%.

➢Basic choices prior tendering

>Helium refrigerators

Proximity cryogenics

Conclusions

Helium refrigerators (1)

- ➢<u>CMS refrigerator</u>
 - Duties:
 - -<u>Cool-down from 300K -> 100K</u> of solenoid (225 t).
 - 30 kW power required for 2 weeks per year => boosting by a LN₂ precooler;
 - –<u>Cool-down from 100K -> 4.5K</u> only with expansion turbines in an other 2 weeks;
 - Steady-state operation @ 4.5K.
 4'500 W between 60K and 80K for shielding 800 W refrigeration power @ 4.5K
 4 g/s (~115 L/h) of liquefaction.

Helium refrigerators (2)

➢ATLAS Shield Refrigerator

- Duties:
 - <u>Cool-down from 300K -> 100K</u> of all magnets (660 t).
 60 kW power required for 3 weeks per year => boosting by a LN₂ precooler;
 - <u>Keep thermal shields between 40K and 80K</u> during steady-state operation.
 20 kW power only with expansion turbines.

- ➢ATLAS Main Refrigerator
 - Duties:
 - –<u>Cool-down from 100K -> 4.5K</u> of all magnets (660 t).
 - <u>Steady-state operation @ 4.5K</u>.
 Equivalent power of 6 kW @ 4.5K, from which 11 g/s (~317 L/h) of liquefaction are withdrawn for current leads cooling.

Helium refrigerators (5)

➢Basic choices prior tendering

>Helium refrigerators

Proximity cryogenics

Conclusions

Proximity cryogenics (1)

CMS Solenoid

Proximity cryogenics (2)

ATLAS Solenoid

Proximity cryogenics (3)

Valve box

➢Basic choices prior tendering

>Helium refrigerators

Proximity cryogenics

Conclusions

Conclusions

- To ease the sub-contracting of the CMS and ATLAS cryoplants, <u>we have divided</u> <u>their magnet system into 3 parts</u>: internal, proximity and external cryog.;
- <u>Use of LN₂ during 2-3 wks/year of cool-</u> down to avoid fridge over-dimensioning;
- <u>Large LHe buffer volumes to</u> always <u>ensure a "slow dump"</u> of all magnets;
- <u>The 3 Helium refrigerators</u> for CMS and ATLAS fulfill both detectors requirement and <u>are ready for LHC operation</u>.

N.Delruelle (CERN)

31-May-2007