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• The thermosiphon principle (example of two phase )

– Self sustained natural boiling convection– Self sustained natural boiling convection
• Heating applied (Heat to be removed)

– Boiling
– Weight unbalance between legs of a loop

Induced flow limited by friction– Induced flow limited by friction

Q
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Single channel Loop



• Rising heat exchangers with various geometry 
• A mass flow and a flow quality deduced from geometry and heat load

k h ll d h d d• An upper tank –the well-named phase separator- is needed
– to recover  gas and to supply supply  or condensation of gas (cryocooler)
– for separation of the two phases

ΔP flow (m,x,geometry)

ΔP (x, hi)

Hyp: homogenous model
(x << 10%)
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Advantages vs Inconveniences
f fl N d h h• A passive creation of flow

– no pumps or regulation valves
• Need a minimum height

– Pressure head to create flow

• Autonomy in case of external 
cryogenic failure (volume of liquid 
in the phase separator)

• Circuit geometry must avoid 
any high point or strong 
i l itiin the phase separator)

• Minimization of the liquid 

singularities
– separation of the phases
– risk of vapor lockq

volume
– use of the phase separator 

as a back-up volume for liquid

p

• No possible external action
d p ssibl f st ti fas a back up volume for liquid

• A quasi-isothermal loop

– and a possible frustration for 
the operator ! 

- mainly function of height • Pre-cooling before starting 
the ThS effect
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Examples of 
applications on largeapplications on large 
superconducting 
magnets with LHe/GHe magn ts w th LH /GH
loop at Tsat

ATLAS CS (LHC)S CS ( C)
CMS (LHC)…

ALEPH (LEP)

SMS G0 (JLAB)
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PANDA, R3B (GSI)…

CLOE (CORNELL)



CMS
Phase separator cryostat

• 220 tons at 4.5 K

• 174 to 500 W at 4 5 K• 174 to 500 W at 4,5 K

• 5 modules

• 86 parallel exchangersCoil cryostat • 86 parallel exchangersCoil cryostat

X 2 X 5
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CMS thermosiphon
Phase separator cryostat (892 l GHe+LHe)

C i

First global calculation : 
x = 3,5 % ( 6,5% in SD)
m = 200 g/s ( 400 g/s in SD)

Cryogenic
chimney Thermosiphon loop (350 l)

TopLHe supply pipe ∅ 60.3 x 1.6
5 LHe/GHe return pipes ∅
48.3 x 1.6

Outlet 
manifolds
(∅ 45 x 2 5)

CB-2 CB+1CB0CB-1

(∅ 45 x 2.5)

CB+2

Heat 
exchangers
(∅i 14)

Bottom
Inlet manifolds
(∅ 45 x 2 5)

(∅i 14)
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(∅ 45 x 2.5)



CMS R&D
Height between LHe tank

eAltitude 0

Height between 
outflow and liquid 
level

LHe tank

Upstream

(3.04)

Venturi
flowmeter

Upstream
line (4.56)

Collecting manifold 
(∅ 0.04)

7 heat
exchanger 
tubes (5 00 )

Experimental 
test loop 
scaling CMS

Distributing 
if ld (∅ 0 04)

tubes (5.00 )

Hydrostatic head  
9.22
(level at 50 %)

scaling CMS 
design

8PhB, Symposium for the inauguration of the LHC Cryogenics, CERN, 31/05 & 01/06/2007

manifold (∅ 0.04) (level at 50 %)



CMS R&D
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CMS R&D
• Self-sustained circulation with the heat depositedSelf sustained circulation with the heat deposited

(on experimental test loop)

4.80 K

150 W

4.72 K
total mass flow vs different heat loads

100 W

125 W

150 W

4.64 K75 W

100 W

4.56 K

4.48 K

50 W

temperatures

4.40 K
0 W

25 W
temperatures

ti

10PhB, Symposium for the inauguration of the LHC Cryogenics, CERN, 31/05 & 01/06/2007

time



CMS on site
• Self-sustained circulation with the heat depositedSelf sustained circulation with the heat deposited

(on site, at the beginning of a slow dump with dynamic heat load)

currentcurrent

mass flow
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CMS on site
• Stabilisation and increase of the mass flow by heating theStabilisation and increase of the mass flow by heating the 
return lines

Eff t th il

T

Effect on the coil 
temperatures

- 0.01 K temperature decrease on coilt

Mass flow

- Increasing and stabilization of

Effect on the 
mass flow
Increasing and stabilization of 

mass flow rate
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CMS R&D

h d b h l• Smooth sensitivity near and above the critical point

Pc
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Limitations and     Extensions
- Circuit geometry : - Feeding of several parallel g y

- A minimum height
- Risk of high point or 

singularities where gas could

g p
circuits with different heat
deposits is possible (in CMS 
design, in ratio of 5)singularities where gas could 

be separated from the liquid
- Minimization of pressure 

drop (singularities)

(feeding and collecting pipes must be 
designed to be as isobaric)

St tin th n tu ldrop (singularities)

- A quasi-adiabatic supply line

- Starting the natural 
circulation is achievable before 
the liquid presence (between 15 
and 20 K for CMS design)q pp y

- Good separation phase in the 
upper tank

and 20 K for CMS design) 

- Heaters on the return pipes
ld b d li iupper tank

(what could be its minimum size?)
could be used to limit 
instabilities due to gas/liquid 
separation at low velocity 

(l h t l d i i )(low heat load or over-sizing)

- Flow quality could be chosen 
well higher than the traditional
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well higher than the traditional 
limit of 5 %



ConclusionConclusion

Confirmed by these tests and operation 
measurements, thermosiphon loop stays a 

i t t i th i di t li fconvenient way to insure the indirect cooling of 
large equipment and must be taken into account 
during a design study without preconceived fearsduring a design study without preconceived fears.
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