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* The thermosiphon principle (example of two phase )

- Self sustained natural boiling convection
dapnia He-a’rérc\)?hcrllzphed (Heat to be removed) P
- Weight unbalance between legs of a loop ﬂ @
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- Rising heat exchangers with various geometry
+ A mass flow and a flow quality deduced from geometry and heat load
* An upper tank -the well-named phase separator- is needed

- to recover gas and to supply supply or condensation of gas (cryocooler)
- for separation of the two phases
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AP flow (m,x,geometry)
&

1 AP (x, hi)

Hyp: homogenous model
l (x << 10%)
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Advantages vs Inconveniences

* A passive creation of flow
- no pumps or regulation valves

* Autonomy in case of external

cryogenic failure (volume of liquid
in the phase separator)

* Minimization of the liquid
volume

- use of the phase separator
as a back-up volume for liquid

* A quasi-isothermal loop
- mainly function of height
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* Need a minimum height
- Pressure head to create flow

» Circuit geometry must avoid
any high point or strong
singularities

- separation of the phases

- risk of vapor lock

* No possible external action

- and a possible frustration for
the operator |

* Pre-cooling before starting
the ThS effect



Examples of
applications on large
superconducting
magnets with LHe/GHe &
loop at Tsat

SMS GO (JLAB)

CLOE (CORNELL)
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PANDA. R3B (GSI)...



. 220 tons at 4.5 K
' 174 t0 500 W at 45 K
* 5 modules

* 86 parallel exchangers
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CMS thermosiphon

______________________

dapnia [ \ ", Phase separator cryostat (8921 GHe+LHe)
- A J
eSP X“ _____ ! First global calculation :
—_— 1A x = 3,5 % ( 6,5% in SD)
saclay ; ; m = 200 g/s ( 400 g/s in SD)
Cryogenic! |
chimney Y ; Thermosiphon loop (3501)
! 5 LHe/GHe return pipes &
LHe supply pipe & 60.3 x 1.6 48.3x 1.6 Top Outlet
manifolds
5 (D 45 x 2.5)
Heat
exchangers
(@i 14)

Inlet manifolds
(D 45 x 2.5)

+ Bottom
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CMS R&D
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s .;‘Q (scaling values)

(on experimental test

* A strong mass

saclay transfer in comparison
with heat deposit 019
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Experimental and
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- Self-sustained circulation with the heat deposited
dapnia
(on site, at the beginning of a slow dump with dynamic heat load)
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dapnia return lines

v

PhB, Symposium for the inauguration of the LHC Cryogenics, CERN, 31/05 & 01/06/2007

Effect on the coil
temperatures

- 0.01 K temperature decrease on coil

Effect on the
mass flow

- Increasing and stabilization of
mass flow rate
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CMS R&D

, * Smooth sensitivity near and above the critical point
dapnia

CMS thermosyphon test loop mass flow vs
saclay pressure (100 W of heat load)

—
)
o

—
|-
-

mass flow in g/s
o
O

o
-

1 1.5 2 2.5

pressure in bars abs

PhB, Symposium for the inauguration of the LHC Cryogenics, CERN, 31/05 & 01/06/2007



Limitations and

- Circuit geometry :

dapnia - A minimum helgh‘r
- Risk of high point or
(:e:] singularities where gas could

be separated from the liquid

- Minimization of pressure
dr'op (singularities)

saclay

- A quasi-adiabatic supply line

- Good separation phase in the
upper tank

(what could be its minimum size?)
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Extensions

- Feeding of several parallel
circuits with different heat
deposits is possible (in CMS
design, in ratio of 5)

(feeding and collecting pipes must be
designed to be as isobaric)

- Starting the natural
circulation is achievable before
the liquid presence (between 15
and 20 K for CMS design)

- Heaters on the return pipes
could be used to limit
instabilities due to gas/liquid
separation at low velocity

(low heat load or over-sizing)

- Flow quality could be chosen
well higher than the traditional

IlmIT Of 5 %
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Confirmed by these tests and operation
measurements, thermosiphon loop stays a
convenient way to insure the indirect cooling of
large equipment and must be taken into account

during a design study without preconceived fears.
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